
Citation: Chen, C.; Gu, H.; Lian, S.;

Zhao, Y.; Xiao, B. Investigation of

Edge Computing in Computer

Vision-Based Construction Resource

Detection. Buildings 2022, 12, 2167.

https://doi.org/10.3390/

buildings12122167

Academic Editor: Jorge de Brito

Received: 1 November 2022

Accepted: 5 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Investigation of Edge Computing in Computer Vision-Based
Construction Resource Detection
Chen Chen 1 , Hao Gu 1, Shenghao Lian 1, Yiru Zhao 1 and Bo Xiao 2,*

1 School of Civil Engineering and Architecture, Zhejiang University of Science and Technology,
Hangzhou 310023, China

2 Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China
* Correspondence: eric.xiao@polyu.edu.hk

Abstract: The Internet of Things (IoT), including sensors, computer vision (CV), robotics, and visual
reality technologies, is widely used in the construction industry to facilitate construction management
in productivity and safety control. The application of such technologies in real construction projects
requires high-quality computing resources, the network for data transferring, a near real-time response,
geographical closeness to the smart environments, etc. Most existing research has focused on the first step
of method development and has neglected the further deployment step. For example, when using
CV-based methods for construction site monitoring, internet-connected cameras must transmit large
quantities of high-quality data to the central office, which may be located thousands of miles away. Not
only the quality may suffer due to latency, but the wideband cost can be astronomical. Edge computing
devices and systems help solve this problem by providing a local source to process the data. The goal of
this study is to embed the CV-based method into devices and thus to develop a practical edge computing
system for vision-based construction resource detection, which can provide automatic construction with
high-quality and more applicable service. Specifically, this study first developed a CV-based hardhat
color detection model to manage workers in different tasks. Then, the model was embedded into a
Raspberry Pi microcomputer mainboard for video data processing, and the performance was compared
with the local computer to validate the feasibility of the proposed method.

Keywords: edge computing; automation in construction; computer vision; hardhat detection

1. Introduction

Construction engineering is commonly known as a complex process, which requires a
huge amount of manual labor for monitoring and management. Human maintenance is
costly, time-consuming, and error-prone, which is inefficient. Therefore, it is important to
speed up the processes, improve the productivity, and reduce the safety risks for construc-
tion [1]. In order to increase the efficiency of the construction management, the Internet of
Things (IoT) has been developed in the past years to increase the automation of construc-
tion management. For instance, sensor-based methods have been used for construction
object positioning, proximity calculation, and pose estimation [2,3]; computer-vision-based
methods have been used for construction object detection, tracking, and activity recogni-
tion [4–6]; robotic methods have been used for automatic structure and site environment
inspections [7]. Among the current IoT methods, computer-vision (CV)-based methods
have been widely adopted with the advantages of a low cost and simple integration in
construction automation fields [1].

Vision-based data, such as images and videos, can provide the construction manager
with useful information for project management and control. By observing continuously
recorded site surveillance videos, construction managers can identify safety issues, pro-
ductivity of the workers, and equipment during the construction processes (e.g., workers’
hardhats, equipment productivity, etc.) [4,5,8,9]. CV-based methods have been developed

Buildings 2022, 12, 2167. https://doi.org/10.3390/buildings12122167 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12122167
https://doi.org/10.3390/buildings12122167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-3058-1101
https://doi.org/10.3390/buildings12122167
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12122167?type=check_update&version=1

Buildings 2022, 12, 2167 2 of 12

by researchers to facilitate construction management procedures by providing automatic
productivity and safety control methods for construction managers. Due to their easy
deployment in the dynamic, complex construction environment and ability to adapt to
monitoring a variety of construction objects, CV-based methods have been used to monitor
construction problems in numerous areas of construction engineering. Among them, some
researchers have used CV-based methods to detect personal protective equipment (PPE) to
ensure the safety protection of workers. For example, Wu et al. [10] developed a one-stage
convolutional neural network (CNN) model for hardhat-wearing detection, and an 83.89%
precision was achieved on the proposed test dataset. Nath et al. [11] improved the “You
Look Only Once” (YOLO-v3) [12] model to detect hardhat and vest compliance to pre-
vent injuries and fatalities for workers, and a 72.3% mean average precision was achieved
through testing on real-world scenarios. Ding et al. [13] combined Long Short-Term Mem-
ory (LSTM) [14] with CNNs to recognize unsafe behavior (e.g., climbing, backward-facing,
and reaching far) of workers with 92% accuracy, tested on 50 video clips. Xiao et al. [4]
proposed a CV-based image augmentation method to track construction equipment in
nighttime environments, which can help to avoid equipment-related accidents when work-
ing in poor light conditions. Some studies [15–18] have applied CV-based methods for
productivity monitoring. In order to monitor workers’ working processes, Luo [15,16]
used CNNs to recognize 16 classes of worker activities. The worker’s activity recognition
achieved 80.5% accuracy. Kim and Chi [17] combined LSTM with CNNs to recognize the
digging, loading, and swinging activities of excavators, which achieved 90.9% accuracy.
Similarly, Chen et al. [18] applied a spatial–temporal CNN model to recognize activities of
excavators, and accordingly calculated the earthmoving productivity of the excavator.

Unfortunately, CV-based methods using artificial intelligence algorithms, which re-
quire high-quality computation performance [15–18]. Therefore, CV-based automatic
construction methods require extensive hardware and software development efforts, which
is a major obstacle for the wide application of such advanced methods in real construction
project management. For example, in order to process visual data collected from cameras
and to provide feedback to the construction manager, significant network, processing, and
memory resources are required. Especially when there are multiple cameras transmitting
live videos, the quality of the video may suffer from time delay [19]. Moreover, the com-
putation capacity of the server or local computer in the management office may not be
sufficient to deal with a large volume of video data [20,21]. Traditional servers and local
computing are no longer sufficient for the diverse needs of today’s automated construction
methods, so edge computing methods have emerged.

Edge computing is a new computing paradigm, which performs computations close to
the metadata resource (e.g., mobile devices or sensors) and at the edge of the network [22].
The main difference between edge computing and cloud computing were summarized by
Cao et al., as shown in Table 1 [20]. Compared with cloud computing, edge computing is
closer to the data source; thus, data processing and storage tasks can be carried out at the
edge of the network, which reduces the data transmission time and local computing pressure.
It provides users with fast response services in a variety of application scenarios, such as
intelligent manufacturing, automatic driving, video monitoring, and location answering [20].
Typically, the character of rapid feedback in edge computing is important for safety control
in construction site monitoring, which requires information updates in real time. Beyond
the data transmitting and computing efficiency, edge computing can also avoid security and
privacy issues. Since data do not have to be totally uploaded to the cloud, the risk from the
transmitting process can be avoided [19,21]. Moreover, the privacy of construction companies
with specific construction technology and trade may also be protected.

Buildings 2022, 12, 2167 3 of 12

Table 1. Main differences between cloud computing and edge computing.

Method Applicable
Situation Network Bandwidth Pressure Real Time Calculation Mode

Cloud computing Global More High Large-scale centralization processing
Edge computing Local Less Low Small-scale intelligent analysis

With the development of the IoT and urgency of the application of smart construction
and considering the data processing and transmitting efficiency, security, and privacy pro-
tection, edge computing models are urgently needed. Existing CV-based methods [15–18]
for construction monitoring have mainly used traditional local computing, which requires
extensive development efforts and high-performance computing resources. Such require-
ments limited the application of CV-based methods in real construction projects because
of the high costs and intensive human maintenance. To address these limitations, this
research aimed to propose an edge-computing-based method to apply CV-based methods
for workers’ hardhat detection.

The objective of this research was to investigate the feasibility of edge computing in
CV-based construction resource management. First, a YOLO-v5 [12] model was trained and
tested to detect if workers were wearing hardhats or not and to classify four colors (yellow,
red, blue, and white) of the hardhat. Then, the proposed YOLO-v5 [12] hardhat color
detection model was embedded on the edge computing device, a Raspberry Pi (R. Pi) [23],
to detect the different hardhat colors of workers. At last, the detection performances of
the R. Pi and local computer were compared to validate the feasibility of embedding the
hardhat color model on a single-board computer board for edge computing use.

2. Materials and Methods

Based on the aforementioned objectives, the framework of this research was as follows:
first, a hardhat color detection dataset was annotated. Then, a YOLO-v5 [12] model was
trained and tested on a local computer to detect workers’ hardhats. Accordingly, the
YOLO-v5 detection model was transferred and embedded on an R. Pi 4B single-board
computer to perform the edge computing task. Finally, the performance of the YOLO-v5
model on both the computer and R. Pi 4B were compared and discussed in detail to verify
the possibility of using edge computing for CV-based automatic construction management.

2.1. Hardhat Detection

The purpose of this section was to train a hardhat color detection model, which
could both identify if a worker wore a hardhat and what the color of the hardhat was. In
construction projects, workers with different tasks usually wear hardhats of different colors.
By detecting the color of the hardhat, the project manager can easily check whether the
workers are working within their scope of responsibility. The YOLO model was selected to
train the hardhat color detection model due to its extraordinary performances in variable
construction object detection tasks [1,6,12,24]. YOLO-v5 holds the best performance among
current YOLO models [12,25,26]. The architecture of the YOLO-v5 [12] model is shown in
Figure 1, which consists of three components: (i) backbone: cross stage partial network
(CSPDarknet); (ii) neck: path aggregation network (PANet); and (iii) head: YOLO layer.
The images were initially put into CSPDarknet for feature extraction. Accordingly, the
features were fed into PANet, which adopted a feature pyramid network with an enhanced
bottom–up path to improve the detection performance of dealing with small-scale objects.
Then, the YOLO layer generated 3 types of feature maps (18 × 18, 36 × 36, 72 × 72) for
multiple-scale detection and the outputs of the object detection results [23].

Buildings 2022, 12, 2167 4 of 12
Buildings 2022, 12, x FOR PEER REVIEW 4 of 12

Figure 1. Neural network architecture of YOLO-v5.

To train and evaluate the YOLO-v5 object detector, an annotated dataset that con-

tained RGB (red, green, and blue) images were collected and manually annotated using

LabelImg [27]. We used 3174 images from a dataset published by Wu et al. [9], and all the

raw images were reannotated with five labels which were non-, yellow, blue, red, and

white hardhat. The distribution of each label in the dataset is shown in Figure 2. In the

training step, the dataset was separated into training and testing data, which contained

70% of the dataset (2204 images) used for training data and 30% (970 images) for testing.

Figure 2. Distribution of labels in dataset.

2.2. Edge Computing Device Selection

An R. Pi is a series of small single-board computers, which can perform computing

tasks as a standard high-performance computer [28]. It is ideal as an embedded device of

edge computing because of its tiny size, low cost, modularity, and open design. In this

study, the latest R. Pi 4B [23] version was selected for testing the performance of edge

computing. Table 2 summarizes the main technical specifications of an R. Pi 4B together

Figure 1. Neural network architecture of YOLO-v5.

To train and evaluate the YOLO-v5 object detector, an annotated dataset that con-
tained RGB (red, green, and blue) images were collected and manually annotated using
LabelImg [27]. We used 3174 images from a dataset published by Wu et al. [9], and all
the raw images were reannotated with five labels which were non-, yellow, blue, red, and
white hardhat. The distribution of each label in the dataset is shown in Figure 2. In the
training step, the dataset was separated into training and testing data, which contained
70% of the dataset (2204 images) used for training data and 30% (970 images) for testing.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 12

Figure 1. Neural network architecture of YOLO-v5.

To train and evaluate the YOLO-v5 object detector, an annotated dataset that con-

tained RGB (red, green, and blue) images were collected and manually annotated using

LabelImg [27]. We used 3174 images from a dataset published by Wu et al. [9], and all the

raw images were reannotated with five labels which were non-, yellow, blue, red, and

white hardhat. The distribution of each label in the dataset is shown in Figure 2. In the

training step, the dataset was separated into training and testing data, which contained

70% of the dataset (2204 images) used for training data and 30% (970 images) for testing.

Figure 2. Distribution of labels in dataset.

2.2. Edge Computing Device Selection

An R. Pi is a series of small single-board computers, which can perform computing

tasks as a standard high-performance computer [28]. It is ideal as an embedded device of

edge computing because of its tiny size, low cost, modularity, and open design. In this

study, the latest R. Pi 4B [23] version was selected for testing the performance of edge

computing. Table 2 summarizes the main technical specifications of an R. Pi 4B together

Figure 2. Distribution of labels in dataset.

2.2. Edge Computing Device Selection

An R. Pi is a series of small single-board computers, which can perform computing tasks
as a standard high-performance computer [28]. It is ideal as an embedded device of edge

Buildings 2022, 12, 2167 5 of 12

computing because of its tiny size, low cost, modularity, and open design. In this study, the
latest R. Pi 4B [23] version was selected for testing the performance of edge computing. Table 2
summarizes the main technical specifications of an R. Pi 4B together with the local computer
that was used in this study. The size of an R. Pi 4B [23] is 85 × 56 mm and is equipped with
a 1.5 GHZ 64-bit quad core ARM Cortex-A72 CPU [29] and a Broadcom VideoCore VI@500
MHz GPU [30]. The local computer had a NVIDIA GeForce GTX 1660 graphics card [31]. In
order to capture the video with the edge computing device, a camera was attached to the R.
Pi 4B [23]. The R. Pi 4B device used for edge computing is shown in Figure 3.

Table 2. Detailed specifications of local computer and Raspberry Pi 4B.

OMEN by HP Laptop 15-dc1xxx Raspberry Pi 4B

CPU Intel(R) Core (TM) i5-9300H CPU @ 2.40 GHz [32] 1.5 GHZ 64-bit quad core ARM Cortex-A72 [29]
GPU NVIDIA GeForce GTX 1660Ti [31] Broadcom VideoCore VI@500 MHz [30]

Memory 16 G 4 G
Wi-Fi network 5 GHz double 5 GHz double

Size 36 × 26.3 × 2.5 cm 85 × 56 mm

Buildings 2022, 12, x FOR PEER REVIEW 5 of 12

with the local computer that was used in this study. The size of an R. Pi 4B [23] is 85 × 56

mm and is equipped with a 1.5 GHZ 64-bit quad core ARM Cortex-A72 CPU [29] and a

Broadcom VideoCore VI@500MHz GPU [30]. The local computer had a NVIDIA GeForce

GTX 1660 graphics card [31]. In order to capture the video with the edge computing de-

vice, a camera was attached to the R. Pi 4B [23]. The R. Pi 4B device used for edge compu-

ting is shown in Figure 3.

Table 2. Detailed specifications of local computer and Raspberry Pi 4B.

 OMEN by HP Laptop 15-dc1xxx Raspberry Pi 4B

CPU
Intel(R) Core (TM) i5-9300H CPU @

2.40 GHz [32]

1.5 GHZ 64-bit quad core ARM

Cortex-A72 [29]

GPU NVIDIA GeForce GTX 1660Ti [31]
Broadcom VideoCore

VI@500MHz [30]

Memory 16G 4G

Wi-Fi network 5 GHz double 5 GHz double

Size 36 × 26.3 × 2.5 cm 85 × 56 mm

Figure 3. Image of the Raspberry Pi 4B device used for edge computing.

2.3. Detection Model Embedding

Even though an R. Pi can process basic computer tasks, it is still difficult for it to

handle computationally intensive tasks like the local computer. To accelerate the pro-

cessing time, the proposed YOLO-v5 [12] hardhat color detection model was optimized

with OpenVINO [33]. OpenVINO is an open-source toolkit for optimizing and developing

AI inferences, which can boost deep learning performance and reduce resource demands

from the edge to the cloud [33]. In this study, first, the YOLO-v5 [12] hardhat color detec-

tion model was trained on a local computer. Second, the model was transferred to the

YOLO-V5 [12] model with OpenVINO [33], then deployed to the R. Pi 4B device [23].

2.4. Evaluation Criteria and Strategies

The mean average precision metric (mAP) was used to validate the performance of

the hardhat detection model in this study. The mAP is a standard indicator that is com-

monly used to measure the performance of object detection models [34,35]. Before calcu-

lating the mAP value [1], intersection-over-union (IoU) [1] should be calculated. IoU is a

common criterion for evaluating the coincidence degree between predicting the bounding

box and the ground truth bounding box. The calculation process of the IoU value is shown

in Figure 4, where A is the area of the ground truth, and B is the area of the detection box.

Only if the IoU [1] value is larger than 0.5 will the object be regarded as correctly detected.

To measure the classification task, the common criteria, precision and recall values, were

calculated with Equations (1) and (2) [18], respectively. Specifically, TP is true positive,

which represents that the predicted bounding box is valid (IoU > 0.5), and the category of

the object is the same as the ground truth [18]. If at least one of these two indicators are

wrongly predicted, the detection result is considered as FP, which is a false positive [18].

Figure 3. Image of the Raspberry Pi 4B device used for edge computing.

2.3. Detection Model Embedding

Even though an R. Pi can process basic computer tasks, it is still difficult for it to
handle computationally intensive tasks like the local computer. To accelerate the processing
time, the proposed YOLO-v5 [12] hardhat color detection model was optimized with
OpenVINO [33]. OpenVINO is an open-source toolkit for optimizing and developing AI
inferences, which can boost deep learning performance and reduce resource demands
from the edge to the cloud [33]. In this study, first, the YOLO-v5 [12] hardhat color
detection model was trained on a local computer. Second, the model was transferred to the
YOLO-V5 [12] model with OpenVINO [33], then deployed to the R. Pi 4B device [23].

2.4. Evaluation Criteria and Strategies

The mean average precision metric (mAP) was used to validate the performance of the
hardhat detection model in this study. The mAP is a standard indicator that is commonly
used to measure the performance of object detection models [34,35]. Before calculating the
mAP value [1], intersection-over-union (IoU) [1] should be calculated. IoU is a common
criterion for evaluating the coincidence degree between predicting the bounding box and
the ground truth bounding box. The calculation process of the IoU value is shown in
Figure 4, where A is the area of the ground truth, and B is the area of the detection box.
Only if the IoU [1] value is larger than 0.5 will the object be regarded as correctly detected.
To measure the classification task, the common criteria, precision and recall values, were
calculated with Equations (1) and (2) [18], respectively. Specifically, TP is true positive,
which represents that the predicted bounding box is valid (IoU > 0.5), and the category of
the object is the same as the ground truth [18]. If at least one of these two indicators are
wrongly predicted, the detection result is considered as FP, which is a false positive [18].

Buildings 2022, 12, 2167 6 of 12

FN is false negative, which represents that the predicted bounding box is not sufficiently
overlapping with ground truth box [18]:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Buildings 2022, 12, x FOR PEER REVIEW 6 of 12

FN is false negative, which represents that the predicted bounding box is not sufficiently

overlapping with ground truth box [18]:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

After obtaining the precision and recall values, a precision–recall (PR) curve can be

drawn with precision as the vertical axis and recall as the horizontal axis [1]. Then, the

area under the curve (AUC) can be calculated with the 11-point interpolation method,

which divides the recall value into 11 parts. By separately calculating the area of each part,

the AP value can be obtained, as shown in Equation (3) [1]. Accordingly, the mAP value was

calculated with Equation (4) based on the average values of all the types of detection objects

[1]:

𝐴𝑃 =
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑒𝑐𝑎𝑙𝑙𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙𝑖

 (3)

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑘

𝑁

𝑘=1
 (4)

where, 𝐴𝑃𝑘 is the AP of class k, and 𝑁 is the number of the objects’ class [1].

Figure 4. Calculation process of the IOU.

3. Results

3.1. Training and Validation of the YOLO-v5 Model

Training was performed on a computer equipped with an NVIDIA GTX 1660

graphics card (6 GB RAM), 16 GB RAM, and an Intel Core i5-9300H CPU. The proposed

method was implemented in Python language programming under the Windows 10 op-

erating system. The YOLO-v5 model was operated using the PyTorch framework. The

training configuration was batch size = 16, number of training iterations = 50, and learning

rate = 0.01. It took 2.62 h to train the model. The precision and recall curves are shown in

Figure 5. The area under the curve was the mAP value, which was 0.861. Accordingly, the

performance of the YOLO-V5 model was validated on 970 test images to detect the

hardhats. Images with different views and light conditions were included to show the

generalization of the model. Examples of the validation results are shown in Figure 6. The

confusion matrix is shown in Figure 7, from which it can be noticed that the classification

accuracies of the non-, white, red, blue, and yellow hardhats were 84%, 86%, 88%, 89%, and

87%, respectively. Instead of these 970 images, several high-resolution images and a long

video collected from construction sites were used to test the detection model in the follow-

ing section.

Figure 4. Calculation process of the IOU.

After obtaining the precision and recall values, a precision–recall (PR) curve can be drawn
with precision as the vertical axis and recall as the horizontal axis [1]. Then, the area under
the curve (AUC) can be calculated with the 11-point interpolation method, which divides the
recall value into 11 parts. By separately calculating the area of each part, the AP value can
be obtained, as shown in Equation (3) [1]. Accordingly, the mAP value was calculated with
Equation (4) based on the average values of all the types of detection objects [1]:

AP =
1

11 ∑
Recalli

Precision(Recalli) (3)

mAP =
1
N ∑N

k=1 APk (4)

where, APk is the AP of class k, and N is the number of the objects’ class [1].

3. Results
3.1. Training and Validation of the YOLO-v5 Model

Training was performed on a computer equipped with an NVIDIA GTX 1660 graphics
card (6 GB RAM), 16 GB RAM, and an Intel Core i5-9300H CPU. The proposed method was
implemented in Python language programming under the Windows 10 operating system.
The YOLO-v5 model was operated using the PyTorch framework. The training configu-
ration was batch size = 16, number of training iterations = 50, and learning rate = 0.01. It
took 2.62 h to train the model. The precision and recall curves are shown in Figure 5. The
area under the curve was the mAP value, which was 0.861. Accordingly, the performance
of the YOLO-V5 model was validated on 970 test images to detect the hardhats. Images
with different views and light conditions were included to show the generalization of the
model. Examples of the validation results are shown in Figure 6. The confusion matrix is
shown in Figure 7, from which it can be noticed that the classification accuracies of the non-,
white, red, blue, and yellow hardhats were 84%, 86%, 88%, 89%, and 87%, respectively.
Instead of these 970 images, several high-resolution images and a long video collected from
construction sites were used to test the detection model in the following section.

Buildings 2022, 12, 2167 7 of 12Buildings 2022, 12, x FOR PEER REVIEW 7 of 12

Figure 5. Precision and recall curve of Yolo-v5 model.

Figure 6. Example of test results.

Figure 5. Precision and recall curve of Yolo-v5 model.

Buildings 2022, 12, x FOR PEER REVIEW 7 of 12

Figure 5. Precision and recall curve of Yolo-v5 model.

Figure 6. Example of test results. Figure 6. Example of test results.

Buildings 2022, 12, 2167 8 of 12Buildings 2022, 12, x FOR PEER REVIEW 8 of 12

Figure 7. Confusion matrix of YOLO-v5 model.

3.2. Comparison of Results

The performance of the YOLO-v5 hardhat color detection model was compared on

both the local computer and edge computing device. Specifically, images captured from

a real construction site and the video collected from a modular construction factory in

China were used for testing. The images were tested to show the performance of the pro-

posed method on high-resolution images, especially the difference in computing speed

between the local computer and an R. Pi 4B. The comparison of the test results of the im-

ages is shown in Table 3. As shown in the table, the detection accuracy on the local com-

puter and R. Pi 4B device were the same. However, the processing time on the R. Pi 4B

was about five times longer than that on the local computer. The average detection accu-

racy was 73.07% on both devices, and the average time for detection on the R. Pi 4B was

6.11 s. Examples of the image test results are shown in Figure 8.

Table 3. Comparison of testing results on images.

Image Number Image Size
Local Computer Raspberry Pi

Time (s) Accuracy Time (s) Accuracy

1 5408 × 3680 1.465 12/13 6.57 12/13

2 4096 × 3072 1.271 4/4 6.47 4/4

3 4096 × 3072 1.524 5/10 5.39 5/10

4 5408 × 3680 1.497 9/13 6.12 9/13

5 5408 × 3680 1.619 3/3 6.40 3/3

6 5408 × 3680 1.606 4/8 6.40 4/8

7 5408 × 3680 1.551 5/10 6.41 5/10

8 4096 × 3072 1.304 1/2 5.13 1/2

Average 1.505 73.07% 6.11 73.07%

Figure 7. Confusion matrix of YOLO-v5 model.

3.2. Comparison of Results

The performance of the YOLO-v5 hardhat color detection model was compared on
both the local computer and edge computing device. Specifically, images captured from a
real construction site and the video collected from a modular construction factory in China
were used for testing. The images were tested to show the performance of the proposed
method on high-resolution images, especially the difference in computing speed between
the local computer and an R. Pi 4B. The comparison of the test results of the images is
shown in Table 3. As shown in the table, the detection accuracy on the local computer and
R. Pi 4B device were the same. However, the processing time on the R. Pi 4B was about five
times longer than that on the local computer. The average detection accuracy was 73.07%
on both devices, and the average time for detection on the R. Pi 4B was 6.11 s. Examples of
the image test results are shown in Figure 8.

Table 3. Comparison of testing results on images.

Image Number Image Size Local Computer Raspberry Pi
Time (s) Accuracy Time (s) Accuracy

1 5408 × 3680 1.465 12/13 6.57 12/13
2 4096 × 3072 1.271 4/4 6.47 4/4
3 4096 × 3072 1.524 5/10 5.39 5/10
4 5408 × 3680 1.497 9/13 6.12 9/13
5 5408 × 3680 1.619 3/3 6.40 3/3
6 5408 × 3680 1.606 4/8 6.40 4/8
7 5408 × 3680 1.551 5/10 6.41 5/10
8 4096 × 3072 1.304 1/2 5.13 1/2

Average 1.505 73.07% 6.11 73.07%

Buildings 2022, 12, 2167 9 of 12Buildings 2022, 12, x FOR PEER REVIEW 9 of 12

Figure 8. Examples of test results on images.

The example image frames of the test video are shown in Figure 9, and the compari-

son results are shown in Table 4. The accuracy of hardhat color detection for the video was

78.06%. The total time of testing on the local computer was 33 min and 12 s, and 3 h and 14

min on the R. Pi 4B device. The operation time of the R. Pi 4B device was 5.6 times longer

than that on the local computer.

Figure 9. Examples of test results on video.

Table 4. Comparison of testing results on video.

Video

Frames

Video

Length

Local Computer Raspberry Pi

Time (s) Accuracy (%) Time (s) Accuracy (%)

34,802 23 min and 12 s 33 min and 12 s 78.06 3 h and 14 min 78.06

4. Discussion

This study contributed to the research community in terms of providing a compari-

son test to show the feasibility of using edge computing for CV-based construction moni-

toring tasks. The research findings and the areas for future improvement are discussed as

follows: an R. Pi 4B is feasible as an embedded edge computing device because of its low

demand, open design feature, and acceptable detecting performance. In this study, an R.

Pi 4B device was selected as the edge computing device and embedded with a YOLO-v5

model to perform hardhat color detection. The detection performance on 970 images and

Figure 8. Examples of test results on images.

The example image frames of the test video are shown in Figure 9, and the comparison
results are shown in Table 4. The accuracy of hardhat color detection for the video was
78.06%. The total time of testing on the local computer was 33 min and 12 s, and 3 h and
14 min on the R. Pi 4B device. The operation time of the R. Pi 4B device was 5.6 times longer
than that on the local computer.

Buildings 2022, 12, x FOR PEER REVIEW 9 of 12

Figure 8. Examples of test results on images.

The example image frames of the test video are shown in Figure 9, and the compari-

son results are shown in Table 4. The accuracy of hardhat color detection for the video was

78.06%. The total time of testing on the local computer was 33 min and 12 s, and 3 h and 14

min on the R. Pi 4B device. The operation time of the R. Pi 4B device was 5.6 times longer

than that on the local computer.

Figure 9. Examples of test results on video.

Table 4. Comparison of testing results on video.

Video

Frames

Video

Length

Local Computer Raspberry Pi

Time (s) Accuracy (%) Time (s) Accuracy (%)

34,802 23 min and 12 s 33 min and 12 s 78.06 3 h and 14 min 78.06

4. Discussion

This study contributed to the research community in terms of providing a compari-

son test to show the feasibility of using edge computing for CV-based construction moni-

toring tasks. The research findings and the areas for future improvement are discussed as

follows: an R. Pi 4B is feasible as an embedded edge computing device because of its low

demand, open design feature, and acceptable detecting performance. In this study, an R.

Pi 4B device was selected as the edge computing device and embedded with a YOLO-v5

model to perform hardhat color detection. The detection performance on 970 images and

Figure 9. Examples of test results on video.

Table 4. Comparison of testing results on video.

Video Frames
Video
Length

Local Computer Raspberry Pi
Time (s) Accuracy (%) Time (s) Accuracy (%)

34,802 23 min and 12 s 33 min and 12 s 78.06 3 h and 14 min 78.06

4. Discussion

This study contributed to the research community in terms of providing a comparison
test to show the feasibility of using edge computing for CV-based construction monitoring
tasks. The research findings and the areas for future improvement are discussed as follows:
an R. Pi 4B is feasible as an embedded edge computing device because of its low demand,
open design feature, and acceptable detecting performance. In this study, an R. Pi 4B
device was selected as the edge computing device and embedded with a YOLO-v5 model

Buildings 2022, 12, 2167 10 of 12

to perform hardhat color detection. The detection performance on 970 images and a long
video were 86.8% and 78.6%, respectively. The test results verified the feasibility of using
an R. Pi 4B as an edge computing device for CV-based construction monitoring. In this
study, an R. Pi 4B was selected for its small size, low cost, and easy setup. A pretrained
YOLO-v5 model can be easily embedded to the device with the help of an OpenVINO [33]
toolkit. In order to select the best performing device, other edge computing devices with
higher computing power should be tested in future work.

One of the main challenges with respect to adopting an R. Pi 4B as an edge computing
device is its computing speed. Compared with the local computer, which was equipped
with a graphics card, the detection speed of an R. Pi 4B was much slower. As shown in
Tables 3 and 4, even though the detection accuracies were the same, the computing speed
of the R. Pi 4B were 4.6 and 5.2 times lower than that on the local computer for the images
and videos, respectively. In this study, only the original YOLO-v5 detection model, which
was designed for a local computer, was applied for testing. An improved model for edge
computing devices can achieve faster computing speed and better detection performance.
Therefore, developing a model that is suitable for edge computing devices will be another
important work in the future.

5. Conclusions

In this research, a CV-based solution for automated workers’ hardhat color detection
was transferred to an edge computing device. Then, a comparative study was proposed
to analyze the performance of the hardhat color detection on both local computer and
Raspberry Pi 4B edge computing devices. Current CV-based automated construction
methods have collected visual data with cameras installed on site and transferred the
data to local computers or to the cloud for data processing and analyzing. Such data
transfer processes may cause security issues and time delays. This research provides an
edge-computing-based solution to apply CV-based deep learning methods to automatic
construction management, which can solve the problems of security, time delay, and
computing source during data transmissions.

The contributions of this research were as follows: (1) to solve the data transfer and
security problems, an edge computing solution was proposed for construction CV-based
automatic management, which used an R. Pi computer board as an edge computing device.
(2) A YOLO-v5 hardhat detection model was trained and tested on both local computer and
edge computing devices. The performances of the two devices were compared to validate
the feasibility of using an R. Pi 4B as an embedded edge computing device.

Several limitations of this study should be mentioned. First, this work only tested
the performance of the YOLO-v5 model on two kinds of devices. It is recommended to
test more deep learning algorithms to select the most suitable one. Second, this work only
took an R. Pi 4B as an edge computing device, which is not enough. More edge computing
devices are needed to be added to the comparison. Third, the original YOLO-v5 model was
used for testing. However, it was designed for local computer use. A new deep learning
model for a lightweight edge computing device may have a better performance on edge
computing devices. Finally, the light condition and quality of the images may affect the
detection results, which is a main limitation of the CV-based method.

Based on the limitations, different commonly used deep learning algorithms in con-
struction should be tested and compared in future studies. In addition, more edge comput-
ing devices (e.g., such as an NVIDIA board) and factors (e.g., size, processing time, and the
cost of the devices) should also be tested and compared in future studies. Finally, an edge
computing structure should also be designed and tested in real construction scenarios.

Author Contributions: Conceptualization, C.C. and B.X.; methodology, H.G.; validation, Y.Z. and S.L.;
formal analysis, H.G.; writing—original draft preparation, C.C.; writing—review and editing, C.C. and B.X.;
visualization, C.C.; supervision, C.C. and B.X.; project administration, C.C. and B.X.; funding acquisition,
C.C. and B.X. All authors have read and agreed to the published version of the manuscript.

Buildings 2022, 12, 2167 11 of 12

Funding: This research was supported by The Hong Kong Polytechnic University (Project ID: P0040522).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xiao, B.; Kang, S.-C. Development of an Image Data Set of Construction Machines for Deep Learning Object Detection.

J. Comput. Civ. Eng. 2021, 35, 05020005. [CrossRef]
2. Huang, Y.; Hammad, A.; Zhu, Z. Providing Proximity Alerts to Workers on Construction Sites Using Bluetooth Low Energy RTLS.

Autom. Constr. 2021, 132, 103928. [CrossRef]
3. Sherafat, B.; Rashidi, A.; Lee, Y.-C.; Ahn, C.R. A Hybrid Kinematic-Acoustic System for Automated Activity Detection of

Construction Equipment. Sensors 2019, 19, 4286. [CrossRef] [PubMed]
4. Xiao, B.; Lin, Q.; Chen, Y. A Vision-Based Method for Automatic Tracking of Construction Machines at Nighttime Based on Deep

Learning Illumination Enhancement. Autom. Constr. 2021, 127, 103721. [CrossRef]
5. Kim, J. Visual Analytics for Operation-Level Construction Monitoring and Documentation: State-of-the-Art Technologies,

Research Challenges, and Future Directions. Front. Built Environ. 2020, 6, 575738. [CrossRef]
6. Chen, C.; Zhu, Z.; Hammad, A.M. Akbarzadeh, Automatic Identification of Idling Reasons in Excavation Operations Based on

Excavator–Truck Relationships. J. Comput. Civ. Eng. 2021, 35, 04021015. [CrossRef]
7. Xiao, B.; Chen, C.; Yin, X. Recent Advancements of Robotics in Construction. Autom. Constr. 2022, 144, 104591. [CrossRef]
8. Park, M.-W.; Elsafty, N.; Zhu, Z. Hardhat-Wearing Detection for Enhancing On-Site Safety of Construction Workers.

J. Constr. Eng. Manag. 2015, 141, 04015024. [CrossRef]
9. Mneymneh, B.E.; Abbas, M.; Khoury, H. Automated Hardhat Detection for Construction Safety Applications. Procedia Eng. 2017,

196, 895–902. [CrossRef]
10. Wu, J.; Cai, N.; Chen, W.; Wang, H.; Wang, G. Automatic Detection of Hardhats Worn by Construction Personnel: A Deep

Learning Approach and Benchmark Dataset. Autom. Constr. 2019, 106, 102894. [CrossRef]
11. Nath, N.D.; Behzadan, A.H.; Paal, S.G. Deep Learning for Site Safety: Real-Time Detection of Personal Protective Equipment.

Autom. Constr. 2020, 112, 103085. [CrossRef]
12. Jocher, G.; Chaurasia, A.; Stoken, A.; Borovec, J.; Kwon, Y.; Fang, J.; Michael, K.; Lorna; Abhiram, A.; Nadar, J.; et al.

Ultralytics/yolov5: v6.1–TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference. 2022. Available online:
https://zenodo.org/record/6222936#.Y5FoK31BxPY (accessed on 31 October 2022).

13. Ding, L.; Fang, W.; Luo, H.; Love, P.E.D.; Zhong, B.; Ouyang, X. A Deep Hybrid Learning Model to Detect Unsafe Behavior:
Integrating Convolution Neural Networks and Long Short-Term Memory. Autom. Constr. 2018, 86, 118–124. [CrossRef]

14. Long Short-Term Memory | Neural Computation | MIT Press, (n.d.). Available online: https://direct.mit.edu/neco/article-
abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext (accessed on 20 September 2022).

15. Luo, X.; Li, H.; Cao, D.; Yu, Y.; Yang, X.; Huang, T. Towards Efficient and Objective Work Sampling: Recognizing Workers’
Activities in Site Surveillance Videos with Two-Stream Convolutional Networks. Autom. Constr. 2018, 94, 360–370. [CrossRef]

16. Luo, X. Capturing and Understanding Workers’ Activities in Far-Field Surveillance Videos with Deep Action Recognition and
Bayesian Nonparametric Learning. Comput.-Aided Civ. Infrastruct. Eng.-Wiley Online Libr. 2019, 34, 333–351. [CrossRef]

17. Kim, J.; Chi, S. Action Recognition of Earthmoving Excavators Based on Sequential Pattern Analysis of Visual Features and
Operation Cycles. Autom. Constr. 2019, 104, 255–264. [CrossRef]

18. Chen, C.; Zhu, Z.; Hammad, A.M. Automated Excavators Activity Recognition and Productivity Analysis From Construction Site
Surveillance Videos. Autom. Constr. 2020, 110, 103045. [CrossRef]

19. Wang, T.; Zhang, G.; Liu, A.; Bhuiyan, M.Z.A.; Jin, Q. A Secure IoT Service Architecture With an Efficient Balance Dynamics
Based on Cloud and Edge Computing. IEEE Internet Things J. 2019, 6, 4831–4843. [CrossRef]

20. Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access. 2020, 8, 85714–85728. [CrossRef]
21. Hossain, M.S.; Muhammad, G. Emotion Recognition Using Secure Edge and Cloud Computing. Inf. Sci. 2019, 504, 589–601. [CrossRef]
22. Satyanarayanan, M. The Emergence of Edge Computing. Computer 2017, 50, 30–39. [CrossRef]
23. Projects | Computer coding for kids and teens | Raspberry Pi, (n.d.). Available online: https://projects.raspberrypi.org/en/

projects/raspberry-pi-setting-up/1 (accessed on 28 November 2022).
24. Katsamenis, I.; Karolou, E.E.; Davradou, A.; Protopapadakis, E.; Doulamis, A.; Doulamis, N.; Kalogeras, D. TraCon: A Novel

Dataset for Real-Time Traffic Cones Detection Using Deep Learning. arXiv 2022, arXiv:2205.11830v1.
25. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2004,

arXiv:2004.10934.
26. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
27. Heartexlabs/labelImg. 2022. Available online: https://github.com/heartexlabs/labelImg (accessed on 9 October 2022).

http://doi.org/10.1061/(ASCE)CP.1943-5487.0000945
http://doi.org/10.1016/j.autcon.2021.103928
http://doi.org/10.3390/s19194286
http://www.ncbi.nlm.nih.gov/pubmed/31623311
http://doi.org/10.1016/j.autcon.2021.103721
http://doi.org/10.3389/fbuil.2020.575738
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000981
http://doi.org/10.1016/j.autcon.2022.104591
http://doi.org/10.1061/(ASCE)CO.1943-7862.0000974
http://doi.org/10.1016/j.proeng.2017.08.022
http://doi.org/10.1016/j.autcon.2019.102894
http://doi.org/10.1016/j.autcon.2020.103085
https://zenodo.org/record/6222936#.Y5FoK31BxPY
http://doi.org/10.1016/j.autcon.2017.11.002
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory?redirectedFrom=fulltext
http://doi.org/10.1016/j.autcon.2018.07.011
http://doi.org/10.1111/mice.12419
http://doi.org/10.1016/j.autcon.2019.03.025
http://doi.org/10.1016/j.autcon.2019.103045
http://doi.org/10.1109/JIOT.2018.2870288
http://doi.org/10.1109/ACCESS.2020.2991734
http://doi.org/10.1016/j.ins.2019.07.040
http://doi.org/10.1109/MC.2017.9
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/1
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/1
https://github.com/heartexlabs/labelImg

Buildings 2022, 12, 2167 12 of 12

28. Arabi, S.; Haghighat, A.; Sharma, A. A Deep-Learning-Based Computer Vision Solution For Construction Vehicle Detection.
Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 753–767. [CrossRef]

29. Cortex-A72, (n.d.). Available online: https://developer.arm.com/Processors/Cortex-A72 (accessed on 28 November 2022).
30. Broadcom VideoCore VI, (n.d.). Available online: https://www.cpu-monkey.com/en/igpu-broadcom_videocore_vi-221 (ac-

cessed on 28 November 2022).
31. GeForce GTX 16 Series Graphics Card | NVIDIA, (n.d.). Available online: https://www.nvidia.com/en-us/geforce/graphics-

cards/16-series/ (accessed on 28 November 2022).
32. Intel Core i59300H Processor 8 M Cache up to 4.10 GHz Product Specifications, (n.d.). Available online: https://ark.intel.

com/content/www/us/en/ark/products/191075/intel-core-i59300h-processor-8m-cache-up-to-4-10-ghz.html (accessed on
28 November 2022).

33. Openvinotoolkit/Openvino. 2022. Available online: https://github.com/openvinotoolkit/openvino (accessed on 13 October 2022).
34. Xuehui, A.; Li, Z.; Zuguang, L.; Chengzhi, W.; Pengfei, L.; Zhiwei, L. Dataset and Benchmark for Detecting Moving Objects In

Construction Sites. Autom. Constr. 2021, 122, 103482. [CrossRef]
35. Duan, R.; Deng, H.; Tian, M.; Deng, Y.; Lin, J. SODA: A Large-Scale Open Site Object Detection Dataset for Deep Learning in

Construction. Autom. Constr. 2022, 142, 104499. [CrossRef]

http://doi.org/10.1111/mice.12530
https://developer.arm.com/Processors/Cortex-A72
https://www.cpu-monkey.com/en/igpu-broadcom_videocore_vi-221
https://www.nvidia.com/en-us/geforce/graphics-cards/16-series/
https://www.nvidia.com/en-us/geforce/graphics-cards/16-series/
https://ark.intel.com/content/www/us/en/ark/products/191075/intel-core-i59300h-processor-8m-cache-up-to-4-10-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/191075/intel-core-i59300h-processor-8m-cache-up-to-4-10-ghz.html
https://github.com/openvinotoolkit/openvino
http://doi.org/10.1016/j.autcon.2020.103482
http://doi.org/10.1016/j.autcon.2022.104499

	Introduction
	Materials and Methods
	Hardhat Detection
	Edge Computing Device Selection
	Detection Model Embedding
	Evaluation Criteria and Strategies

	Results
	Training and Validation of the YOLO-v5 Model
	Comparison of Results

	Discussion
	Conclusions
	References

