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Abstract: The swelling capacity of novel hydrophilic gaskets used in geomembrane cutoff walls and
infrastructures is critical for decreasing the flow rates of contaminated groundwater. This study
investigated the swelling behavior, relaxation characteristics, flow rates, and micro-morphology
of a hydrophilic gasket with different testing liquids. The radial swelling tests were performed
using a device modified from single-lever consolidation instrument. A flow rates model apparatus
was manufactured and employed to measure the flow rates of the poor-sealing hydrophilic gasket.
According to the test results, the swelling ratio of the hydrophilic gaskets soaked in the DIW were the
highest, followed by the NaCl solution, the MSW landfill leachate, and the CaCl2 solution. Relaxation
phenomena appeared in all the specimens regardless of the testing liquids. The flow rates of the
specimens penetrated with DIW, NaCl, and CaCl2 decreased to a stable state, and then increased
extremely slowly to stable values. Moreover, self-healing of the hydrophilic gasket was observed.
The micro-morphology indicated that sodium polyacrylate (PAAS) with insufficient expansion could
separate from the matrix under high multivalent ionic strength or loading pressure conditions.
Therefore, it is critical to develop the modified hydrophilic gasket with resistance to contaminated
groundwater for a better barrier performance for use in contaminated sites and infrastructures.

Keywords: hydrophilic gasket; swelling ratio; model apparatus; flow rates; relaxation; sodium
polyacrylate; microdamage

1. Introduction

Vertical cutoff walls are often constructed to decrease the flow rates of contaminated
groundwater at municipal solid waste (MSW) landfill and industrial sites [1–4]. Vertical cutoff
walls are constructed using a mixed backfill of a composite material, such as soil–bentonite
(SB), cement–bentonite (CB), or soil–slag–cement (SSC) [5,6]. However, concerns over the
integrity of these vertical cutoff walls come about via (1) the improper mixing of slurry
support and backfill materials, (2) defects in the joints and stoppages during construction,
(3) the effects of dry–wet cycling or long-term desiccation on the backfill materials in
unsaturated zones, (4) freeze–thaw behavior of vertical cutoff walls in northern climates,
and (5) the hydraulic conductivity of the backfill materials exposed to contaminants [7].
Geomembranes used with SB, CB, and SSB backfill materials as a composite vertical
cutoff wall are one way to solve the above problems, and they decrease the hydraulic
conductivity [7,8]. Geomembranes have a long history of successful use in contaminated
sites due to them being highly resistant to a variety of contaminations [6,7,9,10]. The
researchers in [5,11] analyzed the hydraulic performance of a geomembrane composite
vertical cutoff wall and compared it with a geomembrane vertical cutoff wall and an SB
vertical cutoff wall. The results showed that the geomembrane composite vertical cutoff
wall was widely recognized to provide lower flow rates than the geomembrane vertical
cutoff wall or the SB vertical cutoff wall. A geomembrane with pre-welded interlocks,
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hydrophilic gaskets, and backfill materials constitutes a complete composite vertical cutoff
wall [12–14].

In order to reduce field welds, the interlocks are pre-welded to the geomembrane
sheets (Figure 1a). A hydrophilic gasket may be injected into the joint during installation
and expands when it comes in contact with liquids, which can be used to seal the joints [12].
One can create a geomembrane that is virtually impermeable, but the system will not
function properly if the connections leak [7]. Without failing, hundreds of EPA 9090
compatibility tests on HDPE geomembranes were conducted with a range of municipal and
hazardous leachates. Additionally, the strength and hydraulic qualities of the interlocks
and hydrophilic gaskets are also crucial because they may be stressed during installation
or if some lateral displacement or settlement takes place in the vertical cutoff walls [15].
The properties of interlocks, which are pre-welded to the geomembrane panels, are tested
in the factory. Therefore, the joints are the primary cause for concern with regard to the
use of geomembranes in vertical cutoff walls. [5,7,15]. For example, a hydrophilic gasket
may be pulled off during installation. Additionally, the swelling behavior, self-healing,
and sealing pressure of the hydrophilic gaskets are critical to the hydraulic performance of
geomembrane composite vertical cutoff walls [15,16].

Novel hydrophilic gaskets, which were developed in the late 1970s, have been applied
in underground facilities to prevent groundwater penetration for many years due to their
elasticity, super water absorption capacity, and low permeability [17,18]. After water
absorption, swelling is constrained, generating contact pressure between the expanded
hydrophilic gasket and the interlocks. The sealing function of a hydrophilic gasket can be
accomplished depending on this contact pressure [17,19]. The rubber matrix, hydrophilic
materials, and additives are the components of a hydrophilic gasket. The properties of high
elasticity, high strength, and effective aging resistance are necessary for a rubber matrix.
Natural rubber [17,18,20], chlorinated polyethylene (CPE) [21,22], isobutylene rubber,
chloroprene rubber (CR), chlorohydrin rubber, acrylonitrile rubber [20,23,24], ethylene
propylene diene monomer (EPDM), silicon rubber, or vulcanized silicone rubber [25] are
some of the most common hydrophobic rubbers used in hydrophilic gaskets. To make a
hydrophilic gasket swell, super-absorbent polymer (SAP) is applied. SAP is a polymer
electrolyte with a very extensive crosslinking network and a hydrophilic group [18,26]. It is
capable to holding 1000 times its own weight in weight [27]. Additionally, it has exceptional
water retention, allowing it to maintain water pressure. Numerous investigations have
been conducted to determine how additives [18,20,28], rubber matrixes, SAP [17,29,30],
compatibility agents [20], or micro-morphologies [31,32] affect a hydrophilic gasket’s water
swelling behavior and sealing abilities. Ren et al. [21] investigated the kinetics of the
water swelling process of a hydrophilic gasket with different PAAS, additive contents,
and temperature conditions. The results indicated that the mechanism underlying the
water swelling process was not limited to Fickian diffusion and that the relaxation of the
PAAS and CPE matrix chain had a significant impact on it. Nevertheless, geomembrane
composite vertical cutoff walls are constructed in contaminated sites, which presents
challenges due to the corrosive environment [10,16]. Furthermore, few studies have been
performed on the swelling behavior and flow rates of hydrophilic gaskets under complex
contaminated conditions involving heavy metals, MSW landfill leachates, and salt solutions.
Additionally, compressive stress relaxation, which causes contact stress to diminish or even
vanish over time [17,33,34], contributes to the failure of the hydrophilic gaskets. The
sealing ability of hydrophilic gaskets cannot be maintained over time [35,36]. In order
to estimate a hydrophilic gasket’s service life in contaminated areas, it is required to
also examine its relaxation characteristics. According to the aforementioned literature,
the high flow rates caused by defects or failures of hydrophilic gaskets are summarized
in Figure 1, including the low swelling ratio of a gasket contacted with contaminated
groundwater, expansion–relaxation, and the fracture of a gasket caused during installation.
Most researchers [7,13,15,16] have indicated that the resistance of hydrophilic gaskets used
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in geomembrane composite cutoff walls to MSW, chemicals, tailing, and hazardous waste
leachates is an area that requires investigation.
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Figure 1. Schematics of the effect of contaminants on swelling ratio and leakage of the hydrophilic
gaskets: (a) the high swelling ratio of the gasket with an intact seal, (b) the low swelling ratio of
the gasket, (c) the high swelling ratio of the gasket with expansion-relaxation, and (d) defective
Hydrophilic gasket with fracture.

To sum up, the significant challenges of the composite geomembrane vertical cutoff
walls used in contaminated sites included the defects of the hydrophilic gasket during
installation, the swelling capacity of that immersed in contaminated liquids, and the
relaxation characteristics after expansion. Thus, in this paper, several laboratory tests
were conducted to investigate the prolonged swelling behavior, relaxation characteristics
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after expansion, flow rates, self-healing of the hydrophilic gasket under contaminants
soaking or permeation, and micro-morphology of hydrophilic gasket under complex
contaminated conditions.

This study aimed to evaluate the prolonged swelling performance, flow rates, self-
healing of hydrophilic gaskets soaked in the deionized water (DIW), MSW landfill leachates,
NaCl solutions, and CaCl2 solutions of different concentrations through laboratory tests. To
explore the swelling behavior and relaxation properties after expansion, swelling tests were
conducted, and the swelling ratios (radial swelling ratio, free swelling ratio of weight, and
volume) of hydrophilic gaskets were determined. A flow rates test apparatus (modified
from [15,37–39]) was manufactured to evaluate the flow rates and self-healing characteristic
of the hydrophilic gasket with contaminated liquids permeation. Based on the scanning
electronic microscope (SEM), the micro-morphology of the hydrophilic gasket was inves-
tigated. The findings are anticipated to be insightful in determining the impact of salt
solutions and MSW landfill leachates on the prolonged swelling performance and flow
rates of hydrophilic gaskets.

2. Materials and Methods
2.1. Materials

The materials prepared in this paper consisted of the hydrophilic gasket, interlocks
pre-welded in the geomembrane panel, testing solutions, and backfill sand. The commercial
hydrophilic gasket tested in this study was manufactured by Hairui Engineering Rubber
Co., Ltd. (Hengshui, China). The components and quantities of the raw materials for the
hydrophilic gasket used in this study were shown in Table 1. The ingredients included
chlorinated polyethylene (CPE), sodium polyacrylate (PAAS), chlorinated paraffin, dicumyl
peroxide, palmitic acid, stearic acid, SiO2, and color agent. The HDPE geomembrane,
which thickness is 3 mm, was obtained from Atarfil (Granada, Spain). The interlock was
manufactured and pre-welded with geomembranes by Jiangsu Shengtai Environmental
Technology Co., Ltd. (Nanjing, China). The hydraulic conductivity of the geomembrane
with pre-welded interlock is 1.5 × 10−12 m/s. The sand was sourced from the Yangzi
River floodplains in Nanjing, China. It was cleaned with deionized water, air-dried, and
sieved using a No.18 (1-mm) mesh in accordance with ASTM D698 [40]. According to
the ASTM D2487 Unified Soil Classification System (USCS) [41], the sand had a curvature
coefficient and uniformity coefficient of 3.66 and 0.76, respectively, suggesting that it was
poorly graded.

Table 1. Compositions of the hydrophilic gasket used in this study.

Title 1 Chemical Mass Content (%)

Chlorinated polyethylene (CPE) 42.5
SiO2 17

Chlorinated paraffin 12
Sodium polyacrylate (PAAS) 12

Palmitic acid 8.5
Stearic acid 4.5

Dicumyl peroxide (DCP) 2.5
Color agent 1

2.2. Testing Liquids

The testing liquids used in this study were deionized water (DIW), MSW landfill
leachates, NaCl solutions, and CaCl2 solutions prepared using DIW. The MSW landfill
leachates were obtained from the MSW landfill located in Wenzhou, China. Table 2 lists
the chemical characteristics of the MSW landfill leachates. Equations (1) and (2) were used
to calculate the ionic strength (I), and relative abundance of monovalent and multivalent
cations (RMD) [42], as follows:

I =
1
2 ∑ CjZj

2 (1)
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where Cj and Zj are the molar concentration (mM) and the principal charge of cation species
j, respectively.

RMD = MM/M0.5
D (2)

where MM is the total molarity of monovalent cations in the solution, and MD is the total
molarity of multivalent cations in the solution.

Table 2. Chemical properties of the MSW landfill leachate used in this study.

Property Details

Sodium (mg/L) 860
Calcium (mg/L) 128

Magnesium (mg/L) 39.3
Iron (mg/L) 6.62

Aluminum (mg/L) 2.16
Copper (mg/L) 0.0247
Nickel (mg/L) 0.486
Zinc (mg/L) 0.246

Cadmium (mg/L) 0.00016
Manganese (mg/L) 0.0207
Chromium (mg/L) 5.77

Lead (mg/L) 0.0162
Arsenic (mg/L) 0.104
Sulfate (mg/L) 254

Ammonia nitrogen (mg/L) 2160
Total nitrogen, TN (mg/L) 2240

Total phosphorus, TP (mg/L) 28.5
Chemical Oxygen Demand (CODcr), (mg/L) 5450
Biological Oxygen Demand (BOD5), (mg/L) 1400.3

Ionic strength, I (mM) 63.18
RMD (mM1/2) 9.01

Combining a given quantity of NaCl and CaCl2 powder (Analytical Reagent, Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) with a predetermined volume of DIW, dif-
ferent starting concentrations (c0) of the NaCl and CaCl2 solutions were prepared. The
c0 values were 10, 20, 50, and 100 mM. A pH/EC meter (Thermo Fisher Scientific Com-
pany, MA, USA) was used to measure each produced testing liquid’s pH and electrical
conductivity (EC) in accordance with ASTM E70 [43] and ASTM D1125 [44], respectively.
Each testing liquid had its pH and EC measured in triplicate samples, and the average
results were calculated. The average values of these fundamental chemical characteristics
of testing liquids were listed in Table 3.

Table 3. The average values of these fundamental chemical characteristics of testing liquids.

Testing Liquids Target Concentration
(mM)

Measured Concentration
(mM)

EC at 25 ◦C
(mS/cm) pH Ionic Strength,

I (mM)

DIW N/A N/A 0.00134 6.91 0
NaCl solution 10 10.10 1.228 7.03 5.05

20 19.95 2.35 6.9 9.98
50 50.12 5.72 6.67 25.06

100 99.95 10.73 6.54 49.98
CaCl2 solution 10 9.90 2.28 7.72 19.8

20 20.10 4.3 7.43 40.2
50 50.10 9.9 7.19 100.2

100 100.10 18.94 7.02 200.2
MSW landfill leachates N/A N/A 35.4 8.48 63.18
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2.3. Testing Meathods and Apparatus
2.3.1. Swelling Tests

To explore the swelling behavior and relaxation characteristics of the specimens im-
mersed in DIW, MSW landfill leachates, NaCl solutions, and CaCl2 solutions, the free
swelling ratio (of weight Sw and volume Sv) and radial swelling ratio (Sa) were chosen as
parameters. Throughout all trials, the room temperature was kept at 25 ± 1 ◦C, and the
relative humidity was kept at 64% ± 2%.

1. Free swelling tests.

Free swelling tests were conducted, and the Sw and Sv values of the specimens
were established to investigate the impacts of contaminated groundwater on the swelling
behavior of the samples. The detailed test procedures were as follows: first, the specimens
were cut into cylinders with a diameter of 6 mm and a length of 20 mm. The number
of parallel specimens was three. Next, the original weight and volume of the specimens
were determined using an electronic balance with a 0.001 g accuracy, and a Vernier caliper
with a 0.01 mm accuracy. Then, the triple specimens were placed in a sealed container,
and 200 mL testing liquids, including the DIW, MSW landfill leachates, NaCl solutions
with concentrations of 10, 20, 50, 100 mM, and CaCl2 solutions with concentrations of 10,
20, 50, 100 mM, were added, respectively. Finally, the specimens were taken out of the
container using a tweezer at a precise time. Their surfaces were cleaned with tissue paper
in preparation for weighing and volume testing. These procedures repeated until they
reached equilibrium states. The Sw and Sv were calculated as per ASTM 3616-2014 [45], as
Equations (3) and (4).

Sw =
Wt − W0

W0
× 100% (3)

where W0 represents the specimen’s initial weight, and Wt represents the weight after
swelling at time t. Sw is the swelling ratio of weight.

Sv =
Vt − V0

V0
× 100% (4)

where V0 represents the specimen’s initial volume, and Vt represents the volume after
swelling at time t. Sv is the swelling ratio of volume.

2. Radial swelling tests.

The radial swelling tests were conducted to investigate the relaxation characteristics of
the hydrophilic gasket. To ensure the reliability of the test results, specimens were strictly
cut into a cylinder with a diameter of 6 mm and a length of 20 mm. The testing apparatus
(see Figure 2) used in this experiment was modified from a WG triplex low-pressure single
lever consolidation instrument (Nanjing Soil Instrument Factory Co., Ltd., Nanjing, China),
which consisted of three parts: a compression device, a corrosion resistance device, and a
dial gauge. The test was conducted as follows: first, the four specimens were horizontally
positioned to ensure the balance during swelling in the corrosion-resistant device. The
device was consisted of a corrosion-resistance container (150 mm in diameter and 100 mm in
height), a porous stone (70 mm in diameter, 8 mm in height diameter of 70 mm, and height
of 8 mm) at the bottom of the container, a corrosion-resistance ring (61.88 mm in diameter
and 50 mm in height) at the top of porous stone, and a corrosion-resistance cap (61 mm
in diameter) at the top of the specimens. The specimens were subjected to a vertical force
using a loading apparatus to imitate the expansion pressure between a hydrophilic gasket
and interlocks. Weights of 3.836 kg were applied to the hydrophilic gasket. Finally, 1000 mL
testing liquids, including the DIW, MSW landfill leachates, NaCl solutions (100 mM), and
CaCl2 solutions (100 mM), were gradually added into the corrosion-resistance containers,
respectively. The dial gauge captured the vertical displacements at various time-steps while
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the specimens swelled in the testing solutions. The radial swelling ratio (Sa) is defined
as follows:

Sa =
∆
D

× 100% (5)

where ∆ represents the radial displacement variation of the specimen, and D is the original
diameter of the specimen (6 mm).
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tion instrument.

2.3.2. Flow Rates Model Tests and Apparatus

The testing apparatus used in the model test was schematically presented in Figure 3a,b.
The flow rates testing apparatus consisted of the following components with different
functions and materials: (1) baseboard with the component of Teflon; (2) lower model
chamber manufactured with the corrosion-resistant steel with a diameter of 250 mm and a
height of 100 mm; (3) splint with the component of Teflon for the immobilization and sealing
of geomembranes; (4) upper model chamber manufactured with organic glasses with a
diameter of 250 mm and a height of 100 mm; (5) sealing cover plate with the component
of Teflon; (6) upper barrier materials; (7) lower barrier materials; (8) the lower perforated
plate with the component of Teflon, which porosity is 85%; (9) the upper perforated plate
with the component of Teflon, which porosity is 85%; (10) pressure transducer (VWE-0.4Q,
Nanjing Genan Industrial Co., Ltd., Nanjing, China) had an 0–400 kPa pressure range
with the accuracy of 0.1 kPa; (11) A data acquisition system (MCU-32, Nanjing Genan
Industrial Co., Ltd., Nanjing, China) was capable of simultaneously collecting data for up to
32 channels; (12) geomembranes with the pre-welded interlocks; (13) bolts; (14) vinyl tubing
with bidirectional valves; (15) a measuring cylinder; (16) a piezometer; (17) bidirectional
valves; (18) a reservoir with the component of Teflon; (19) the air pressure controller; (20) the
air compressor; (21) the seal ring with the component of Teflon; (22) the heightening plate
with a height of 50 mm; (23) the sketch plate; (24) the lower side wall; and (25) the upper
side wall.
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Figure 3. The schematic of (a) a flow rates model testing apparatus, and (b) a consolidation model
testing device used in this study.

The experiments using the flow rates model apparatus were completed as per the
following steps: first, the consolidation model device was assembled as Figure 3b. Then,
the sand was placed into the chamber, which had a slump height of 125 mm per ASTM
C143 [46] and was saturated with DIW. Second, the upper perforated plate and cover plate
were installed for good sealing with the pressure transducer in contact with the top of the
sand. The consolidation of the sand was conducted through the loading of the cover plate.
It was completed when the volume of liquid in the measuring cylinder stayed the same.
Then, the lower model chamber with compressed sand was inverted, and the heightening
plate and sketch plate were detached. Next, the apparatus was assembled as Figure 3a, and
the poor-sealing specimens with a fracture width of 10 mm were installed in the interlocks
like in Figure 4a. The consolidation of sand in the upper chamber was the same as the
aforementioned procedure. Finally, the testing liquid was added to the reservoir, and the
penetration test was conducted with a hydraulic gradient (i) of 20 and a confining pressure
of 50 kPa. The liquid volume and elapsed time were recorded and the flow rates were
calculated by Equation (6).

Q =
∆V
∆t

/ L (6)
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where Q is the flow rates, unit mL/s/m; ∆V
∆t represents the flow rates during ∆t with the

elapsed time, unit mL/s, and L is the length of the interlocks (0.25 m).
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2.3.3. Scanning Electron Microscope (SEM) Tests

Image analyses using SEM (SU3500, Hitachi High-Tech, Tokyo, Japan) were conducted
on the specimens before and after soaked in the DIW, MSW landfill leachates, NaCl solu-
tions (100 mM), and CaCl2 solutions (100 mM) to evaluate microstructure changes. First,
the specimens obtained from the prolonged free swelling tests were cut into 1 cm3 piece.
The SEM samples were frozen in liquid nitrogen for five minutes at −120 ◦C. Moisture
was sublimated at −80◦C for 24 hours at a vacuum freeze-drying unit pressure of −18 N.
(Nanjing Xianou Instruments Manufacture Co., Ltd., Nanjing, China). The frozen SEM
specimens were freeze-dried, cut into small blocks with a natural fracture surface area of
roughly 0.25 cm2, coated with a thin layer of gold, then subjected to SEM examinations.
For the SEM testing, three specimens were tested, and a representative image was chosen.

3. Results and Discussion
3.1. Free Swelling Tests Results

The effects of the DIW, NaCl solutions, CaCl2 solutions, and MSW landfill leachates
on the free swelling behavior (Sw and Sv) of hydrophilic gaskets are shown in Figure 5.
Basically, the Sw and Sv increased with the passage of time. However, the Sw and Sv curves
of CaCl2 solutions with different concentrations presented a rising tendency in the early
stages (0–40 days), and the Sw and Sv of the specimens decreased almost 25–50% after
reaching their peak values (Figure 5c). The precipitation and shedding of components under
strong multivalent ionic conditions were also possible explanations for this phenomenon.
According to Figure 5a, the specimens that submerged in the DIW had the greatest capacity
to absorb water, with a Sw of 2145% and Sv of 2465%. It was attributed to the swelling
mechanisms of the SAP and hydrophilic gaskets. Water molecules permeated into the
PAAS via capillary action and diffusion when the hydrophilic gasket contacted with the
water [22,47]. The negative ion (COO-) became fixed to the PAAS chain, and the cation
became detachable as the ionization group (Na+) of the PAAS chain was ionized in the water.
Consequently, the detachable cation altered the concentration of the internal and external
solutions, the chain extended due to electrostatic forces, and the water kept entering the
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PAAS. Following chain extension, electrostatic forces gradually diminished, and more
water was added, causing the concentration difference between the internal and external
solutions diminish gradually. Suction balance was eventually attained as the electrostatic
forces gradually vanish [17,21,48–50]. Figure 5b,c showed that the Sw and Sv tended to
decrease with the increase in the ion concentration gradient. Due to the amount of water
absorbed by the PAAS, which decreased with the increase in concentration of the external
solution [18,48,51,52]. The Sw of specimens soaked in NaCl solutions with concentrations
of 10, 20, 50, and 100 mM was 1208, 926, 605, and 428%, respectively, and the Sv was 1579,
1204, 737, and 529%, respectively. Figure 5d showed that the Sw and Sv of specimens soaked
in the leachates were higher than those of CaCl2 solutions, which the Sw was 240% and the
Sv was 313%, respectively. Moreover, the Sw and Sv of specimens soaked in the leachates
were lower than those of all NaCl solutions and far less than those of DIW. It could be
inferred that the multivalent ions considerably influenced the free swelling behavior of
hydrophilic gaskets [48]. The curves showed that the trend of the Sw was similar to that of
Sv. Since the weight of the specimens could be measured more easily and quickly than the
volume, the Sw could be used as an indicator of free swelling behavior.
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3.2. Radial Swelling Tests Results

The results of radial swelling ratio with an elapsed time of specimens immersed in the
DIW, NaCl solutions (100 mM), CaCl2 solutions (100 mM), and MSW landfill leachates were
shown in Figure 6. In general, the Sa of all specimens increased with the elapsed time and
reached its peak after 30–50 days of loading. Then, the Sa decreased significantly, which
was the relaxation phenomenon. The relaxation became more distinct when the specimens
was soaked in the DIW, in which the Sa was 56% at peak and 25% in a stable state. That
relaxation ratio (defined as dividing the difference between the Sa at peak and in a stable
state into the Sa at peak) was 55%. For specimens tested in NaCl solutions (100 mM), CaCl2
solutions (100 mM), and MSW landfill leachates, the Sa was 29.8, 9.2, and 22.3% at peak and
16, 3.3, and 10.7% in a stable state, and the relaxation ratio was 46, 64, and 52%, respectively.
This phenomenon could be explained from three aspects. First, under loading pressure, the
chain of PAAS and matrix could not expand sufficiently, causing the hydrophilic gasket
to absorb less water [48]. Second, the insufficiently expanded PAAS separated from the
matrix after reaching the peak of expansion due to the poor compatibility of the matrix
with PAAS [18,26,28]. Third, the swelling ability of hydrophilic gaskets could not be kept
constant with time under constant loading pressure [17,35,36].
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3.3. Flow Rates Tests Results

The flow rates with an elapsed time of poor-sealing specimens (see Figure 4a), which
penetration with the DIW, NaCl solutions (100 mM), CaCl2 solutions (100 mM) were shown
in Figure 7. The results showed that the specimen penetrated with the DIW had the lowest
flow rates, followed by NaCl and CaCl2 solutions, regardless of the elapsed time. For
specimens penetrated with the DIW, the flow rates decreased sharply at the first 10 days,
then decreased slowly to zero at day 42, and finally increased gradually after day 51,
when the flow rates were 0.099 mL/s/m in a stable state. This phenomenon is because
the PAAS had the best absorption capacity when contacted with the DIW and swelled
rapidly at the initial stage. Then, the swelling ratio increased, and flow rates decreased
slowly because the swelling of the specimen was confined by interlocks, and the contact
pressure increased slowly [17–19]. Finally, the flow rates reached zero when the contact
pressure was higher than the penetration pressure. However, the flow rates increased again
at a plodding speed because of the relaxation of the hydrophilic gasket. The causes were
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similar to those aforementioned, the contact pressure was not constant, and decreased after
relaxation. Then, the degree of relaxation was lower than the specimens in radial swelling
tests. Therefore, the increasing speed of flow rates was extremely slow before reaching a
stable state. Moreover, the self-healing of the material could be observed in Figure 4b. Due
to the hydrophilic gasket could swell along the axial direction when it confined along radial
direction. For specimens penetrated with NaCl and CaCl2 solutions with a concentration
of 100 mM, the trend of the curves was basically the same. For specimens penetrated with
NaCl solutions, the flow rates decreased sharply at first (23 days), then decreased slowly
during days 23–33, and decreased sharply to zero at day 48, finally increasing gradually to
a stable state (0.399 mL/s/m). Additionally, the flow rates of specimens penetrated with
CaCl2 solutions decreased to 0.855 mL/s/m at day 59, then increased slowly to a stable
state (1.148 mL/s/m). The difference was that the flow rates of specimens penetrated with
NaCl solution were much lower than those of CaCl2 solutions. The relationship between
the flow rates of the poor-sealing hydrophilic gaskets and the Sw, Sv, Sa, and type of liquids
was shown in Figure 8. There were two causes for the results: first, the ionic strength of
a 100 mM NaCl solution was lower than that of CaCl2. Second, the impact of the total of
monovalent multivalent cations in the solution on swelling behavior and the flow rates
were more significant than that of molarity cations.
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3.4. Scanning Electron Microscope (SEM) Tests Results

This section evaluated the microdamage and morphology of the hydrophilic gasket
following submersion in the DIW, NaCl solutions (100 mM), CaCl2 solutions (100 mM),
and MSW landfill leachates. Figure 9 presented the SEM images for specimens immersed
in different testing liquids. Figure 9a presented the SEM image of the original specimen.
The original surface of the specimen had a few thin cracks and contained some additives
and SAP (sodium polyacrylate). The thin crack formed could have been caused by some
SAP materials being incompatible with the CPE matrix during the production mixing
procedure [18,19]. Figure 9b presented the SEM images of the specimen immersed in the
DIW. There were many long-chain sodium polyacrylate (PAAS) absorbing enough water
that the matrix structure was propped up by the swelling PAAS. Therefore, the specimens
could swell up to 2400%, as shown in Figure 5a. The SEM images of the specimen soaked in
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the NaCl solution with a concentration of 100 mM were shown in Figure 9c. The PAAS was
not swelling enough because the ionization group on the chain was difficult to ionize in
the water because of the high concentration of Na+ in the solution. Thus, the SAP network
could not expand because of the low electrostatic repulsion between the negative ions in
the chain [17,21]. Moreover, several small cavities with a diameter of 1–3 µm appeared in
the specimen due to the PAAS separating from the specimen during the water-absorbing
process [28]. Figure 9d presented the SEM images of the specimen after immersion in the
CaCl2 solution with a concentration of 100 mM. There were numerous large cracks with a
length of 5–12 µm, and a little PAAS expanding very little on the surface of the specimen.
This phenomenon was attributed to numerous long-chain expanding PAAS separating
from the matrix due to the high ionic strength of the CaCl2 solution. Finally, the SEM image
of the specimen after soaked in MSW landfill leachates was shown in Figure 9e. In the
picture, cavities with a diameter of 5 µm and shallow cracks with a length of 6 µm could be
observed. It was attributed to the PAAS separating from the matrix during swelling. The
micro-morphology above indicated that the SAP with insufficient expansion could separate
from the matrix under the high multivalent ionic strength or loading pressure conditions.
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4. Conclusions

The free swelling ratio of the hydrophilic gaskets exposed to the DIW, MSW landfill
leachates, NaCl solutions, and CaCl2 solutions with different concentrations was investi-
gated. The radial swelling ratio and relaxation characteristics were also investigated using a
device modified from single lever consolidation instrument. A flow rates model apparatus
was manufactured and employed to measure the flow rates of the poor-sealing hydrophilic
gasket. Finally, the SEM was performed to investigate the micro-damage morphology of
the hydrophilic gaskets. The following conclusions can be drawn in light of the results.

• The Sw and Sv of the hydrophilic gasket material soaked in the DIW were the highest,
followed by NaCl solutions, MSW landfill leachates, and CaCl2 solutions. The Sw
and Sv curves of specimens immersed in CaCl2 solutions increased in the initial stage,
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then decreased until a stable state. The results illustrated that the ionic strength and
multivalent cations greatly impacted the swelling behavior of hydrophilic gaskets.

• For specimens tested in the DIW, the NaCl solution (100 mM), the CaCl2 solution
(100 mM), and MSW landfill leachates, the Sa was 56, 29.8, 9.2, 22.3% at peak and 25,
16, 3.3, 10.7% in a stable state, and the relaxation ratio was 55, 46, 64, 52%, respectively.

• The self-healing of the hydrophilic gasket was observed. The flow rates of specimens
penetrated with DIW, NaCl, and CaCl2 decreased to a stable state, which was 0, 0,
0.855 mL/s/m, respectively, then increased extremely slowly to the stable values of
0.099, 0.399, and 1.148 mL/s/m, respectively. The flow rates of the hydrophilic gasket
penetrated with the DIW were the lowest, followed by the NaCl solution (100 mM),
and the CaCl2 solution (100 mM), which was attributed to the effect of the multivalent
ionic strength on the swelling capacity of the hydrophilic gasket.

• The SEM images showed that there was a lot of long-chain expanded PAAS, the matrix
immersed in DIW could be propped up and expanded to a large volume. However,
there were numerous microcracks or microcavities on the surface of specimens im-
mersed in the CaCl2 solution (100 mM) and the MSW landfill leachates. This explained
the results of the difference of the free swelling ratio of hydrophilic gaskets immersed
in different solutions. The micro-morphology indicated that the SAP with insufficient
expansion could separate from the matrix under the high multivalent ionic strength.
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