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Abstract: This paper describes a methodology to optimize the home sensor network to measure the
Activities of Daily Living (ADLs) of older people using Machine Learning (ML) applied to synthetic
data generated via a newly developed Smart Living Environment (SLE) simulation tool. A home
sensor network consisting of Passive InfraRed (PIR) and door sensors allows people to age in place,
avoiding invasiveness of the technology by keeping track of the older users’ behaviour and health
conditions. However, it is difficult to identify a priori the optimal sensor network configuration to
measure users’ behaviour. To ensure better user acceptability without losing measurement accuracy,
the authors proposed a methodology to optimize the home sensor network consisting of simulating
human activities, and therefore sensor activations, in the reconstructed SLE and analysing the datasets
generated through ML. Four ML classifiers, namely the Decision Tree (DT), Gaussian Naïve Bayes
(GNB), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN), were tested to measure the
accuracy of ADL classification. Optimization analysis was made, providing the most suitable home
sensor network configuration for two home environment case studies by exploiting the DT classifier
results, as it proved to achieve the highest mean accuracy (over 94%) in measuring ADLs.

Keywords: activities of daily living; home sensor network; smart living environment; simulation
tool; smart home; machine learning; older people monitoring; human health monitoring; active and
assisted living; age in place

1. Introduction

Nowadays, assistive technologies are increasingly being used to support older people
living alone at home or with a caregiver to guarantee their independence, good health
status, and social inclusion [1]. It is possible to monitor the user’s behaviour without contact
in the living environment and predict well-being by identifying ad hoc services [2]. Keeping
track of the users’ behaviour, by classifying and recognizing Activities of Daily Living
(ADLs), and health conditions avoiding invasiveness of technology [3,4], travels, and visits
to hospital and care centers, especially in a pandemic emergency, like COVID-19 [5], has
become a necessity. In this context, a smart living environment (SLE) characterized by
IoT-connected devices [6] allows people to age in place and live longer, while reducing
costs for care systems [7].

Realizing an appropriate SLE characterized by a low-cost [8,9] and non-invasive [10,11]
home sensor network for measuring the behaviour [12] and health conditions [13] of older
people is increasingly in demand [13–17]. A home sensor network made up of Passive
InfraRed (PIR) and door sensors meets the aforementioned requirements for monitoring
users’ behaviour within their home, which is why it is one of the most frequently used type
of sensor network in the monitoring field of ageing in place [2,14–18].
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The experience gained in the eWare—“Early Warning Accompanies Robotics Ex-
cellence” [19] and e-VITA—“EU-Japan virtual coach for smart ageing” [3,20] projects
prompted the authors of this paper to propose a method, in response to the lack emerged
in the literature, that helps the system architect to design the optimal configuration of the
home sensor network for measuring the ADLs of older people. This method consists of
simulating human activities, and therefore sensor activations, in the reconstructed SLE,
analysing the generated datasets through ML, and finally providing the optimal config-
uration of the home sensor network based on the evaluation of the accuracy achieved in
classifying ADLs, which reveals whether the chosen number and position of the devices
guarantee good performance.

The difficulty that the designer has before the installation, which concerns the choice
of the number and position of the sensors, is a well-known problem. This decision has
a direct impact on the measurement of ADLs. At this stage, datasets representative of
users’ activities and sensors activations are necessary to develop ML models to classify
ADLs. There are two main approaches to obtain test data. One is to generate real data in
a laboratory where the smart home is reproduced. This solution is good, but costly and
time-consuming. Additionally, when creating real smart home test beds, it is important to
have a robust and continuous system to capture sensors’ data and an appropriate method
to take note of a user’s activities. The other approach consists of generating synthetic data
using tools capable of simulating the home environment, the sensors installed in it, and
the activities of the users. These tools overcome the drawbacks of creating real datasets,
simplifying fast data generation, and offering robust methods to obtain sensors’ data, but
most of them are not open-access and are limited to specific sensors which do not match
the purpose of measuring users’ ADLs. Thus, the authors developed a SLE simulation
tool to simulate human activities and sensor activations in the reconstructed environment.
The tool has been designed based on the hybrid approach described in the literature [21],
which combines [22] the model-based approach [23] that facilitates data generation, and
the interactive approach [24] that uses virtual environments and sensors responding to
user interaction. The SLE simulation tool is used to simulate indoor human trajectories,
starting from the home environment, the number and characteristics of the simulated PIR
and door sensors, and the user’s profile. The generated datasets are subsequently fed to ML
algorithms to classify the user’s ADLs. Therefore, the optimal configuration of the home
sensor network is identified by analyzing the accuracy achieved in ADL classification and
the implementation costs (Figure 1).Buildings 2022, 12, 2213 3 of 22 
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The paper is organized as follows: Section 2 gives an overview of smart home simula-
tion tools in the literature, Section 3 describes the newly developed SLE simulation tool and
the home sensor network optimization method, Section 4 presents the ML analysis results
for two SLE case studies, Section 5 analyzes and discusses the results, while Section 6
outlines the main conclusions.

2. Related Work

The literature shows how much effort has been put into in creating datasets for smart
home applications, both using real test benches, a costly and time-consuming process, and
simulation tools, which allow for fast and easy data generation. During their research,
the authors focused on investigating different tools for reproducing the smart home and
simulating sensors in the environment. These tools are mainly categorized into model-
based and interactive approaches, and can be based on both 3D and 2D models.

The model-based approach [23] facilitates the generation of synthetic data using pre-
defined activity models, by defining the order of events, the probability of their occurrence,
and the time spent for each event during the execution of activities. The model-based
approach [25,26] enables data generation for extended periods. To simulate a significant
amount of data, the user must script each day independently. This is one of the main
drawbacks of using these simulators in healthcare applications, since several weeks of
data are required to capture long-term behavioral models. Another problematic aspect is
the design and description of a complex activity model that needs access to real test data
containing all the intrinsic aspects that characterized such activities. The advantage of the
model-based approach is instead the simulation of activities related to sensor activation
associated with specific rooms of the smart home. The PerSim 3D tool [25] allows to define
contexts and to set sensors’ value ranges for generating datasets from an inhabitant’s
activities, which are visualized through a 3D interface. However, this tool is not publicly
accessible. Another 3D smart home simulator is SIMACT [27]. This tool has a series of
pre-stored scenarios created from data collected from medical studies, which can be used to
generate datasets for activity recognition. CASS [28] is a 2D context-aware simulation tool
that generates information related to virtual sensors and devices. The user can establish
the appropriate sensors and devices for the smart home by identifying conflicts of rules in
contextual information. Caruso et al. [29] developed a simulator using process declaration
models for modeling the habits performed by the virtual resident. The authors showed how
different sensor configurations generate different sensory registers that can be employed
as input for activity recognition techniques to provide guidelines for setting up a sensor
network for the real smart home.

Most of these tools that use the interactive approach focus on providing a first-person,
third-person or overhead view of the environment. The approach facilitates the adjust-
ment of sensor proprieties but does not provide the output of sensors commonly used to
recognize ADLs. On the other hand, the interactive approach uses virtual environments
and sensors responding to user interaction. In this case, the user can move the virtual
inhabitant inside the recreated smart home, allowing it to interact with the environment.
The interaction can be both active (e.g., turning on/off the light) and passive (e.g., the PIR
sensor activation following the detection of virtual inhabitant movements in its measuring
range). This approach has the disadvantage of taking a long time to generate datasets, since
the interactions are collected in real-time. Buchmayr et al. [24] developed a simulator that
models binary and temperature sensors. The simulator models the behaviour of defective
sensors by confusing the sensor reading with a noise signal. The simulator needs user
interaction to produce sensor readings by pressing on them. However, this approach is
challenging in the case of numerous sensors, particularly in scenarios where multiple
sensors need to be activated at the same time. Synnott et al. [30] presented a tool that
allows users to create a simulated smart home providing a 2D view of the floorplan, within
which it is possible to perform ADLs via a virtual avatar. This tool has been shown to ease
dataset generation that captures the performance of normal and abnormal activities, like
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dangerous scenarios, but is not available in the public domain. The smart home simulation
tool developed by Ariani et al. [31] provides a 2D map editor to create a floo plan and
to add ambient sensors: it simulates binary motion sensor activations at the inhabitant’s
movements. Nishikawa et al. [32] proposed UbiREAL, a simulation tool that integrates a
3D interface to reproduce the implementation of the sensors, which simulates communica-
tion between them and reproduces the variation of physical quantities (e.g., temperature,
humidity) caused by the devices (e.g., air conditioners).

This research found that model-based approaches allow the generation of huge
datasets in short times, but at the expense of accuracy in catching realistic interactions.
Interactive approaches, instead, can reproduce realistic simulations, but they take longer.
Therefore, the SLE simulation tool developed by the authors has been designed based on the
hybrid approach described by Alshammari et al. [21] which, bringing together model-based
and interactive approaches advantages, resulted in the OpenSHS 3D smart home simulator.
This tool offers the possibility to generate datasets in a short time, since starting from a
produced small sample, this can be increased with no impact on the sequence of events.

The authors’ first experience of development of the SLE simulation tool to optimize
sensor networks for the measurement of a user’s ADLs is reported in the Ref. [33]. In this
previous work, the SLE simulation tool realized using Matlab was used to generate normal
and wandering trajectories and the associated activations of the sensors. The simulated
data have been trained with ML algorithms to identify overnight wandering. The results
proved that the Decision Tree (DT) algorithm is reliable in discriminating between normal
and wandering trajectories measured by PIR sensors, achieving 95% accuracy using a
cross-validation method. After this experience, the authors improved the tool by including
more complex aspects, such as adding the parametrization of sensors and environment, the
daily time, and a function to create perturbation in daily activities between a simulation day
and others. Furthermore, the software was modified using web application software [34].

3. Materials and Methods

The SLE simulation tool, developed using the open-source Zend framework, considers
the user’s profile, the environment, and sensor’s characteristics to provide a PIR and door
sensor activation dataset from simulated virtual user trajectories. By analyzing the accuracy
of a user’s ADL classification using ML algorithms, it is possible to optimize the home
sensor network in the reconstructed environment by changing its configuration (Figure 1).

3.1. User’s Profile

The analysis of the user’s profile defines the useful ADLs for the measurement. Based
on the use case, therefore, a service tailored to the needs and preferences of the user must be
created to avoid negative feedback. Optimizing the home sensors network, which means
trying to minimize the number of sensors and install them in optimal locations without
losing measurement accuracy, will bring a reduction of costs and better user acceptance.

3.2. Environment Characteristics

The first approach with the tool is the uploading of the environment map. When the
house map is uploaded, the rooms are selected by defining their boundaries and assigning a
label to each of them, such as the bedroom or kitchen. The apartment shown as an example
in Figure 2 consists of a kitchen, a living room, a hallway, a hobby room, a toilet, a bedroom,
and a garage.

The function to parameterize the 2D environment is described in (1):

FENV(x, y) = f (Xr, Yr, Nr, Nd, No, A) (1)

where Xr, Yr consider the geometry of the room, the variables Nr, Nd, No indicate the
number of rooms, doors, and obstacles, respectively, and A is the walking area in square
meters. Since these parameters influence the measurement in several ways, the authors
added a quantity named the uncertainty of the environment ∆E, which represents their
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spatial (coordinates (x, y)) and temporal (t) variability in the recreated space. By changing,
for example, the number of obstacles over time (new obstacle with position (x, y) introduced
at time (t)), ∆E will account for the resulting change in the walking area. The function that
describes the problem considering the time (t) becomes, (2):

F(x, y, t) = FENV(x, y, t) = f (Xr, Yr, Nr, Nd, No, A) + ∆E(x, y, t) (2)
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3.3. Sensors’ Characteristics

After the identification of the rooms, the PIR and door sensors’ characteristics were
entered in the tool: the field of view or FoV (degrees), detection range or R (m), and time
delay or Td (s). These parameters are fully customizable by the user. In the simulation
scenarios taken as case studies, the authors referred to the characteristics of the sensors
used in the e-VITA project: the Delta Dore DMB Tyxal + PIR sensor (cost GBP 150) with
FoV = 90◦, R = 10 m, and Td = 10 s, and the Delta Dore DO BL Tyxal + door sensor (cost
GBP 100) with Td = 10 s. At this point, the sensors are positioned in the rooms. In the
simulation tool, the PIR sensors were wall-mounted at 1.40 m above the floor.

The sensors were parameterized following (3) and (4):

FPIRn(x, y, t) = f (FoV, R, Td) + ∆PIR(x, y, t) (3)

FDOORn(x, y, t) = f (Td) + ∆DOOR(x, y, t) (4)

Therefore,

FSENSORS(x, y, t) = ∑n
1 FPIRn(x, y, t) + ∑n

1 FDOORn(x, y, t) (5)

where n is the nth PIR or door sensor, so FSENSORS is the function that describes the
characteristics of the sensors and considers the uncertainties ∆PIR and ∆DOOR related to
the variability of the sensors’ positions (x, y) in the recreated environment at time (t) that
creates changes in the measurement of movement or the door opening/closing.

Accordingly, (2) becomes (6):

(x, y, t) = FENV(x, y, t) + FSENSORS(x, y, t) (6)



Buildings 2022, 12, 2213 6 of 20

3.4. Data Simulation

After the sensors and environment have been set up, the simulation can begin. The
virtual user’s behaviour is defined by the execution of activities, which are simulated
by drawing trajectories by moving the mouse cursor from one room to another, making
trajectories that may or may not be within the detection range of the sensors, Figure 3.
Entering in the PIR sensor detection range, the state of the sensor automatically turns from
OFF to ON and remains so until the user is no longer intercepted. The door sensor, on
the other hand, passes from the OFF to ON state when the traced trajectory overlaps its
detection range, stopping for a certain amount of time (mimicking the opening/closing of
a door), and then returns to the OFF state as the trajectory moves away.
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Figure 3. Example of virtual user trajectories (dashed line), PIR sensors (red points) with their
detection ranges (red areas), and door sensors (yellow rectangles).

A geo-localization function is integrated into the tool to determine the position of
the user in the environment based on the activated sensor. At the end of the simulation,
the trajectories detected by the sensor network constitute the generated data that can be
saved in a .txt file, as shown in Figure 4. The tool also includes a function to speed up the
simulation time of the virtual user activities.
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deactivation (OFF) timestamps of the sensors following the user’s simulated movement or interaction
is captured at the moment of the action.

The first day of data is simulated manually within the tool. To speed up the achieve-
ment of a large dataset, an automatic perturbation has been implemented: after importing
the .txt file via a calendar view, the simulated data of a chosen day can be copied to a
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new one with a perturbation consisting of an introduction of a random shift in time (some
minutes) and sensor state. Thus, it is possible to automatically generate numerous months
of simulated sensors’ activations with just one click of the mouse.

3.5. Data Validation

To validate the data generated by the SLE simulation tool, the authors compared real
data collected in a previous study [3], in which the proposed PIR sensor network was used
to monitor the behaviour of older people in their homes, with data generated by the simu-
lation tool. The test performed in the Ref. [3] lasted one week (from 10 to 16 February 2022)
and consisted of monitoring the daily activities of two older residents (a 72-year-old man
and a 64-year-old woman). To compare the real data with the synthetic ones, the authors
simulated the activity performed by “Resident 1” of the study on 12 February 2022 using
the tool. After loading the map of the real apartment (Figure 5), the boundaries of the
rooms (bathroom, bedroom, kitchen) were defined and the PIR sensors were placed inside
them, recreating the same configuration as in the Ref. [3].
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on 12 February 2022, while Figure 6b shows the corresponding data generated by the SLE
simulation tool.
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To check whether the generated data reflected the real data, the authors report sensor
activations in the different rooms of the house, resulting from the real activities carried out
by Resident 1 (Figure 7a) and the simulated ones (Figure 7b) as percentage values over the
whole day (12 February 2022).
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The similarity of the datasets shown in Figure 6 and the small mean percentage differ-
ence (1.2%) between the two results shown in Figure 7 prove that the datasets generated by
the SLE simulation tool are comparable to those of the real case. Therefore, the configuration
of the home sensor network can be optimised based on the simulated data.

3.6. ADLs Classification and Evaluation Metric

Once the physical aspects are identified, that is, the environment and sensor parameter-
ization, the simulated data can be used to classify the user’s ADLs through four supervised
ML algorithms: Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN) and Gaussian Naïve Bayes (GNB). This choice was determined by the broad use of
these algorithms in this context, given their high accuracy. In particular, many studies have
shown that these algorithms perform well in classifying ADLs, revealing good stability and
simplicity of implementation and interpretation [35–37]. Furthermore, the authors decided
to use different algorithms in order to compare their performance and determine which one
would be most suitable to refer to during the optimization of the sensor network. Table 1
shows the hyperparameter selected for each of the ML algorithms used.

The accuracy (7), recall (8), precision (9) and F1-score (10) of ADL classification were
computed using hold-out validation, splitting the data into a training set (70%) and testing
set (30%). In addition, a 10-fold Cross-Validation (CV) was performed on the dataset
and the mean values of accuracy (7), recall (8), precision (9) and F1-score (10) of ADL
classification over the splits were calculated.

Accuracy [%] =
TP + TN

TP + TN + FP + FN
× 100% (7)

Recall [%] =
TP

TP + FN
× 100% (8)

Precision [%] =
TP

TP + FP
× 100% (9)

F1 score [%] = 2 ∗ Recall∗Precision
Recall + Precision

× 100% (10)
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where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.

Table 1. Hyperparameters selected for the Decision Tree (DT), Support Vector Machine (SVM),
K-Nearest Neighbors (KNN) and Gaussian Naïve Bayes (GNB) algorithms.

ML Algorithm Hyperparameter Value

DT

Criterion Gini

Min. samples split 2

Min. samples leaf 1

Max. depth None

SVM

C 1

Kernel rbf

Gamma 1/n◦ features

KNN n◦ of nearest neighbors 3

GNB No parameter -

The goal of the ML algorithms was to classify, with a certain accuracy, the ADLs
carried out by the user using different sensors’ layouts of the same apartment. Each
algorithm was trained following (i) sensor-based models [38], (ii) interpretation and fusion
of sensor data, (iii) identification of basic actions, and (iv) activity recognition [39]. The
decision to use several types of ML algorithms lay in the need to identify which of them
would perform best in activity recognition. The key benefit of ML analysis consists in
the possibility of performing a simulation based on a specific environment and sensor
configuration and, according to the result, to test various configurations in order to optimize
the sensor network, obtaining the most suitable compromise between the accuracy of ADL
classification, user acceptability, and implementation costs.

In the process of optimizing the home sensor network, two different apartments were
considered as case studies, whose ADLs classification accuracy of ML algorithms and cost
were examined while changing the sensor network layout: a large apartment with many
rooms (Case Study 1), and a small apartment with few rooms (Case Study 2), as in Figure 8.
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For each of them, 6 months of activities of an older user were simulated using the SLE
tool for three different configurations of the home sensor network. The ML algorithms’
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ability to classify the following ADLs from the simulated user trajectories for Case Study
1 was tested: breakfast, lunch, dinner, cooking, ambulating, sleeping, dressing, going to
the toilet/personal hygiene, entering/leaving, having a hobby, and relaxing/watching TV.
For Case Study 2, the defined ADLs to be measured were the following: breakfast, lunch,
dinner, cooking, ambulating, sleeping, dressing, going to the toilet/personal hygiene, and
entering/leaving.

3.7. Case Study 1

The first SLE reported in this study is a seven-room apartment taken from the Italian
pilot eWare. As a starting configuration, 5 PIR sensors were installed: one in the hallway,
one in the bedroom, one in the toilet, one in the hobby room and one in the living room.
Furthermore, 2 door sensors are installed: one on the fridge door and one on the entrance
door, as in Figure 9.
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The SLE tool offers a graphical representation of the simulated sensor activation data.
Figure 10 shows, as an example, the graph of the 6 months of simulated data for the first
home sensor network configuration of Case Study 1.

Buildings 2022, 12, 2213 11 of 22 
 

lunch, dinner, cooking, ambulating, sleeping, dressing, going to the toilet/personal hy-

giene, and entering/leaving. 

3.7. Case Study 1 

The first SLE reported in this study is a seven-room apartment taken from the Italian 

pilot eWare. As a starting configuration, 5 PIR sensors were installed: one in the hallway, 

one in the bedroom, one in the toilet, one in the hobby room and one in the living room. 

Furthermore, 2 door sensors are installed: one on the fridge door and one on the entrance 

door, as in Figure 9. 

 

Figure 9. The first configuration of the home sensor network of Case Study 1. 

The SLE tool offers a graphical representation of the simulated sensor activation data. 

Figure 10 shows, as an example, the graph of the 6 months of simulated data for the first 

home sensor network configuration of Case Study 1. 

 

Figure 10. Graphical representation of the SLE tool of the simulated PIR and door sensor activations 

for the first home sensor network configuration of Case Study 1. Each colored dot represents the 

activity detected by the related sensor (the legend indicates the colors associated with the sensors) 

in a given day and time. 

Figure 10. Graphical representation of the SLE tool of the simulated PIR and door sensor activations
for the first home sensor network configuration of Case Study 1. Each colored dot represents the
activity detected by the related sensor (the legend indicates the colors associated with the sensors) in
a given day and time.
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The second configuration, Figure 11, considers 6 PIR sensors, adding to the previous
configuration one PIR sensor in the kitchen and removing the door sensor from the fridge.
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Figure 11. The second configuration of the home sensor network of Case Study 1.

The SLE tool also offers a statistical analysis area in which the time spent in each
room (in seconds) and the number of sensor activations per room/door for the simulated
datasets is reported. Figure 12 shows, as an example, the graphs related to the analysis of
the 6 months of simulated data for the second home sensor network configuration of Case
Study 1.
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Figure 12. Graphical representation of the statistical analysis of the SLE tool for the simulated PIR
and door sensor activations for the second home sensor network configuration of Case Study 1.
(a) Time spent in each room in seconds; (b) number of PIR and door sensor activations.

The third configuration, Figure 13, considers 5 PIR sensors and one door sensor on the
entrance door, removing the previous configuration of the PIR sensor in the bedroom.
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The second configuration, Figure 15, considers only 2 PIR sensors, removing from the
previous configuration the PIR sensor in the bedroom.
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The third configuration, Figure 16, adds to the second configuration a door sensor
installed on the entrance door.
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Figure 16. The third configuration of the home sensors network of Case Study 2.

To summarize, the method proposed by the authors consists of the following steps:

- Identify which are the relevant ADLs to be measured for the older user.
- Design different configurations of the home sensor network and recreate them in the

SLE simulator.
- Simulate the behaviour of the older user via the SLE tool to generate a consistent

dataset of sensor activations.
- Analyze the obtained dataset through ML algorithms and evaluate which configura-

tion best measures the user’s ADLs (highest accuracy in ADLs classification).
- Finally, the optimization of the home sensor network configuration is given by a

cost-effectiveness analysis, in terms of ADL classification accuracy and the cost of the
installed sensor network.

4. Results

This section presents the ML accuracy results in ADL classification for the different
configurations of the home sensor network for the two case studies.

The results of the hold-out validation and 10-fold CV, considering as input the simu-
lated 6 month datasets generated, are reported as values of the aforementioned evaluation
metric. The performance of the four ML algorithms, considering the three different home
sensor network configurations in the SLE of Case Study 1 for hold-out validation, is shown
in Table 2, while that for the 10-fold CV is shown in Table 3. Table 4 instead shows the
estimated cost of the different network configurations of Case Study 1.

Table 2. Percentage values of precision, recall, F1-score and accuracy of the Decision Tree (DT),
Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Gaussian Naïve Bayes (GNB)
algorithms in classifying the user’s ADLs for hold-out validation for the three home sensor network
configurations of Case Study 1.

Configurations ML
Algorithms

Precision
[%] Recall [%] F1-Score [%] Accuracy [%]

1

DT 98 98 98 98
SVM 11 34 50 34
KNN 85 81 82 81
GNB 11 32 50 32

2

DT 99 99 99 99
SVM 15 38 56 38
KNN 58 76 87 76
GNB 92 95 98 95
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Table 2. Cont.

Configurations ML
Algorithms

Precision
[%] Recall [%] F1-Score [%] Accuracy [%]

3

DT 98 98 98 98
SVM 15 39 56 38
KNN 36 52 45 52
GNB 87 88 89 89

Table 3. Mean percentage values over the splits of precision, recall, F1-score, and accuracy of the
Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Gaussian Naïve
Bayes (GNB) algorithms in classifying the user’s ADLs for a 10-fold CV for the three home sensor
network configurations of Case Study 1.

Configurations ML
Algorithms

Precision
[%] Recall [%] F1-Score [%] Accuracy [%]

1

DT 94 90 90 99
SVM 4 11 7 34
KNN 70 69 66 94
GNB 25 31 37 34

2

DT 99 99 99 99
SVM 4 11 6 38
KNN 70 70 69 93
GNB 74 79 76 95

3

DT 99 99 99 99
SVM 40 6 8 40
KNN 80 80 79 97
GNB 82 86 83 90

Table 4. Cost of the different home sensor network configurations of Case Study 1.

Configurations Cost [GBP]

1 900

2 1000

3 850

The mean accuracies over the three home sensor network configurations of Case
Study 1 achieved by the four ML algorithms for hold-out validation and 10-fold CV were
computed to identify which of them was best-suited for classifying ADLs, as shown in
Figure 17.
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Figure 17. Mean accuracy achieved by the Decision Tree (DT), Support Vector Machine (SVM),
K-Nearest Neighbors (KNN) and Gaussian Naïve Bayes (GNB) classifiers over the three home sensor
network configurations of Case Study 1 for hold-out validation and 10-fold CV.
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The performance of the four ML algorithms, considering the three different home
sensor network configurations in the SLE of Case Study 2 for the hold-out validation is
shown in Table 5, while that for the 10-fold CV is shown in Table 6. Table 7 instead shows
the estimated cost of the different network configurations of Case Study 2.

Table 5. Percentage values of precision, recall, F1-score and accuracy of the Decision Tree (DT),
Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Gaussian Naïve Bayes (GNB)
algorithms in classifying a user’s ADLs for hold-out validation for the three home sensor network
configurations of Case Study 2.

Configurations ML
Algorithms

Precision
[%] Recall [%] F1-Score [%] Accuracy [%]

1

DT 98 98 98 98
SVM 10 31 48 31
KNN 45 64 81 64
GNB 37 56 77 56

2

DT 91 91 91 91
SVM 24 49 59 49
KNN 79 80 79 80
GNB 48 50 54 50

3

DT 93 94 94 94
SVM 15 39 56 39
KNN 46 65 81 65
GNB 56 61 93 61

Table 6. Mean percentage values over the splits of precision, recall, F1-score and accuracy of the
Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Gaussian
Naïve Bayes (GNB) algorithms in classifying a user’s ADLs for 10-fold CV for the three home sensor
network configurations of Case Study 2.

Configurations ML
Algorithms

Precision
[%] Recall [%] F1-Score [%] Accuracy [%]

1

DT 94 94 94 97
SVM 6 2 9 30
KNN 56 56 53 63
GNB 46 60 51 69

2

DT 93 91 92 91
SVM 25 50 33 50
KNN 60 75 83 80
GNB 43 57 53 51

3

DT 83 82 81 94
SVM 10 25 14 37
KNN 71 70 68 82
GNB 72 75 73 73

Table 7. Cost of the different home sensor network configurations of Case Study 2.

Configurations Cost [GBP]

1 450

2 300

3 400

Figure 18 shows the mean accuracies over the three home sensor network configu-
rations of Case Study 2 achieved by the four ML algorithms for hold-out validation, and
10-fold CVs were computed to identify which of them were best-suited for classifying ADLs.



Buildings 2022, 12, 2213 16 of 20

Buildings 2022, 12, 2213 17 of 22 
 

GNB  46 60 51 69 

2 

DT 93 91 92 91 

SVM  25 50 33 50 

KNN 60 75 83 80 

GNB  43  57 53 51 

3 

DT 83 82 81 94 

SVM  10 25 14 37 

KNN 71 70 68 82 

GNB  72 75 73 73 

Table 7. Cost of the different home sensor network configurations of Case Study 2. 

Configurations Cost [GBP] 

1 450 

2 300 

3 400 

Figure 18 shows the mean accuracies over the three home sensor network configura-

tions of Case Study 2 achieved by the four ML algorithms for hold-out validation, and 10-

fold CVs were computed to identify which of them were best-suited for classifying ADLs. 

 

Figure 18. Mean accuracy achieved by the Decision Tree (DT), Support Vector Machine (SVM), K-

Nearest Neighbors (KNN) and Gaussian Naïve Bayes (GNB) classifiers over the three home sensor 

network configurations of Case Study 2 for hold-out validation and 10-fold CV. 

5. Discussion 

The authors assessed the accuracy of different home sensor network configurations 

in measuring specific ADLs using four different ML algorithms (i.e., DT, SVM, KNN, 

GNB). They decided to use different algorithms in order to compare their performance 

and determine which one would be most suitable to refer to during the optimization pro-

cess of the home sensor network. Two SLE scenarios were recreated in the simulation tool: 

Case Study 1 using a real map of an apartment where an older user with a diagnosis of 

early-stage dementia involved in the Italian pilot eWare lived, and Case Study 2 using a 

map of a Japanese apartment taken from the e-VITA project. From the experience gained 

in the projects in which they were involved, the authors realized that in real scenarios, it 

is always difficult to design a correct configuration of PIR and door sensors to measure 

older people’s ADLs due to the different characteristics of users and apartments. Consid-

ering the scenarios used for this study, the authors identified that it was important for the 

older users to keep track of sleep patterns, eating activities (breakfast, lunch, dinner, 

9
4

9
4

3
9

3
9

7
0 7

5

5
6 6
4

H O L D - O U T  V A L I D A T I O N 1 0 - F O L D  C V

MEAN ACCURACY

DT SVM KNN GNB
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5. Discussion

The authors assessed the accuracy of different home sensor network configurations in
measuring specific ADLs using four different ML algorithms (i.e., DT, SVM, KNN, GNB).
They decided to use different algorithms in order to compare their performance and de-
termine which one would be most suitable to refer to during the optimization process
of the home sensor network. Two SLE scenarios were recreated in the simulation tool:
Case Study 1 using a real map of an apartment where an older user with a diagnosis of
early-stage dementia involved in the Italian pilot eWare lived, and Case Study 2 using a
map of a Japanese apartment taken from the e-VITA project. From the experience gained in
the projects in which they were involved, the authors realized that in real scenarios, it is
always difficult to design a correct configuration of PIR and door sensors to measure older
people’s ADLs due to the different characteristics of users and apartments. Considering the
scenarios used for this study, the authors identified that it was important for the older users
to keep track of sleep patterns, eating activities (breakfast, lunch, dinner, cooking), personal
hygiene activities (going to the toilet) and activities related to staying active and engaged
in recreational activities (ambulating, dressing, entering/leaving, having a hobby, relax-
ing/watching TV). For each case study, three different home sensor network configurations
were designed and 6 months of activity by an older virtual user were then simulated using
the SLE tool, to generate datasets consisting of home sensor network activations.

The performances of the four ML algorithms tested on the generated datasets in
terms of ADL classification accuracy, precision, F1-score and recall, considering the three
different home sensor network configurations of Case Study 1 and Case Study 2 for hold-
out validation are shown in Tables 2 and 5, respectively. Each algorithm was trained on
70% of the generated 6-month datasets and tested on the remaining 30%. Tables 3 and 6
show the mean values over the splits of ADL classification accuracy, precision, F1-score
and recall of the ML algorithms for 10-fold CV considering the three home sensor network
configurations of Case Study 1 and Case Study 2, respectively. Considering the measured
accuracies as a comparison term, the results show that for Case Study 1 the DT classifier
achieved the highest accuracy in classifying the user’s ADLs for both hold-out validation
(98%) and 10-fold CV (99%). The mean accuracy achieved by the DT, KNN, SVM, GNB
classifiers over the three home sensor network configurations of Case Study 1 (Figure 17)
proved that the DT classifier is the most suitable in classifying ADLs with 98% mean
accuracy for hold-out validation and 99% mean accuracy for 10-fold CV, compared to
SVM (36% mean accuracy for hold-out validation and 37% mean accuracy for 10-fold CV),
KNN (70% mean accuracy for hold-out validation and 94% mean accuracy for 10-fold CV),
and GNB (72% mean accuracy for hold-out validation and 73% mean accuracy for 10-fold
CV). The results for Case Study 2 also show that the DT classifier achieved the highest
accuracy in classifying a user’s ADLs (over 91% for both hold-out validation and 10-fold
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CV). In fact, the mean accuracy over the three home sensor network configurations of
Case Study 2 achieved by the ML algorithms (Figure 18) proved also in this case that the
DT classifier is the most suitable in classifying ADLs with 94% mean accuracy for both
hold-out validation and 10-fold CV, compared to SVM (39% mean accuracy for hold-out
validation and 39% mean accuracy for 10-fold CV), KNN (70% mean accuracy for hold-out
validation and 75% mean accuracy for 10-fold CV), and GNB (56% mean accuracy for
hold-out validation and 60% mean accuracy for 10-fold CV). In the optimization process,
therefore, the comparison between the sensor networks’ capabilities in the measurement of
ADLs was carried out based on the accuracy achieved by the DT algorithm. In addition to
being one of the most used supervised classification algorithms [35–37], DT requires no pre-
processing actions and needs less time to process data than other algorithms. It provides a
good forecast for datasets consisting of simple features, like our case, as opposed to SVM,
which performs well on big and intricate datasets. Furthermore, as reported in [40,41],
DT proves to be more accurate than KNN and GNB in classification problems. However,
the problem of overfitting can affect such a ML classifier. There are specific techniques to
mitigate it and one of them is to perform a k-fold CV on the dataset, which is also helpful
in assessing the performance of ML models. In this study, the authors performed a 10-fold
CV on the dataset, which means that the ML algorithms divided the data into 10 parts
to execute the adaptation process 10 times, with each adaptation executed on a training
set of 90% of the total randomly chosen training sets, whereas the remaining 10% served
validation purposes.

In the process of optimizing the sensor network installed in the user’s home, with
the aim of minimizing the number of sensors and installing them in optimal locations
without losing measurement accuracy, the cost of the technology and user acceptance must
be considered. Tables 4 and 7 show the cost of the home sensor network for the different
configurations for the two case studies considering a cost of GBP 150 for each Delta Dore
DMB Tyxal + PIR sensor and GBP 100 for each Delta Dore DO BL Tyxal + door sensor,
which are the sensors modeled in the simulation resulting from the experience of use in the
e-VITA project. To ensure greater acceptability by older people, it is thus recommended
to reduce the number of sensors to be installed in the home. By optimizing the home
sensor network configuration and relating costs to the effectiveness of the configuration,
the behaviour of older people can be monitored with high accuracy while minimizing the
installation costs. Considering, for example, the three configurations in Case Study 1, all
of them provide high accuracy in measuring older users’ ADLs, so it is appropriate to
use the least expensive one that will still have a high impact on user monitoring while
lowering costs. Optimizing the home sensor network consequently improves the process of
remote monitoring of older people, enabling the deployment of cost-effective and prompt
healthcare services, such as early detection of patient decline. This contributes to reducing
the workload for hospitals, preventing frequent visits, and allowing the older person to
age safely at home. Looking at the trend (orange line in Figure 19) of the ML accuracy
and the number of sensors, by using a few sensors, the accuracy in classifying ADLs is
still high (over 90%) while keeping costs low (blue line in Figure 19). Therefore, taking
into account the minimization of the number of sensors and costs while guaranteeing high
measurement accuracy, the optimal configuration of the home sensor network for Case
Study 1 is the third that, with a total cost of GBP 850, allows to achieve over 98% accuracy
in ADLs classification using the DT algorithm, while for Case Study 2 it is the second that,
with a cost of GBP 300, allows to achieve 91% accuracy using the DT algorithm.

Finally, based on the experience gained in the study and previous projects, the follow-
ing recommendations can be given on sensor installation. The PIR and door sensors should
be installed in the relevant areas within the house, determined by predefined ADLs to be
measured according to the use case. It is preferable to install PIR sensors at a minimum
height of 1.4 m above the ground to better detect movements and to cover the whole area
of interest. It is better not to overlap the detection areas of two or more sensors to avoid
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false detections, and it is preferable to avoid installing them near objects that obscure their
field of view.
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6. Conclusions

The main contribution of this work is the presentation of a methodology to optimize
the home sensor network to measure the ADLs of older people using ML applied to
synthetic data generated via a newly developed SLE simulation tool.

From the experience gained by the authors in previous projects, the need emerged
to establish a methodology to identify a priori the optimal configuration of the sensor
network to measure the behaviour of older users. A system architect must in fact choose the
right approach to design the home sensor network, verifying whether additional sensors
or different positions would improve or impair the desired result. At this stage, test
data are required to verify whether the designed sensor network ensures the necessary
accuracy in measuring ADLs. To speed up the data generation process and overcome the
problems of reproducing the sensor network in the laboratory to generate real datasets, the
authors developed a SLE simulation tool for simulating human activities, and thus sensor
activations, in the reconstructed environment, based on the hybrid approach described
by Al-Shammari et al. [21]. The SLE simulation tool was designed to avoid the use of
time-consuming processes such as the use of the 3D Blender tool required by OpenSHS to
design the environment and the installed sensors. Unlike the latter, in fact, the developed
simulator simply requires the loading of the 2D map to reproduce the home environment,
considerably speeding up the process. Another advantage over the simulators in the
literature is that a large amount of PIR and door sensor activation data can be generated
from a single day of simulated virtual user trajectories thanks to an automatic random
perturbation system. The authors proved that by analyzing the accuracy of users’ ADL
classification using the DT algorithm, the home sensor network configuration can be
modified to provide the most suitable design for the use case. The advantage of this
method is that an inadequate sensor network design may be identified in an earlier phase
of development and cost-effectiveness estimates can be made beforehand, identifying the
optimal trade-off of sensor numbers, implementation costs, and accuracy in measuring
older people’s ADLs.
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