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Abstract: Scientific and practical research into alternative building materials is of high importance
in terms of sustainability and ecology. Many variables have to be taken into account when using
straw bales as load-bearing structures in residential buildings. The main problems are the lack of
information on the mechanical properties of this material and its potential high variability. The
development of numerical FEM models based on accurate experiments can help to better understand
the behaviour of this material. The main objective of this paper is to present a simplified isotropic
model of straw bales based on measured data from a laboratory experiment, which will facilitate
the preparation and evaluation of further future experiments. Already partially published data of
compression tests of load-bearing straw bales were analysed. Using an automated algorithm, an
estimate of the elastic modulus of the bale was determined, and inverse analyses were performed
using accurate FEM numerical models based on similarity to the force-deformation diagram. In all
experiments, it was found that the ideal combination is elastic modulus at 20% load and Poisson’s
constant of 0.2. From the results, further experimental directions can be determined, mainly consider-
ing a larger number of specimens with different properties. These and other findings provide the
basis for the ever-expanding field of research on load-bearing straw bales in construction.

Keywords: load-bearing straw bales; mechanical parameters; modelling; FEM; inverse analysis

1. Introduction

Nowadays, when the ecological footprint and pollution of the planet are becoming
bigger and bigger problems, forgotten natural materials are starting to make a comeback
in everyday practice. This trend has become evident in the construction industry over
the last couple of decades, and materials that were quite common in the past are once
again coming to the fore. They are giving rise to new environmentally friendly variants of
building elements that are attractive to the public and attract the attention of professionals.
This is reflected in the growing popularity of low-energy and passive buildings [1,2].

For some natural materials, a problem is the small database of physical and mechanical
properties. Furthermore, compared to industrially produced materials such as concrete,
steel, etc., natural materials exhibit higher variability in properties, which may reduce their
effective use [3,4]. By natural material, we mean materials of animal or plant origin. This
paper presents research on straw as one representative of the group of natural materials
of plant origin. The use of straw in construction has several advantages. One of them
is the fact that straw is an inherently available and relatively cheap material [5,6]. It can
be harvested and processed every year, and its processing is not that difficult. The use
of straw can reduce the need to use other, environmentally demanding, materials. Straw
provides very good thermal and acoustic insulation [7–9]. One environmental advantage is
that straw can be used in places where it is considered an unwanted by-product. In fact,
unlike hay, for example, it is not used to feed animals, and its stalks are not adapted to be
incorporated into the soil.
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One form of straw processing is straw bales. To understand the behaviour of straw
bale structures, mechanical properties need to be obtained from testing. One of the main
problems in dealing with the properties of straw bales is their inhomogeneity, which makes
it difficult to design the element so that its properties are within similar limits [3,4]. Thus, it
is important to obtain more data to develop a reliable numerical model, which is needed
to facilitate the design of these structures [10]. Further, due to the lack of such data in
the Czech Republic, unlike other countries (USA, Denmark, France, etc.), there are no
legislative procedures available for these structures, and thus, construction is only guided
by previous experience and knowledge [11,12].

1.1. Current Use of Straw Bales

In the case of straw, the so-called Nebraska method (American method) is used. This
method is the most commonly used in the United States. It is a method of construction
that works using self-supporting straw bales stacked into a wall that is pulled between
the foundation and the wreath. They are designed to transfer loads from the ceilings
to the foundations. They also have the advantage of acting as a single layer of thermal
insulation. They are covered with mesh and stitched with binding wire. They are then
most often plastered with clay plaster, both inside and outside. On the outside, however,
a fermentation solution or lime plaster must be used. Straw bale buildings are mainly
found in the USA, where they have precise regulations for such buildings [12]. Other
countries where straw bale construction is permitted are Denmark, France, Great Britain,
the Netherlands and Switzerland [13,14].

In the Czech Republic, there are no binding regulations yet. Therefore, most structures
are built only following previous experience and knowledge. The construction must
therefore be based mainly on the dimensions of the straw bales. The size of the bales
then determines the structural height of the storey, the length of walls and the size of
openings [15]. Thus, as far as straw bale structures, in general, are concerned, they are straw
bales stacked on ties. Both small straw bales and large ones are used for the construction,
which, as already mentioned, are used for the construction of load-bearing walls. The small
bales have a format of 40 × 50 × 100 cm (see Figure 1), a weight of about 15 kg and a bulk
density between 50 and 150 kg/m3.
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Figure 1. Small straw bales.

Large straw bales are usually 70 × 120 × 100 cm. They reach a weight of around 300 kg.
They are compressed to a bulk density of between 150 and 200 kg/m3 [15]. The compression
is therefore two times greater than for small bales. Due to the high compressibility, there
is then less deformation in the walls under load. The disadvantage is the large thickness
of the load-bearing walls, which can vary from 70 to 100 cm, depending on the size of the
bales. The advantages are the high heat accumulation, which helps maintain temperature
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stability, and the high thermal resistance value, which makes it possible to build passive
houses from straw.

1.2. Properties of Straw Bales

The physical properties of straw bales are nowadays well known. They have very
good thermal, insulating and acoustic properties [8,16]. Straw has also been shown to have
very good fire resistance [17,18]. The mechanical properties, however, are still subject to
experimental tests and research. Over the last couple of decades, several experiments have
been conducted to determine the mechanical properties of straw bales. They were carried
out on different types of straw of different densities.

Bou-Ali [3] carried out tests on straw bales placed both on edge and flat and deter-
mined the Poisson’s constant in the longitudinal direction. His results showed a propor-
tionality between density and stiffness. He also found that the bales return to their original
state when the load is removed.. In 2000, Brojan and Clouston [19] conducted cyclic loading
tests where bales were subjected to three full cycles of loading and unloading. The stress
and strain varied in each cycle. The bales were tested in both positions and were found to
have nonlinear behaviour. Later, Vardy and MacDougall [20] carried out testing on two
wheat bales with one laid on edge and the other laid flat. Their results confirmed that the
bales laid flat exhibited strengthening behaviour. The bales laid on edge showed linear
behaviour. Further, Peng et al. [21] presented a very interesting experimental analysis of
whole straw bale walls.

1.3. Numerical Modelling in the Straw Analysis

Numerical models of straw bale structures are only a marginal topic. Most often,
numerical models are used to investigate heat or moisture transfer [22]. Even though many
experimental measurements have been taken, there are very few models, either simple or
more complex, dealing with the mechanical behaviour of straw in load-bearing structures.
Only a few numerical models can be found in the literature, most of them analysing a
combination of wood and straw.

For example, Arnaud and Sallet [23] presented an experimental model of a wall
consisting of timber beams and internal load-bearing straw in Consol. From simple com-
pression tests, the basic properties of the materials, both wood and straw, were obtained,
and then the compressibility modulus parameters were found. This was therefore a typical
example of inverse analysis. Another type of model does not express the mechanical
properties of straw but focuses on the durability, sustainability and economics of straw
structures [24]. For example, Vanova et al. [25] conducted a detailed life cycle study of
a straw-beam building, but the parameters were not based on an underlying numerical
model that considered all sides of the material. Thus, the load-bearing straw bale industry
is still dependent on empirical observation and previous experience and does not make use
of modern numerical approaches.

1.4. Research Significance

The main object of this work was to create a simplified FEM straw bale model, which
allows for inverse analysis of the experimentally obtained data, which will facilitate the
preparation and evaluation of further future experiments. Ansys Workbench [26] was used
to create the model. The inverse analysis was applied to the available strain and load
measurement data [14], and subsequently, the best-suited elastic modulus E and Poisson’s
constant µ were obtained.

1.5. Experimental Program

The presented analysis was prepared based on experiments conducted in the laborato-
ries of VSB-Technical University of Ostrava, Faculty of Civil Engineering. A series of bales
without and with side barriers were tested using the UP Formtest 4000 kN testing machine,
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which is used for testing common materials such as steel and concrete. The experiments
were described and evaluated earlier in the study [14].

Four bales with side barriers and four bales without side barriers were tested to specify
the behaviour of the bale in the wall. It is not entirely clear whether the bales would form a
solid barrier or whether they would interpenetrate each other. Therefore, two series of tests
were carried out. In the sidewall tests, threaded rods were added to adjust the distance
between the sidewalls according to the dimensions of each bale. Further details of the test
are given in another paper [14]; however, the entire set of measured data was not evaluated,
only their maximum values. This study, on the other hand, incorporated an evaluation of
all measured data over time. It should also be noted that the bales with side barriers (see
Figure 2), i.e., the results of four measurements, are numerically analysed here.
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2. Numerical Analysis

The numerical analysis presented here consists of two parts. The first part is used to
analyse the experimental measurement data and estimate the material parameters using
the prepared algorithm. The second part, based on a finite element model of the bale in
the load assembly, is used to conduct an inverse analysis of the two material parameters of
the bale.

2.1. Evaluation of Experimental Results

The data analysis was performed in the Matlab programming environment [27]. The
input data were obtained directly from the test machine and then, using the readmatrix
function, inserted into the script as a matrix of three columns. After the input values were
read, the ratio transformation and normal stress were calculated. To obtain the elastic
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modulus E, it was necessary to restrict the values so that only data from the first loading
cycle were considered in the calculation (see Figure 3).
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As a criterion for limiting the data, the overstrain values were chosen since the strain
was set as a constant increment during testing. The maximum normal strain of the first
loading cycle was obtained from the growth and decay limits. From this, the equivalent
relative strain was calculated. The normal stress and the relative strain at 20% of the
maximum were derived as the next pair of parameters. All these values were then used
in the numerical model, which is described in detail below. Relative strain of 20% was
chosen as the first representative value. As this is the first critical evaluation, two extreme
limits were chosen. Should the results show a need for further refinement, a more in-depth
parametric study will be conducted.

2.2. Finite Element Model

The next step of the inverse analysis was to create a simplified model. The model
was created in Ansys Workbench [26], where the static structural mode was chosen for
the calculation.

The geometry and parameters of the bales were taken from the above experiments, as
well as the dimensions of the upper, side and bottom desks made of glulam. The aim of
the inverse analysis was to obtain the following material parameters for each experiment:
modulus of elasticity E and Poisson’s ratio µ. The parameters were introduced sequentially,
and the result was confronted with the load-deformation diagram from the experiment and
the model. In this way, the comparison of load test progress was monitored.

Two values of the elastic modulus were used: the one at the top of the load diagram
(maximum of the first cycle) and the value obtained from the linear part at the beginning of
the curve. For each experiment, this was the modulus of elasticity at 20% of the maximum
stress value. These values will be used in the future to create multilinear material models.
In addition, two values of Poisson’s constant were used as per references at 0.1 and 0.2 [28].
Table 1 shows the assumptions for all material setups.
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Table 1. Basic assumptions for the distribution of model parameters.

Mat 1 Mat 2 Mat 3 Mat 4

Modulus of elasticity maximal 20% maximal 20%
Poisson’s ratio 0.1 0.1 0.2 0.2

Since 4 experiments with different geometries were analysed, and 4 material models
were applied to all of them, 16 numerical models were created. Figure 4 shows the first
straw bale model from the Ansys software. A 20-node SOLID186 volume element was used.
The boundary conditions were set so that the bottom timber desk is supported, gravity
is introduced on the whole geometry, and deformation is introduced on the upper deck
which is gradually increasing. It must be noted that the loading in the model was nonlinear
to make the model stable. The loading curve was divided into three branches so that the
first part was gradual, and the other two were faster. This was due to the initial settling of
all parts of the model. A friction of 0.2 was set between the parts, and the side plates were
connected by a rigid connection simulating tie rods. The aim was to get as close as possible
to real behaviour.
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Table 2 shows the combinations of all prepared models. The input information was
based on an analysis of experiments and specific geometry. The analysis did not include
a search for relationships with density and dimensions. The aim was only to explore the
possibilities of statistical advantage of the experimental data and simplified FEM modelling.
The beginning of the labelling (S5 to S8) is based on the labelling of samples in the research
laboratory, where eight separate tests were performed. The first four tests (S1 to S4) were
without side barriers, the next four tests were with side barriers. The experiments with
barriers are analysed here. The maximum deformation was the value at which the peak of
the load branch was reached in the experiment, and therefore, this was the cut-off value for
termination of the numerical calculation.
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Table 2. General material model parameters for all calculations.

Mark
(L × W × H)

Geometry
(m)

Maximal
Deformation

(mm)

Density
(kg/m3)

Modul of
Elasticity (MPa)

Poisson’s Ratio
(-)

S5_mat 1 0.60 × 0.41 × 0.31 107 95.6 0.211 0.1
S5_mat 2 0.60 × 0.41 × 0.31 107 95.6 0.148 0.1
S5_mat 3 0.60 × 0.41 × 0.31 107 95.6 0.211 0.2
S5_mat 4 0.60 × 0.41 × 0.31 107 95.6 0.148 0.2
S6_mat 1 0.76 × 0.44 × 0.34 143 96.7 0.141 0.1
S6_mat 2 0.76 × 0.44 × 0.34 143 96.7 0.072 0.1
S6_mat 3 0.76 × 0.44 × 0.34 143 96.7 0.141 0.2
S6_mat 4 0.76 × 0.44 × 0.34 143 96.7 0.072 0.2
S7_mat 1 0.78 × 0.45 × 0.33 100 96.6 0.186 0.1
S7_mat 2 0.78 × 0.45 × 0.33 100 96.6 0.118 0.1
S7_mat 3 0.78 × 0.45 × 0.33 100 96.6 0.186 0.2
S7_mat 4 0.78 × 0.45 × 0.33 100 96.6 0.118 0.2
S8_mat 1 0.70 × 0.43 × 0.32 113 93.5 0.184 0.1
S8_mat 2 0.70 × 0.43 × 0.32 113 93.5 0.129 0.1
S8_mat 3 0.70 × 0.43 × 0.32 113 93.5 0.184 0.2
S8_mat 4 0.70 × 0.43 × 0.32 113 93.5 0.129 0.2

3. Results of Analysis

A model of bale no. 5 and material 1 was first created. Figure 5 shows the result of
deformation on the end. It can be seen that the side plates prevent displacement, and the
bale expands to the free sides.
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From the models, the values of the loading force and deformation at the location of the
upper plate were obtained. The same parameters were also obtained from the experiment.
These values can then be used to refine the inverse analysis. Figures 6–9 show the individual
curves for load and deformation from the analysed experiment and all available models.
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For bale number 5 (Figure 6), there is a good agreement between the curve from the
experiment and the S5_Mat4 model. There, a 20% modulus of elasticity and a Poisson
constant of 0.2 was applied. On the other hand, for bale number 6 (Figure 7), there is a
good agreement at the beginning, but after about 80 mm of deformation, the data from
the experiment are significantly nonlinear, which is not accounted for by the numerical
model. Bale number 7 (Figure 8) behaves similarly to bale 6, and it cannot be conclusively
confirmed that the model is appropriate throughout the experiment. These two bales
were longer and taller than bales 5 and 8, and these results must be verified with more
experiments and numerical models. Bale 8 (Figure 9) has a good agreement between the
experimental data and the S8_Mat4 data, although there is a part of the curve that shows
the relaxation of the bale under loading. It must be said that the modelling problem is
highly complex, and the approach presented here is one of the basic options. A material
such as straw requires more complex material settings (orthotropic, multilinear, etc.), but
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the results from this initial analysis are necessary and will be used in further research.
Similarly, not all model setup options are considered in terms of geometry, friction, etc. It
will be important to prepare a large-scale numerical study that will include other types of
material models and other material parameter values.
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4. Conclusions

This paper presents scientific and practical research on alternative straw-based build-
ing materials suitable for promoting sustainability and ecology. Compression test data of
straw load-bearing bales were analysed, and then inverse analyses were performed using
accurate numerical finite element models based on similarity to the force-deformation
diagram. For practically all experiments, probably the most suitable combination of mate-
rial constants is the modulus of elasticity at 20% load and Poisson’s ratio of 0.2. It can be
seen from the results that for the experiment with a larger change in material relaxation,
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the linear modelling approach is inadequate. This is most evident in the results of bales
S6 and S7. On the other hand, bales S5 and S8 showed a more linear behaviour in the
test and therefore are closer to the model. Further research will be focused on evaluating
the correlation between density and material parameters, improving experimental testing
(additional numbers for lateral and proportional strain, sidewall pressure, etc.) and, most
importantly, improving the efficiency of the numerical model.
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