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Abstract: Blasting demolition is a popular method in the area of building demolishing. Due to the
complex process of the building components’ collapse, it is difficult to predict the collapse-induced
ground vibrations. As the accuracy of the empirical equation in predicting the collapse-induced
ground vibration is not high, there is a significant risk of damage to the surrounding structures.
To mitigate this risk, it is necessary to control and predict the peak particle velocity (PPV) and
dominant frequency of ground vibration with higher accuracy. In this study, the parameters on
the PPV and frequency of collapse-induced ground vibration are analyzed based on the Hertz
theory. Then, fall tests are performed to simulate the collapse process of structural components
and to investigate the characteristics of influential parameters on PPV and frequency. Using kernel
density estimation (KDE) and Pearson correlation, the PPV and frequency are correlated with the
distance from the falling point to the monitored point (R) and the mass of the falling structural
component (M). Using recorded ground vibration data, the PPV and frequency are predicted using
an extreme learning machine in combination with gray wolf optimization. The efficiency of the
proposed algorithm is compared with other predictive models. The results indicate that the accuracy
pre-diction of the proposed algorithm is better than those of plain extreme learning machines and
the empirical equations, which indicates that the approach can be applied for PPV and frequency
prediction of collapse-induced ground vibrations during blasting demolition.

Keywords: collapse-induced ground vibration; PPV; frequency; empirical equation; grey wolf
optimizer—extreme learning machine

1. Introduction

Due to the rapid urban and industrial development and growth, many unsafe buildings,
chimneys, and bridges need to be demolished. As a rapid and economical means of
concrete fragmentation, blasting demolition is widely used in demolition engineering.
Compared with other demolition techniques, the advantage of blasting demolition is its
short duration, which leads to reduced costs and reduced resource requirements [1,2].
However, many engineers worry are concerned that the collapse of structures may cause
ground vibrations, which can threaten the safety of surrounding urban structures and
communities (e.g., tunnels, underground pipelines, and aboveground buildings).

Experimental studies and numerical simulations have been used to investigate the
acceleration time series of the ground vibration at specific distances during blasting demo-
lition [3–7]. To investigate the collapse-induced ground vibrations, the collapse process
of structural components is often simplified through fall tests or dynamic compaction.
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Lin et al. [7] used the dynamic compaction method to investigate collapse-induced ground
vibrations. The method acted as a simulation, which was then verified using actual collapse-
induced ground vibration. Furthermore, it was found that the vibration attenuated rapidly
as the distance increased, while the effects of the collapse profile parameters, soil geolo-
gies, and the presence of an isolation trench were also investigated. Gu et al. [8] used
two-dimensional finite element analyses to investigate the induced ground vibration of
dynamic compaction in dry sand. The results showed that the stress wave attenuation
could be predicted and the improvement of reducing the induced ground vibration. Song
et al. [6] realized a centrifugal similarity model of collapse-induced ground vibration using
dimensional analysis, numerical modeling, and actual measurements, and found that the
simulated model and actual measurements were similar when the gravity was increased
by a factor of n times and the scale ratio of the model was 1/n.

To predict the peak particle velocities (PPV) and frequency of induced vibration, some
researchers tried to investigate the influence of various parameters on ground vibration
and make the predictive equations simple and accurate. The empirical equation for the
PPV of a collapsed component [9] is expressed as follows:

V = K

(
(MgH)1/3

R

)β

(1)

where M is the maximum mass of the collapsed component (kg); g is the acceleration of
gravity (m/s2); H is the height of the collapsed component from the ground (m); R is the
distance from the monitoring point to the location of the collapsed component (m); K and
β are the constants determined by the condition of the contact surface. Other researchers
have proposed different equations for PPV prediction based on energy conservation the-
ory and considering the distribution of the plastic zones of the foundation, respectively.
These equations are listed in Table 1. Except for velocity, frequency is also one of the
basic parameters of a collapse seismic wave, but these waves are not harmonic waves
with a single frequency component. Spectrum analysis of seismic waves is extensively
performed in safety research and commonly assigns a high priority to the dominant fre-
quency components. If the natural frequency of the collapsed seismic wave is close to the
natural frequency of the surrounding buildings, damages to the buildings may be incurred.
Therefore, Fei [9] proposed an empirical equation to predict dominant frequency through
dimensional analysis, and the equation is also listed in Table 1.

Table 1. The list of empirical equations.

Equation No. Notations

V =

[
M
√

2gH(4 − 4 sin ϕi)

ρLR · w2 cot ϕi(2eπ tan ϕi sin ϕi + eπ tan ϕi + sin ϕi − 1)

]β
(2)

w is the length of the collapsed component (m);
ϕi is internal friction angle;
ρ is density of plastic zone (kg/m3);
L is the length of plastic zone (m).

V = η(M/Md)
λK(2gH)1/2e − αR (3)

η and λ are the constants determined by the
geological conditions;
Md is the mass of collapsed components on the ground (kg).

f = K
R

(
2Mgh
σR3

)β (4)
σ is the failure stress of the material of the collapsed
component (MPa);
f is the dominant frequency (Hz)

Consideration of all the parameters of collapse-induced ground vibration was diffi-
cult in the early studies, and these empirical equations show low accuracy in predicting
frequency and PPV. To improve higher prediction accuracy, researchers have used machine
learning techniques to predict collapse-induced ground vibration characteristics. Various
such algorithms have been applied for predicting PPV and frequency in blasting engineer-
ing, such as artificial neural networks (ANNs), support vector machines, classification and
regression trees, and so on [10–13]. For example, ANNs [14–16] have been adopted to
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predict the ground vibration in blasting engineering with a higher degree of correlation,
and the results showed that the prediction performance of machine learning-based models
is better than that of the empirical equations. However, the ANN models require consider-
able training time and easily fall in local minima. As a new algorithm, the extreme learning
machine [17] (ELM) shows the advantages of fast learning, good generalization capability,
and optimal solutions. ELMs are single hidden layer feedforward neural networks, which
have been applied to civil engineering problems. Because the performance of ELMs de-
pends on the weights between the input and hidden layers and the biases of the hidden
layer, it is necessary to adjust their parameters to ensure the accuracy of the models. Many
optimization algorithms have been applied to determine the parameters of ELMs, such as
the grid search method, particle swarm optimization, artificial bee colony algorithm, and so
on [18–20]. The grey wolf optimizer [21,22] (GWO) is a new optimization algorithm that can
be used to calculate the weights and biases of ELM. Through imitating the hunting behavior
of a wolf pack, GWO has the advantages of few adjustment parameters, fast convergence,
and strong global searchability. Therefore, it has been widely used for the optimization of
various intelligence algorithms. For example, the hybrid GWO-ELM algorithm [23,24] has
been successfully used for solving complex problems in different areas and shows better
performance than other algorithms.

PPV, frequency, and duration are the parameters commonly used to assess the dam-
age caused by stress waves to urban structures [25,26]. Since PPV and frequency are
regarded as important indicators of a ground vibration’s effect on the surrounding build-
ings, the International Organization for Standardization (ISO) and many countries [27]
have outlined the typical ranges of PPV and frequency of ground vibrations according to
the bearing limitations of different structures and urban settings. The PPV value limits
(extracted based on “Safety Regulations for Blasting” and the relevant ISO standards) for
different building types are shown in Figure 1.

Figure 1. The ranges of PPV and frequency for different communities based on different standards.
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As a contribution to the assessment and prediction of collapse-induced ground vibra-
tions, in this study a survey of the literature on the prediction models for ground vibration
in blasting demolition is first presented, followed by a series of single-object fall tests to
simulate collapse-induced ground vibrations. Then, the Pearson correlation coefficient is
used to investigate the influence of primary factors on ground vibration characteristics.
Based on the test results, the GWO-ELM algorithm is applied to the prediction of the PPV
and frequency. Then, the prediction results are analyzed according to two performance
metrics, the root mean square error (RSME) and the determination coefficient (R2). Based
on these results, comparisons are presented on the accuracy of the empirical equations,
ELM, and GWO-ELM models, and the optimal model for predicting PPV and frequency
is selected.

2. Theoretical Analysis on the Collapse-Induced Ground Vibration

Due to the variety of structural types, the conditions and requirements of demolition,
as well as the surrounding communities and environment of the collapsed structures,
the collapse type is selected according to the specific situation. During the demolition of
structures, the velocity of the collapsed building components will be reduced to 0 at the
moment of impact on the contact surface. The collapsed components’ kinetic energy is
then converted into the deformation energy of the contact surface and vibration energy of
particles. The impact and vibration caused by the collapsed building components pose a
safety threat to urban structures. Due to the difficulty of the associated theoretical analysis
and the poor accuracy of the empirical equations, there have been few previous studies on
collapse-induced vibration. Therefore, research on the vibrations induced from collapsing
bodies has important theoretical value and practical significance.

Based on the Hertz theory [28], the collapsed component’s contact with the surface
can be regarded as an elastic collision between two elastic spheres. The equation of stress
distribution can be expressed as:

P(l) =
3F

2πL2

[
1 −

(
l
L

)2
]1/2

(5)

where, L is the radius of contact surface: L = r · δ, with r being the equivalent radius:
r = r1r2

r1 + r2
, r1 and r2 are the radius of the two spheres; δ is the total compression;

δ = δ1 + δ2, δ1, δ2 are the compression of the two spheres. l is the radius variable of the
contact surface and F is the impact force, expressed as:

F =
4
√

rEδ3/2

3
(6)

where, E is the equivalent modulus: E = E1E2
(1 − µ2

1)E2 + (1 − µ2
2)E1

, E1 and E2 are the elas-

tic modulus of the two spheres; µ1 and µ2 are the Poisson ratios of the two spheres,
respectively. Therefore, the impact force is directly affected by the total compression δ,
which is calculated as:

δ =

(
5mv2

4K

)2/5

(7)

where m is the equivalent mass: m = m1m2
m1 + m2

, m1 and m2 are the mass of the two spheres;
v is the instantaneous velocity of two elastic spheres; K is the constant and calculated as:

K =
4
√

rE
3

(8)
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According to Equations (6)–(8), the elastic impact force can be expressed as:

Fe =

(
5m1m2v2

4(m1 + m2)

)3/5( 4E1E2
√

r
3E2
(
1 − µ2

1
)
+ E1

(
1 − µ2

2
))2/5

(9)

Assuming that the mass of ground surface is m2 → ∞ , the radius of ground surface
is r2 → ∞ , the instantaneous velocity is v2 = 2gH. Therefore, Equation (9) can be
simplified as:

Fe =

(
5m1gH

2

)3/5
(

4E1E2
√

r1

3E2
(
1 − µ2

1
)
+ E1

(
1 − µ2

2
))2/5

(10)

The effects of various factors on the impact forces are expressed in Equation (10).
According to the existing empirical equations, the distance (R) should be considered as the
major parameter in predicting the PPV and frequency. Therefore, the parameters related to
PPV and frequency are as follows:

PPV = f (m1, r1, E1, E2, µ1, µ2, H, R) (11)

f = f (m1, r1, E1, E2, µ1, µ2, H, R) (12)

3. Falling Tests
3.1. Description of the Test

Fall tests are conducted to simulate a collapsing structure. As is shown in Figure 2,
cubes with different masses are dropped from different heights on a concrete contact
surface. The pressure applied during impact and the size of the falling cubes are 57 MPa
and 100 mm × 100 mm × 100 mm, respectively. The ground vibration was measured using a
TC-4850 sensor, at a distance of 0.5 m from the impact site. The mass and height of the cubes,
along with the distance from the impact points to the monitored points, are listed in Table 2.

Figure 2. Experimental setup for fall tests and ground vibration measurements.

Table 2. The range of the parameters of falling tests.

Contact Surface Mass (M) Height (H) Distance (R)

Concrete 2–6.5 kg 1.5–2.77 m 0.4–5 m
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3.2. Test Results

The ground vibrations were recorded in the form of velocity histories in the radial,
transverse and vertical directions. Since a large amount of test data can not be performed
intuitively, the test PPV and frequency are fitted for analysis. It is widely accepted that
the scaling of energy is defined as the relation between R and the energy of the collapsed
component, so the scaling of energy can be calculated as:

Scaling of energy =
(MgH)1/3

R
(13)

In this study, the failure stress of the falling concrete cubes is uniform because the
masses of the concrete cubes used were the same. Therefore, the failure stress can be
regarded in Equations (1) and (4). To obtain a clearer plot of the vibration data, the relations
between the PPV of the three components and the scaling of energy were plotted using
Equation (1), while the frequency was determined using Equation (4). The constants of
empirical equations are determined by non-linear regression analysis, the calculated values
of the constants for Equations (1) and (4) are shown in Table 3. Moreover, Table 3 also
lists the R2 to enable evaluating the accuracy of the empirical equation. Based on Table 3,
the empirical equation of PPV obtains higher R2 than the empirical equation of frequency.
In general, the empirical equations are unsuitable for predicting the PPV and frequency,
and these result in a worse performance of prediction.

Table 3. Values of the constants computed by regression analysis.

Direction Equation R2

PPV

Radial V = 0.166 ×
(

3
√

MgH
R

)0.489
0.41

Transverse V = 0.122 ×
(

3
√

MgH
R

)0.831
0.43

Vertical V = 0.497 ×
(

3
√

MgH
R

)0.825
0.73

Frequency

Radial f = 0.478 ×
(

3
√

MgH
R

)−0.611
0.29

Transverse f = 0.321 ×
(

3
√

MgH
R

)−0.592
0.33

Vertical f = 0.366 ×
(

3
√

MgH
R

)−0.461
0.21

The comparison of the PPV along the three directions shows that the PPV prediction
in the vertical direction is better in terms of R2 value compared to the radial and transverse
directions. Figure 3 shows the nonlinear curve of the relationship between the scaling of
energy and the PPV in different directions for the case of a concrete surface. It can be seen
that the PPV values increase as the scaling of energy increases. Meanwhile, the values of
PPV in the vertical direction are higher than those in the radial and transverse directions.
Therefore, the results indicate that PPV in the vertical direction should be the main factor
measured when investigating the potential effect of a building collapse on the surrounding
structures. Meanwhile, according to the test results, the value of the dominant frequency
of ground vibration is in the range of 0–1 Hz. The relationship between the scaling of
energy and dominant frequency is shown in Figure 4. In contrast to the PPV, the dominant
frequency decreases with the increase of the scaling of energy. The frequency in the
transverse direction is lower than that of the other two directions.
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Figure 3. The plot of PPV in different directions.

Figure 4. The plot of frequency in different directions.

3.3. Effect of the Main Parameters

To investigate the main parameters affecting collapse-induced ground vibrations,
it is necessary to consider whether these parameters have an impact on the PPV and
frequency. Due to the results of the fall tests, the distance between collapsed components
and monitored points, the height, and the mass are considered as the major factors affecting
the prediction of PPV and frequency. The Pearson correlation coefficient was selected to
analyze the correlation between these parameters, PPV, and frequency. When the Pearson
correlation coefficient between a parameter and the PPV (or frequency) is close to 1 or −1,
this indicates that the parameter has a strong effect on PPV (frequency). In addition, kernel
density estimation (KDE) was used to analyze the overall distribution of data from the
fall tests.

The KDE and Pearson correlation coefficients between the main parameters and PPV
in the three directions are depicted in Figure 5. It can be seen that the PPVs increase
as the mass is increased and decrease as distance increases. Figure 5 also shows the
Pearson correlation coefficients between the main parameters and PPV. Among the three
parameters, the distance is the most important parameter affecting the PPV along the
radial direction, with a Pearson correlation coefficient value of −0.54. In the transverse and
vertical directions, the results show that the mass can be regarded as the most important
parameter affecting PPV in the transverse and vertical directions, with correlation coefficient
values of 0.72 and 0.71, respectively. Therefore, the distance and mass should be paid more
attention to when predicting the PPV of blasting demolitions.

The relationship between the main parameters and frequency was also investigated
using KDE and Pearson correlation. The results of the KDE between the main parameters
and frequency are shown in Figure 6. From the KDE aspect, distance and mass have
significant impacts on frequency, but the influence of height is not obvious. As in the
case of PPV, the Pearson correlation coefficient was used to analyze the sensitivity of
frequency to each of the main parameters. According to the results, the mass is the
most important parameter affecting frequency in the radial and transverse directions.
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Meanwhile, the correlation coefficient between the mass and frequency had a value of
−0.59 in the radial direction and −0.55 in the transverse direction. Among the three
parameters, the correlation coefficient between the distance and frequency in the vertical
direction was −0.66, which indicates the influence of the distance on predicting frequency
is more pronounced than that of the other two parameters.

Figure 5. The KDE and Pearson correlation coefficient between the main parameters and PPV:
(a) Distance; (b) Height; (c) Mass.
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Figure 6. The KDE and Pearson correlation coefficient between the main parameters and frequency:
(a) Distance; (b) Height; (c) Mass.

4. Predictive Model Development
4.1. Theoretical Background of Various Models
4.1.1. Extreme Learning Machine (ELM)

ELM is a novel method for feedforward neural networks [29]. Unlike most neural
networks, in ELM algorithms there is only one hidden layer, the weights, and biases of
which are determined randomly. To determine the optimum ELM algorithm, the weights
of the hidden layer and the biases of the output layer are calculated so as to make the speed
of calculation faster. Assuming there is a set of samples D with different samples (xi, yi),
which can be expressed as:

D =
{(

xj, yj
)
, j = 1, 2, . . . , N

}
(14)

If there are L hidden layer neuron nodes, the function of the output of the standard
feedforward neural network can be calculated as follows:

fL(x) =
L
∑

i = 1
βig
(
wi · xj + bi

)
= ti, (j = 1, 2, . . . , N) (15)
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where xj =
[
xj1, xj2, . . . , xjm

]T is the input vector; bj = [bi1, bi2, . . . , bim]
T is the bias

vector; the weights which connect the hidden neurons to the input and output neurons
are wi = [wi1, wi2, . . . , wim]

T and βi = [βi1, βi2, . . . , βim]
T , respectively; the output vector

is tj =
[
tj1, tj2, . . . , tjm

]T ; g(x) is the activation function, which can take various forms,
such as a radial basis function, sigmoid, sine and so on. To minimize the training error, it is
necessary to reduce the difference of the output values from the target values. Therefore,
Equation (15) can be written as:

fL(x) =
N
∑

i = 1
βig
(
wi · xj + bi

)
= yi, (j = 1, 2, . . . , N) (16)

where yj =
[
yj1, yj2, . . . , yjm

]T is the target vector. Equation (16) can be in matrix form as
Hβ = Y, in which

H =

 g(w1 · x1 + b1) · · · g(wL · x1 + b1)
... · · ·

...
g(w1 · xN + b1) · · · g(wL · xN + b1)


N × L

(17)

In the ELM, output weights are obtained when the training errors between the target
values and the predicted values are minimized. The output weights can be calculated
as follows:

β = H†Y (18)

where H† represents the Moore Penrose generalized inverse of the matrix H. The archi-
tecture of a standard ELM is shown in Figure 7. The input weights and hidden neuron
thresholds of a standard ELM are generated randomly and thus do not require an iterative
solution. However, the output matrix is usually a non-full rank matrix, which weakens
the generalization performance of the model, while the ELM parameters are adjusted
repeatedly to improve the prediction accuracy and stability, which leads to increased com-
putational cost to achieve a solution. Therefore, it is necessary to determine methods for
optimizing ELM parameters while improving the model’s accuracy and stability.

Figure 7. A typical model of ELM.

4.1.2. Grey Wolf Optimizer (GWO)

The GWO is a new optimization algorithm first proposed by Mirjalili et al. [21], which aims
to imitate the progress of the social order of grey wolves and their hunting behavior. Due to
the strict social dominant hierarchy of the grey wolves, the entire wolf pack is divided
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into four categories: alpha (α), beta (β), delta (δ), and omega (ω). The alpha wolves are
the leaders of the wolf group, and make decisions about hunting, resting, sleeping, and so
on. According to the social stratification, the beta wolves are in the second tier; they obey
the commands of the alphas and assist the alphas in decision-making. Delta wolves are
at a lower tier than alphas and betas, and their main tasks are reconnaissance, sentry,
and guarding. The omega tier is the lowest in the entire pack, and its members must submit
to all the other wolves of the pack and satisfy the entire pack. In the GWO, the best solution
found is considered as the alpha. Beta and delta constitute respectively the second and
third solutions. The remaining solutions are considered to be omega, and follow alpha,
beta, and delta. The social dominance hierarchy of a grey wolf pack is shown in Figure 8.

Figure 8. Social dominant hierarchy of grey wolf pack.

During hunting, the behavior of grey wolves encircling the prey can be mathematically
described as:

→
D =

∣∣∣∣→C · →XP(w) −
→
X(w)

∣∣∣∣ (19)

→
X(w + 1) =

→
Xp(w) −

→
A ·

→
D (20)

where
→
D represents the distance from the wolf to prey, w represents the current iteration

index,
→
X and

→
Xp represent the position vector of individual grey wolves in generation

and the position vector of the prey in generation respectively.
→
A and

→
C are the coefficient

vectors, whose values can be calculated as follows:

→
A = 2

→
a
→
r1 −

→
a (21)

→
C = 2

→
r2 (22)

where
→
r1 and

→
r2 are two random vectors in the range of [0, 1], the value of

→
a decreases

linearly from 2 to 0 during the iteration.
After encircling, the grey wolves are generally guided by the alphas to begin to attack

the prey. However, it is impossible to obtain the location of the prey because of its initial
position. While hunting, the encircling process is mainly dominated by alphas, betas,
and deltas because they have strong abilities to identify the positions of prey. Thus, these
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tiers look for the current position of prey, while omega updates their optimal positions
based on the three higher tiers’ locations. So, the hunting behavior can be expressed as:

→
Dα =

∣∣∣∣→C1 ·
→
Xα −

→
X
∣∣∣∣

→
Dβ =

∣∣∣∣→C2 ·
→
Xβ −

→
X
∣∣∣∣

→
Dδ =

∣∣∣∣→C3 ·
→
Xδ −

→
X
∣∣∣∣

(23)



→
X1 =

→
Xα −

→
A1 ·

→
Dα

→
X2 =

→
Xβ −

→
A2 ·

→
Dβ

→
X3 =

→
Xδ −

→
A3 ·

→
Dδ

(24)

→
X(w + 1) =

→
X1 +

→
X2 +

→
X3

3
(25)

where
→
Xα,

→
Xβ and

→
Xδ are the position vectors of alpha, beta, and delta, respectively;

→
Dα,

→
Dβ and

→
Dδ are the corresponding distances to the prey;

→
C1,

→
C2 and

→
C3 are the coefficient

vectors;
→
X1,

→
X2 and

→
X3 are the moving step size and direction of the alpha, beta, and delta,

respectively. When the position of the prey has been determined, the wolves reach the
location of the prey and attack it. From the mathematical point of view, the optimum point

is found when
∣∣∣∣→A∣∣∣∣ < 1. It can be seen that to decrease the value of

∣∣∣∣→A∣∣∣∣, it can be seen that

the value of
→
a should also decrease in Equation (21).

4.2. Methodology of GWO-ELM

The proposed workflow of the prediction process shown in Figure 9 is applied to
develop, train and test GWO-ELM for accurate PPV and frequency prediction. The first
step of this workflow is sampling. The data samples, which include input and output
parameters, are mentioned in Section 3.2. The next step is feature selection, which is based
on the parameters of the impact force and the decay of the stress wave with distance.
Consistent with the fall tests, the mass and height of the falling cubes and the distance
between the impact and the monitored points are selected as the final parameters. After that,
80% of the datasets are selected for training and the rest for testing and validation. Then,
different PPV prediction models, frequency in different directions, and contact surfaces
are proposed to predict the ground vibration, respectively. Based on the ELM algorithm
presented above, the weights and biases should be calculated to ensure the ground vibration
prediction accuracy. Therefore, in this study, the GWO is utilized to optimize the ELM,
and the hybrid regression approach is named GWO-ELM. The final step is evaluating the
performance of GWO-ELM and comparing its accuracy with the empirical equations and
the plain ELM algorithm.
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Figure 9. Workflow of the proposed GWO-ELM.

4.3. Performance Assessment

To examine the prediction performance of the model, two statistical indices, namely,
R2 and RSME are used to evaluate the performance of the empirical equations, the ELM,
and GWO-ELM. The RSME is often used to calculate the differences between predicted
and actual values. If the value of RSME approaches 0, this indicates that the accuracy
of the predictive model is high. The determination coefficient (R2) is used to judge the
performance of a statistical model by fitting the training set. The expressions for R2 and
RSME are shown in Equations (26) and (27), respectively.

R2 =

[
n
∑

i=1
(xi − xmean)

2
]
−
[

n
∑

i = 1

(
xi − xp

)2
]

n
∑

i = 1
(xi − xmean)

2
(26)

RSME =

√
1
n
×

n

∑
i = 1

[(
xi − xp

)2
]

(27)

where n is the number of data sets, xi is the measured variable, xp is the predicted variable,
and xmean is the average variable.

5. Results and Discussion

According to Section 3.3, the PPV values in the radial and transverse directions are
lower than those in the vertical direction. Based on “Safety Regulations for Blasting” [27],
the maximum PPV value in a single direction or the resultant velocity is selected as the
criterion to predict the damage degree to the surrounding structures. Therefore, the ground
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vibration in the vertical direction is used to investigate GWO-ELM’s accuracy in predicting
PPV and frequency.

5.1. Prediction of PPV

According to the fall tests, H, M and R should be considered as the input neurons
to predict the collapse-induced ground vibration. The number of hidden neurons was
determined through a trial-and-error process. To evaluate the performance of different
numbers of hidden layer neurons of the GWO-ELM model, the RMSE was selected to
formulate the best model. According to the results presented in Figure 10, the value of
training-RSME for GWO-ELM models decreases as the number of hidden neurons increases.
The gap in values of training-RSME is very small. However, the test-RSME value for the
configuration with 16 hidden neurons yielded the best accuracy compared to other GWO-
ELM models. Therefore, the optimal structure of the GWO-ELM model for PPV prediction
was determined.

Figure 10. Comparison results of GWO-ELM models with different numbers of hidden layer neurons.

After optimizing the GWO-ELM model using the fall test data, it is necessary to
examine the efficacy of the GWO-ELM model. Therefore, the ELM and the empirical
equations were selected as benchmarks for comparison with the GWO-ELM algorithm.
In order to compare the performance of predicting the PPV intuitively, an ELM with the
same number of hidden layer neurons as the GWO-ELM was used for this comparison.
Figure 11 shows the comparison between the measured and predicted PPV of the different
prediction methods and the performance assessment of the models. As shown in Figure 11,
the prediction of GWO-ELM was closer to the identity line than those of the other models of
the comparison. To verify the performance of the predictive models, the values of R2 were
calculated and shown in Table 4. Comparing the three predictive models, it is evident that
GWO-ELM, with its values of R2-training (0.96) and R2-test (0.65) yields better performance
than ELM and the empirical equations.
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Figure 11. Comparison between measured and predicted PPV: (a) GWO-ELM; (b) ELM; (c) Empirical
equation.

Table 4. Statistical criteria for predicting PPV.

Model
R2

Training Test Total

Empirical equation 0.76 0.62 0.73
ELM 0.94 0.29 0.78

GWO-ELM 0.96 0.65 0.88

5.2. Prediction of Frequency

Similar to the prediction of the PPV, the frequency was also predicted using the
workflow mentioned in Section 4.2. First, trial-and-error was utilized to optimize the
models’ configuration and achieve higher accuracy. Figure 12 shows the performance of
the GWO-ELM model with different numbers of hidden layer neurons. Considering the
training-RSME and test-RSME, the optimal model with 11 hidden layer neurons shows
high accuracy predictions of the actual frequency and was therefore selected.

Figure 12. RSME values for different numbers of hidden layer neurons.

The comparison between the frequency measured and predicted by GWO-ELM is
shown in Figure 13a, while (b) and (c) show the corresponding performance of the ELM
and the empirical equations, respectively. It can be seen that the majority of the points of
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GWO-ELM are closer to the identity line than those of the other two models. In order to
compare the performance of the models more intuitively, Table 5 lists the statistical metrics’
results for frequency prediction. The GWO-ELM model achieved R2-training (0.75) and
R2-test (0.59) and was therefore slightly better compared to the other two predictive models.
Thus, combined with the above results, the comparison confirms GWO-ELM’s suitability
for frequency prediction.

Figure 13. Comparison between measured and predicted frequency: (a) GWO-ELM; (b) ELM; (c)
Empirical equation.

Table 5. Statistical criteria for predicting frequency.

Model
R2

Training Test Total

Empirical equation 0.41 0.16 0.39
ELM 0.64 0.49 0.63

GWO-ELM 0.75 0.59 0.72

5.3. Discussion

In order to compare the pros and cons between the predictive models, the calculation
results of the empirical equation and GWO-ELM were compared with the actual PPV
and frequency values, respectively. The performance differences for PPV and frequency
prediction are shown in Figures 14 and 15, respectively. In terms of PPV prediction,
the accuracy of GWO-ELM was much higher than that of the empirical equations, and this
was the case for frequency prediction.

Figure 14. Performance differences in PPV prediction.



Buildings 2022, 12, 121 17 of 19

Figure 15. Performance differences in frequency prediction.

Based on the results, GWO-ELM can be regarded as a good approach for predicting
collapse-induced ground vibrations. Compared with the empirical equations, GWO-ELM’s
performance in predicting PPV and frequency during blasting demolition is superior.
Although the optimized GWO-ELM model predicts PPV and frequency with high accuracy,
the number of influential parameters analyzed through the fall tests was still relatively
small. If the prediction is to take more parameters into account, it is necessary to record or
collect more data to improve the applicability of the GWO-ELM model.

6. Conclusions

This study attempted to simulate collapse-induced ground vibrations through fall
tests. To assess and predict the PPV and frequency of collapse-induced ground vibrations,
in this study the GWO-ELM algorithm is proposed. For this purpose, the dataset of 92 data
including PPV, frequency, the distance from the collapsed center to the monitored point (R),
the mass (M), and the height was used. The data were recorded using a blast vibrometer.
Then, the KDE and Pearson correlation was used to investigate the relationship between
the main parameters and the collapse-induced ground vibration data. The results of this
study can be summarized as follows:

(1) The study presents a theoretical analysis for screening the parameters which can be
considered to predict collapse-induced ground vibration in blasting demolition. Based
on Hertz theory, the mass of the falling structural components, the elastic modulus
and Poisson ratios of the component and the contact surface, the radius of component,
the height between the component and the contact surface, and the distance from the
falling point to the monitored point should be considered as the influential parameters
for PPV and frequency prediction of collapse-induced ground vibration.

(2) Fall tests were conducted to simulate the generation of collapse-induced ground
vibrations. According to the test results, the values of PPVs in the vertical direction
were larger than those in the radial and transverse directions. Meanwhile, the value
of the dominant frequency was in the range of 0–1 Hz in all three directions. Due to
the lower PPV values in the radial and transverse directions and the lower dominant
frequency of the ground vibration, the PPV and frequency in the vertical direction
were selected to investigate the application of GWO-ELM. Then, KDE and Pearson
correlation coefficients were used to analyze the distribution of the fall tests and
investigate the influence of the main parameters on PPV and frequency. Among the
three parameters, R and M were found to be more effective in predicting the PPV and
frequency of ground vibrations induced by blasting demolition.

(3) After the analysis of the influential parameters, R, H and M were selected to evaluate
the performance of the predictive models. The empirical equations, an ELM, and the
GWO-ELM were adopted to predict the PPV and frequency. The comparison shows
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that the GWO-ELM yields training-R2 (0.96) and test-R2 (0.65) values of predicting PPV
superior to those obtained using the empirical equations and the ELM. In addition,
the GWO-ELM, with training-R2 (0.75) and test-R2 (0.59), shows better performance
compared to the other two models. Therefore, the hybrid algorithm has the potential
for broad application in predicting the PPV and frequency in blasting demolition.

Therefore, due to its superior performance, the GWO-ELM can be used to determine
the potential risk of a blasting demolition project to the surrounding structures and ensure
the safety of structures and inhabitants. Further study should focus on more parameters
for predicting the PPV and frequency in blasting demolition.
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