
Citation: Unuk, Ž.; Kuhta, M.

Full-Scale Test and Load-Bearing

Capacity Evaluation of

Synthetic-Polymer-Fiber-Reinforced

Concrete Tetrapods under

Quasi-Static Loading. Buildings 2022,

12, 2143. https://doi.org/10.3390/

buildings12122143

Academic Editor: Pavel Reiterman

Received: 15 November 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Full-Scale Test and Load-Bearing Capacity Evaluation of
Synthetic-Polymer-Fiber-Reinforced Concrete Tetrapods under
Quasi-Static Loading
Žiga Unuk * and Milan Kuhta *

Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor,
Smetanova Ulica 17, 2000 Maribor, Slovenia
* Correspondence: ziga.unuk@um.si (Ž.U.); miso.kuhta@um.si (M.K.)

Abstract: This paper studies the load-bearing capacity of various concrete tetrapods under quasi-
static loading. The tetrapods were made of plain concrete and synthetic-polymer-fiber-reinforced
concrete. Load tests of the tetrapods were performed. The maximum load-bearing capacity and
the residual-load-bearing capacity of the tetrapods (the load-bearing capacity after the first crack
or at different crack widths) were evaluated. The strength and residual-strength values were back-
calculated from the load-bearing capacities, and compared with available data from the literature.
The specimens with and without fibers achieved similar maximum load-bearing capacities, with
cracks occurring at identical locations. However, the differences in residual-load-bearing capacity
were more significant. The synthetic-polymer-fiber-reinforced concrete tetrapods exhibited relatively
high residual-load-bearing capacities, even at higher displacements and crack widths. Two different
calculation-procedures were used for the load-bearing-capacity evaluation. A load-displacement
calculation based on the moment-versus-curvature relation and the plastic-hinge approach was
performed, and additionally proved the applicability of the employed calculation-procedures for the
concrete tetrapod load-bearing-capacity evaluation.

Keywords: tetrapods; concrete; synthetic-polymer fibers; load tests; load-bearing capacity; residual-
load-bearing capacity; load displacement; calculation

1. Introduction

Problems with the supply of reinforcing steel and fluctuations in the price of construc-
tion material motivate the replacement of conventional steel-reinforcement in reinforced-
concrete structures by different fibers, either in whole or at least in part. Steel fibers are the
most commonly used fibers, but synthetic- or natural-polymer fibers are also increasingly
used nowadays. When conventional reinforcement is replaced by fibers, the production
time of concrete elements is significantly reduced, as the time-consuming forming of
conventional reinforcement is eliminated, and the price is consequently lowered. This is es-
pecially true for concrete tetrapods, which are geometric bodies with four arms oriented at
equal angles to each other (approximately 109.5◦) and are most commonly used to dissipate
the energy of sea waves (breakwater armor). There are also known cases where tetrapods
were used to protect river banks from erosion [1]. In [2], it is stated that tetrapods were
developed in 1950 at the French Laboratoire Dauphinois d’Hydraulique (the predecessor
of Sogreah). The review of the scientific literature shows that most research focuses on the
effect of tetrapods on the dissipation of wave energy. However, a few studies also focus on
the mechanical behavior of individual tetrapods. For example, in study [3], simulations
of the behavior of concrete tetrapods under different static loads were carried out. In [4],
an analysis (finite element method) of the temperature changes in the tetrapod during
concrete hardening and the resulting stresses is presented, as well as the calculation of
the moment-curvature relationships for critical cross-sections of tetrapods with different

Buildings 2022, 12, 2143. https://doi.org/10.3390/buildings12122143 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12122143
https://doi.org/10.3390/buildings12122143
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12122143
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12122143?type=check_update&version=1


Buildings 2022, 12, 2143 2 of 21

reinforcements (steel bars, fibers, fiber-reinforced polymer bars). It is pointed out that fibers
represent a good option for reinforcement of this type of structural element. However, it is
also pointed out that there are no specific standards or guidelines for calculating the load-
bearing capacity for this structural element. In [2], the problem of tetrapod damage during
the construction/transport phase is also presented, and reference is made to drop tests. An
example is presented of tetrapods that, when dropped onto a soft surface, were damaged
only after being dropped from a height of one meter, while tetrapods that fell onto a con-
crete surface were damaged already after being dropped from a height of a few decimeters.
Simulations of the drop tests are also presented in [5]. The study [6] presents and studies
different options for tetrapod placement. This is important for achieving the functioning
of tetrapod groups as a cohesive whole. If tetrapods were used to secure river banks and
embankments were built on top of them, they would be subjected to a static vertical-load.
Tetrapods, intended to protect coasts and river banks, are often unreinforced [7]. The
possibility of tetrapod damage during transportation and installation, as well as the usage
of unreinforced tetrapods would severely limit the effectiveness or load-bearing capacity
of tetrapods for the stated purpose. Therefore, this study focuses on the calculation of
the load-bearing capacity and residual-load-bearing capacity (load-bearing capacity after
cracking or at larger crack-widths) of concrete tetrapods reinforced with synthetic-polymer
fibers, which could be used for cases where the tetrapods are subjected to relatively high
vertical-loads.

Various fibers affect the material properties of concrete differently, and many recent
studies focus on this topic. In [8], fiber-reinforced concrete samples (with different fiber
types: steel, carbon, glass, coir, jute, and sisal) were tested in compression tests, tensile-
splitting tests, and flexural tests. The addition of fibers enhanced the mechanical properties.
However, the effect was different for different fibers. In [9], coir-fiber-reinforced cement-
based concretes were evaluated in terms of workability, compressive strength, flexural
strength, splitting-tensile strength, modulus of elasticity, and permeability. It was shown
that coir fiber is a viable choice for improving the strength and durability of concrete. The
study [10] focused on the effect of temperature exposure on the response of steel-fiber-
reinforced concrete, and it was shown that steel fibers significantly improved cracking
impact-resistance. In [11], quasi-static tests were performed on pier specimens cast using
polyvinyl-alcohol (PVA)-fiber-reinforced concrete. It was observed that the presence of
PVA fibers restrained the spalling of the concrete. In [12], the structural performance of
flat slabs with and without a square opening, using four fiber-types (hooked-end, straight,
corrugated-steel fiber, and polyolefin fiber) was studied. It was observed that adding fibers
enhanced the flexural behavior of the concrete slab. The study [13] focused on the effect
of the stress–strength ratio and fiber length on the creep property of polypropylene-fiber-
reinforced alkali-activated slag concrete, and it was shown that fiber addition reduces
the creep of concrete. The investigation [14] focused on V-shaped reinforced-concrete
columns’ behavior and the impact of using micro straight-steel fiber. It was observed
that the addition of micro straight-steel fiber to the concrete significantly improved the
ultimate axial-load and the bending moment, compared to the reference specimens with
the plain reinforced-concrete. The study [15] focused on the properties of cement concrete
reinforced with nylon and jute fibers. It was observed that concrete with nylon and jute
fibers had enhanced compressive-strength, split-tensile strength, and flexural strength
compared plain concrete. In the study [16], a review of different polymer and glass fibers
used for fiber-reinforced concrete was given. It was stated that polyolefin fibers enable
great workability of fresh-fiber-reinforced concrete, are very compatible with the concrete
matrix and do not degrade in the concrete environment, provide fair post-peak mechanical
properties of fiber-reinforced concrete, have a relatively low price (compared to other
fibers) and are widely available on the construction-material market. However, it was
also mentioned that polyolefin fibers are not well represented in the literature. Due to
the above-mentioned advantages of polyolefin fibers and to reduce the knowledge gap
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regarding polyolefin-fiber-reinforced concrete elements, it was decided to examine the
option of reinforcing concrete tetrapods with this type of synthetic-polymer fibers.

The paper first presents load tests of tetrapods made of plain and synthetic-polymer-
fiber-reinforced concrete. The results were evaluated regarding the maximum and residual-
load-bearing capacity. Secondly, two calculation procedures for determining the load-
bearing capacity were presented and employed to back-calculate the tensile- and residual-
tensile strength values of the fiber-reinforced concrete material. The back-calculated
strength values were compared with the strength values available in the literature. Finally,
the load-displacement relation was calculated (based on the moment-versus-curvature
relation and plastic-hinge approach) for one of the fiber-reinforced tetrapods, and compared
with the experimentally observed load-displacement behavior.

2. Materials and Methods

Four tetrapods made of concrete were tested 28 days or later after casting. The mass
of the tetrapods was approximately 950 kg. Two tetrapods were without any reinforcement
(test specimens L22058_2_1 and L22058_2_2), and two were reinforced with STRUX® 75/32
synthetic-polymer fibers (test specimens L22033_2_1 and L22033_2_2). The dimensions of
the tetrapods can be seen in Figure 1.
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Figure 1. Views of the tetrapod from different directions, with dimensions (in mm).

The concrete mechanical-properties were not separately assessed, as the manufacturer
provided a declaration of performance for the concrete according to the European standard
EN 206-1 [17], which states that the concrete has mechanical properties in line with the
strength-class C25/30.

The STRUX® 75/32 polymer fibers are made of a polypropylene and polyethylene
blend, and are also called polyolefin fibers. They are characterized as class II macro-fibers,
according to the European standard EN14889-2 [18], generally used where an increase in
residual-flexural-strength is required. Additional information about the fibers can be found
in [19]. A fiber dosage of 4.13 kg/m3 was chosen, due to the criteria of formability of the
fresh concrete, without considering the effect of different dosages on the residual strength
of concrete.

The load tests were carried out at the Slovenian National Building and Civil Engineer-
ing Institute. The tetrapods were placed on a flat surface, and the load was applied to the
end of the upper (vertically-oriented) leg, which was thus compressively loaded. The other
three legs were loaded with bending moments and shear and axial forces. The schematic
representation for the load test is shown in Figure 2, left, and the actual load is shown in
Figure 2, right.

Displacement measurements were performed using the ARAMIS SRX optical-measuring
device, which monitored the entire specimen-area visible from one direction during the
loading period, and the results were directly output for 11 discrete points (Figure 3). The
optical-measuring device measured displacements in a Cartesian coordinate system with
axes X, Y and Z. The Y-axis was aligned parallel to the gravity direction, while the X and Z
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axis were aligned to the horizontal plane. The X-axis was approximately aligned with the
vector between points T11 and T9 (Figure 3).
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Figure 3. Discrete points whose displacements were measured with ARAMIS SRX (distances shown
in mm), specimen L22033_2_1.

The points T1, T2, and T3 were monitored to gain information about the vertical
displacements and assess the tetrapod’s possible sway movements. Points T4-T7 were
monitored to assess the crack development, and T8-T11 were monitored to assess the
support displacements of the tetrapods. The change in the distance between points T6 and
T7 was chosen to represent the crack-width measurement. The first load-test (specimen
L22033_2_1) gave information about the crack locations, and two additional inductive-
displacement-sensors were applied to the remainder of the specimens, to monitor the
cracks. The sensors (R1 and R2), which measured the crack widths (similarly to the change
of distance between points T6 and T7), were attached to the tetrapod sides that were not
monitored by the optical-measuring device (see Figure 4).
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Figure 4. Additional inductive-displacement-sensor for measuring the crack width (specimen
L22033_2_2).

The loading of the specimens was carried out with a 63-tonne hydraulic press. The test
was controlled by the rate of displacement increment (0.2 mm/min), which allowed the
residual-load-bearing capacity of the tetrapods to be determined. The residual-load-bearing
capacity is understood as the load-bearing capacity after crack formation. The vertical
displacement of point T1 was chosen to represent the vertical displacement of the tetrapod.

3. Results

The results, in the form of load-versus-displacement curves for point T1 in the y-
direction (vertical direction), are shown in Figure 5, and the results in the form of load-vs.-
crack-width curves are shown in Figure 6 (results are cut off at a crack size of 3.5 mm). The
crack widths of specimen L22033_2_2, measured at two additional locations with inductive
displacement sensors (R1 and R2), are given in Figure 7. Additionally, the displacements of
points T1, T9, and T11 are given in Figure 8.
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Results in Figure 5 through Figure 7 consent with the agreement that fibers do not
significantly affect the maximum load-bearing capacity of (only) fiber-reinforced structures
(at least with similarly small dosages or low volume-percentages). While it is true that
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the fiber-reinforced specimen L22033_2_2 achieved the highest maximum load-bearing
capacity, the other test specimens showed quite similar maximum load-bearing capacities.
The unreinforced specimen’s L22058 _2_2 load-bearing capacity even surpassed the load-
bearing capacity of the fiber-reinforced specimen L22033_2_1. However, there was a more
significant behavior difference in residual-load-bearing capacity, which was virtually nonex-
istent for the tetrapods without fibers. Moreover, the tetrapods with fibers (L22033_2_1 and
L22033_2_2) showed load-bearing capacity (residual-load-bearing capacity) even at higher
displacements and crack widths, which is a direct demonstration of the fiber effect (brittle
behavior of the unreinforced tetrapods versus the ductile behavior of the fiber-reinforced
tetrapods). Figure 8 confirms that the tetrapods are relatively rigid structural-elements
(with large cross-section diameters compared to the tetrapod-leg lengths), as the displace-
ment of point T1 in the vertical direction (the Y-direction, at least up to a displacement of
5 mm,) is mainly the result of the support displacements of points T9 and T11 in the vertical
direction (due to the crushing of the concrete in supported regions). The results of the
maximum load-bearing capacity and the residual-load-bearing capacity are summarized in
Table 1.

Table 1. Results of load capacities and residual-load capacities.

Maximum Load Capacity Residual-Load Capacity

Test specimen Fmax [kN] FFts [kN] FFtu [kN]
L22033_2_1 214.2 148.0 128.5
L22033_2_2 279.5 254.9 201.6
L22058_2_1 200.7 / /
L22058_2_2 229.1 / /

Residual-load-bearing capacity FFts was read at a crack width of 0.5 mm, while the
residual-load-bearing capacity, FFtu, was read at a crack width of 2.5 mm. It should be
noted that the crack widths were zeroed for the maximum load. This way, a precise deter-
mination of the load at which the crack occurs is omitted, and it also gives conservative
results regarding the residual-load-bearing capacity, since it results in a lower-than-actual
residual-load-bearing capacity, compared with the actual load at the specific crack-width.
For specimen L22033_2_2, the crack width was measured on all three sides of the tetrapod
as two inductive displacement sensors, R1 and R2, were additionally used. The determined
residual-load-bearing capacities FFts and FFtu were therefore equal to the average of the
loads read from the measurement data in Figure 7. The relatively small difference between
the load-versus-crack-width curves in Figure 7 is most likely the result of the misalignment
of the inductive displacement sensors, with the direction perpendicular to the crack plane
and the imperfectly symmetric behavior of the tetrapod. The residual-load-bearing capac-
ities of the fiber-reinforced tetrapods also showed significant differences, which can be
considered as the effect of the higher concrete (tensile)-strength of the specimen L22033-2-2,
compared to specimen L22033-2-1, demonstrated by the higher maximum-load-bearing
capacity of the specimen L22033-2-2, compared to specimen L22033-2-1. However, these
differences are still in accordance with the differences between the 5% and 95% fractile-
tensile strength of concrete according to Eurocode 2 [20], which are equal to 70% and 130%
of the mean concrete tensile-strength.

All the test specimens, reinforced or unreinforced, failed in the same way regarding the
crack locations (see Figure 9 for specimen L22033_2_2 crack-locations). The failure mode of
the tetrapods can be described as the flexural failure of the critical tetrapod cross-sections.
Figure 10 shows the crack surface of specimen L22033_2_1, where it can be seen that the
failure mode of the fibers was, at least mostly, fiber pull-out failure.
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4. Calculation

The evaluation of the tetrapod load-bearing capacity is based on the idealization of
the tetrapod as a linear structure. The tetrapod legs’ center-lines are considered beams
with variable cross-sections. Rotational symmetry is considered, so the static-calculation
model is limited to one leg of the tetrapod. It is further assumed that the load (force) is
distributed uniformly to the three supported legs. The critical cross-section (the section
where the crack occurs) is determined according to the observations from the load tests. As
can be seen from Figure 11, left, the critical cross-section considered in the static-calculation
model (marked with a red color) agrees with the actual crack (marked with a blue color)
and its location observed during the load tests, especially for small crack-widths, which are
the center of interest regarding the residual-load-bearing capacity. The static-calculation
model (Figure 11, right) includes only the part of the leg up to the critical cross-section,
while the remaining part, between the critical cross-section and the geometric center of the
tetrapod, is considered a non-deformable core.
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The left support in Figure 11, right, is movable in the horizontal direction, while the
right support is fixed in the horizontal direction and movable in the vertical direction, and is
also prevented from rotating (symmetry conditions). In addition, the frictional force in the
left support is considered. The coefficient of friction (kt) is taken to be 0.05, which represents
an intermediate value for friction between smooth-concrete surfaces and steel surfaces
(friction coefficient 0.1) and between smooth-concrete surfaces and painted steel-surfaces
(friction coefficient 0.0). The data on friction coefficients are taken from the standard BS
5975 [21]. For the relationship between the load Fpre (force) and bending moment MEd of
the critical cross-section, the relationship is thus:

Fpre =
3·MEd

Lproj–kt· tan(α)·Lproj
(1)

where angle α is equal to 19◦ and length Lproj is equal to 593 mm. The relationship between
the shear force,VEd, and the load is:

Fpre =
3·VEd

cos(α)–kt· sin(α)
(2)

Due to the tetrapod leg’s inclination towards the horizontal, and the frictional force,
an axial force is also present in the tetrapod leg. The relationship between the axial force,
NEd, and the load is as follows:

Fpre =
3·NEd

– sin(α)–kt· cos(α)
(3)

Two computational models regarding the constitutive law of (fiber-reinforced) con-
crete were considered, to calculate the load-bearing capacity at the cross-section level of the
tetrapods. The presented equations were based on mechanics, as opposed to those based
solely on experimental databases, as were presented in the study [22], where the axial
capacity of fiber-reinforced polymer-bar-reinforced concrete columns was predicted using
data-driven machine learning algorithms. The exact data on the effect of the STRUX® 75/32
fibers on the residual strength of concrete of strength-class C25/30 was unavailable, so
both calculations were performed using varying specific parameters for the calculated load-
bearing capacities, to match the experimentally determined load-bearing capacities. Thus,
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the calculation was an inverse analysis (or back-calculation), where the structural resistance
is known and material-properties are sought, using a structural model. This definition is
given in the fib Model Code for Concrete Structures 2010 [23]. These parameters were the
concrete’s tensile strength and the fiber-reinforced concrete’s residual strength. All other
material properties of concrete strength-class C25/30 were taken from the fib Model Code
for Concrete Structures 2010 [23] and the Eurocode 2 [20]. The back-calculated parameters
were then compared with the available data on the material properties, i.e., the tensile
strength of concrete of strength-class C25/30 and the estimated residual-strength of concrete
of strength-class C25/30 with STRUX® 75/32 synthetic-polymer fibers. Therefore, if the
back-calculated strength values exceed the standard tensile-strength of the used concrete
C25/30 and the literature data on the residual strength of concrete C25/30, reinforced with
the STRUX® 75/32 synthetic-polymer fibers, the calculations are conservative—the calcula-
tion with the standard/literature tensile and residual-strength data would underestimate
the load-bearing capacities.

4.1. Simplified Calculation

To calculate the tensile strength of concrete, fct, it was assumed that the stresses vary
linearly across the section and that the maximum load-bearing capacity of the tetrapod
is reached when, at the lowest point of the cross-section, the tensile stress is equal to the
tensile strength of the concrete. In this case, it is necessary to solve the equation: NEd

π·rtp2 +
MEd

π·(2·rtp)
3

32

· 1
fct

= 1 (4)

where rtp is the tetrapod-leg critical cross-section radius. The simplified residual-load-
bearing capacity calculation is based on the assumption of constant tensile stresses in the
tension zone of the cross-section (in the fib Model Code for Concrete Structures 2010 [23],
referred to as the “rigid-plastic model”) and on the assumption of constant compressive
stresses in the compressive zone of the cross-section (following fib Model Code for Concrete
Structures 2010 [23] and the Eurocode 2 [20]).

To calculate the residual-strength, fFtu, the conditions for the equilibrium of forces (5)
and moments (6) in the cross-section must be satisfied:

FC–Ffrc+NEd= 0, (5)

–FC·eFC+Ffrc·eFfrc–NEd·rtp+MEd= 0 (6)

where the moment equilibrium is set at the lower edge of the cross-section, and FC is
the resultant of the compressive stresses in the section, Ffrc is the resultant of the tensile
stresses in the section, eFC is the lever arm of the resultant of the compressive stresses to the
lower edge of the cross-section, and eFfrc the lever arm of the tensile-stress resultant to the
cross-section bottom edge.

For the resultant of the compressive stresses, the following expression is considered:

FC =

 rtp
2·
(
π–2·asin

(
rtp–λ·x

rtp

))
2

–rtp·
(
rtp–λ·x

)
· cos

(
asin

(
rtp–λ·x

rtp

))·η·fcm (7)

where λ is the effective compression-zone height-factor equal to 0.8, η is the effective
strength-factor equal to 0.9 (reduced by 10%, due to the reduction of the compression zone
towards the most compressed edge of the cross-section), fcm is the mean compressive-
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strength of the concrete, and x is the height of the compression zone. For the resultant of
the tensile stresses, the following expression applies:

Ffrc= fFtu·

π·rtp
2–

 rtp
2·
(
π–2·asin

(
rtp–1·x

rtp

))
2

–rtp·
(
rtp–1·x

)
· cos

(
asin

(
rtp–1·x

rtp

))
(8)

For the lever arm of the resultant of the compressive stresses, the following expression
is used:

eFC= rtp +
4·rtp· sin

(
π–2·asin

(
rtp–λ·x

rtp

))3

3·
(
π–2·asin

(
rtp–λ·x

rtp

)
– sin

(
π–2·asin

(
rtp–λ·x

rtp

))) (9)

The following expression has been derived for the tensile-stress resultant lever-arm:

efrc =

 rtp
2·
(

2·asin
(

rtp–1·x
rtp

)
–π
)

2 +rtp·
(
rtp–x

)
·
√

1–
(r tp–1· x)2

rtp2

·

rtp–
4·rtp· sin

(
π
2 –asin

(
rtp–1·x

rtp

))3

6·asin
(

rtp–1·x
rtp

)
–3·π+3· sin

(
2·asin

(
rtp–1·x

rtp

))
+π·rtp

3

rtp2·
(

2·asin
(

rtp–1·x
rtp

)
–π
)

2 +π·rtp2+rtp·
(
rtp–x

)
·
√

1–
(r tp–1· x)2

rtp2

. (10)

Using expressions (1) through (10), we can calculate the unknowns, x and fFtu. The
back-calculated results of the calculation can be found in Table 2. For the “rigid-plastic
model” the following equality is considered from the fib Model Code for Concrete Struc-
tures 2010 [23]: fr3= 3·fFtu, where fr3 is the residual-strength value at 2.5 mm crack width
as defined in the European standard EN 14651 [24].

Table 2. Results of the simplified calculation of the load-bearing capacity of the tetrapods.

Maximum Load Capacity Residual-Load Capacity

Test specimen fct [MPa] x [cm] fFtu [MPa] fr3 [MPa]
L22033_2_1 3.66 3.15 0.52 1.56
L22033_2_2 4.77 4.30 0.84 2.52
L22058_2_1 3.43 / / /
L22058_2_2 3.91 / / /

4.2. Detailed Calculation

The detailed calculation is based on the fiber-reinforced concrete constitutive-model,
as given in the fib Model Code for Concrete Structures 2010 [23]. It is assumed that fibers do
not influence concrete behavior in compression. It is also considered that fibers only start
to affect the load-bearing behavior at relatively large tensile-strains. In order to construct
a constitutive law for the pre- and post-cracking phase, the residual strengths of concrete
with fibers at different crack widths have to be converted into stress–strain relationships.
In the fib Model Code for Concrete Structures 2010 [23], a recommendation is made that,
for fiber-reinforced concrete elements which show strain-softening behavior (relaxation of
the fiber-reinforced concrete, parallel to the increase of the crack width), the characteristic
structural length, lcs, can be taken as the height of the cross-section, i.e., in the present
case, the diameter of the critical cross-section of the tetrapod leg. For the relation between
the strain, ε, and the crack width, w, the expression ε = w

lcs
is valid. For calculation, the

tensile-strain limit, εC, at which the influence of the fibers begins to be taken into account, at
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least computationally, is, according to the fib Model Code for Concrete Structures 2010 [23],
calculated with the expression:

εC =
fFts–fct +

0.8·fct·εP
εP–εQ

–εSLS·(fFts–fFtu)
εSLS–εULS

(fFts–fFtu)
εSLS–εULS

– 0.8·fct
εP–εQ

(11)

where fFts is the residual strength at a crack width of 0.5 mm, fFtu, the residual strength
at a crack width of 2.5 mm, εP, the tensile strain of the concrete just before (macro) crack
formation equal to 1.5·10−4, εSLS, the strain at crack width 0.5 mm, εULS the strain at crack
width 2.5 mm, and εQ the strain of the concrete without fibers after crack formation at a
stress equal to 0.2 times the tensile strength of the concrete. Examples of constitutive laws
for the fiber-reinforced (specimen L22033_2_1) and unreinforced (specimen L22058_2_1)
concrete, are shown in Figure 12.
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Figure 12. Constitutive law of concrete according to [13], adapted to the load-test results of specimens
L22033_2_1 and L22058_2_1 (the graphs have different scales for clarity): (a) in compression (equal
for both specimens); (b) in tension for small strains < 1‰ (region of strain where both fiber-reinforced
and unreinforced tetrapods demonstrate tensile strength); (c) in tension for large strains > 1‰ (region
of strain where only fiber-reinforced tetrapods demonstrate tensile strength).

The constitutive laws of the fiber-reinforced (specimen L22033_2_1) and unreinforced
(specimen L22058_2_1) concrete shown in Figure 12 clearly depict the fact that the fibers do
not affect (as regards the calculation) the compressive behavior of concrete (Figure 12a);
however, it is evident from Figure 12b that the fibers affect the residual tensile strength of
concrete, which is nonexistent for large strains and approximately larger than 1‰ for the
given case, as can be seen in Figure 12c.

The method of dividing the cross-section into layers was employed. It was decided
to divide the cross-section into 1500 layers. The thickness of each layer (of the critical
cross-section) is:

tsl =
Dtp

1500
= 0.321 mm (12)

where Dtp is the diameter of the critical cross-section of the tetrapod leg. The width of each
layer is:

bsl,i= 2·rtp· cos
(

asin
(ysl,i– rtp

rtp

))
(13)

where ysl,i is the center of gravity of each layer measured from the bottom edge of the
cross-section, and is calculated by:

ysl,i= 2·rtp–tsl·i+
tsl
2

(14)

where i is the index of each layer, (i are numbers between 1 and 1500).
The relationship between the curvature of the cross-section and the load-bearing

capacity of each tetrapod was calculated. The detailed calculation included the bisection
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method, which was employed to calculate the strain at the bottom edge of the cross-
section at different values of cross-section curvature. The corresponding loads (forces)
were calculated for the different curvatures. The expressions (1–3) and the equations of
equilibrium of forces and moments in the cross-section were used:

NEd =
1500

∑
i=1

σi·bsl,i·tsl (15)

MEd= –
∑1500

i=1 σi·bsl,i·tsl·ysl,i

1 + NEd·rtp
(16)

where σi is the stress in the i-th layer of the cross-section (read for the deformation of the
i-th layer, εi, from the stress–strain diagram, Figure 12). The calculation was carried out as
explained above, by looking for the tensile strength of the concrete, fct, the residual strength
at a crack width of 0.5 mm, fFts, and the residual strength at a crack width of 2.5 mm,
fFtu. The calculation of the stress–strain relationship was repeated until the experimental
and calculated maximum load-bearing capacities, the residual-load capacities at a crack
width of 0.5 mm, and the residual-load-bearing capacities at a crack width of 2.5 mm, were
in agreement. The back-calculated strength-value results of the calculation are given in
Table 3, while the corresponding bending-moment-versus-curvature relations are given in
Figure 13.

Table 3. Results of the detailed calculation of the load-bearing capacity of the tetrapods.

Maximum Load-Bearing
Capacity Residual Load-Bearing Capacity

Test
specimen fct [MPa] fFts [MPa] fr1 [MPa] fFtu [MPa] fr3 [MPa]

L22033_2_1 1.87 0.64 1.72 0.46 1.60
L22033_2_2 3.68 1.22 3.29 0.55 2.48
L22058_2_1 1.66 / / / /
L22058_2_2 2.11 / / / /
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To calculate the residual strengths, fr1 and fr3 in Table 3, the relationships presented
in [25] were applied, as the corresponding relationships in the fib Model Code for Concrete
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Structures 2010 [23] are very simplified and, in the case at hand, when fr1 and fr3 are
calculated from fFts and fFtu the calculation returns inappropriate results. The expressions
used are:

fr1 =
fFts

0.37
, (17)

fr3 =
fFtu+0.2645·fr1

0.5715
(18)

4.3. Estimated Residual-Strength Values of Concrete C25/30 Reinforced with STRUX® 75/32 Fibers

No specific values for the residual strengths of concrete of strength-class C25/30
reinforced with STRUX® 75/32 fibers were found. However, the results of bending tests (in
line with the European standard EN 14889-2 [18] and EN 14651 [24]) of concrete strength-
class C40/50 beams with different fiber dosages (four beams per dosage) of STRUX® 75/32
fibers were available in [26]. Furthermore, indicative values of the equivalent residual-
strengths (according to the standard ASTM C 1018-97 [27]) of concretes of different strength-
classes and with different dosages of STRUX® 90/40 fibers were also available in [28]. It
was assumed that the effect of the concrete strength-class on the differently defined residual-
strengths (equivalent or at specific crack-width) is similar. Furthermore, STRUX® 75/32
and STRUX® 90/40 fibers are both made of the same material, but have different lengths
(32 mm and 40 mm) and similar effective-diameters, as seen from the document [29]. It
was thus also assumed that the relationships of residual strengths to concrete-strength
classes of concretes reinforced with STRUX® 90/40 fibers are similar to the relationships of
residual strengths to concrete strength-classes of concretes reinforced with STRUX® 75/32
fibers. The estimated residual-strengths of concrete of strength-class C25/30 with STRUX®

75/32 synthetic-polymer fibers were calculated using linear interpolation. The STRUX®

75/32 data (for concrete strength-class C40/50) was used to interpolate the estimated
strengths according to the chosen fiber-dosage, and the STRUX® 90/40 equivalent residual-
strength data was used to interpolate the estimated values according to the strength-class
of the concrete. Interpolated estimated residual-strength values fr1 (at 0.5 mm crack width)
and fr3 (at 2.5 mm crack width) as defined by the European standard EN 14651 [24], are
summarized in Table 4. It should be noted that the residual strengths fri, according to the
European standard EN 14651 [24], are fictitious strengths, since they are calculated on the
assumption of a linear stress-distribution in the cross-section of the beams.

Table 4. Estimated (based on the literature) residual strengths of C25/30 concrete with STRUX®

75/32 fiber dosage 4.13 kg/m3.

fr1 [MPa] fr3 [MPa]

Minimum values 1.21 1.00
Average values 1.42 1.20

Maximum values 1.69 1.39

4.4. Comparison of the Calculated (Based on the Load Tests) Strength Values with Strength Values
Available from the Literature

The tetrapods were made of concrete of strength-class C25/30, for which (according
to Eurocode 2 [20]) the 5% fractile-tensile strength is equal to 1.8 MPa, the mean tensile-
strength equal to 2.6 MPa, and the 95% fractile-tensile strength equal to 3.3 MPa. The
comparison with the back-calculated tensile strengths of the simplified calculation (results
in Table 2) shows that the simplified calculation is rather conservative—tensile-strength
values close to or even higher than the 95% fractile-tensile strength of concrete C25/30 are
needed for the calculated maximum load-bearing capacity to match the experimentally
determined maximum load-bearing capacity. Comparing the concrete C25/30 tensile-
strength values with the back-calculated tensile-strength values of the detailed calculation
(results in Table 3) shows that the detailed calculation gives more accurate results. In order
for the calculated maximum load-bearing capacity to match the experimentally determined
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maximum load-bearing capacity, a tensile strength close to the 5% fractile-tensile strength
of the concrete strength-class C25/30 is needed, except for specimen L22033_2_2, for which
a value close to the 95% fractile-tensile strength of the concrete strength-class C25/30
is needed. The comparison of the (from the literature) estimated residual-strengths fr1
and fr3 (Table 4) with the calculated ones shows that both the simplified and the detailed
calculations are conservative, since residual-strength values of fiber-reinforced concrete
of strength-class C25/30 close to or higher than the estimated residual-strength values fr1
and fr3 from Table 4 are needed for the calculated residual load-bearing capacities FFts and
FFtu to match the experimentally observed residual load-bearing capacities. Furthermore,
the comparison of the calculated residual-strength values fr3 from Tables 2 and 3, indicates
that the rigid-plastic constitutive model (Section 4.1) and the consideration of the more
realistic constitutive model (Section 4.2) of fiber-reinforced concrete, give very similar
results (differences of less than 3%). It means that the rigid-plastic model can be applied
for calculating the residual-load-bearing capacities of fiber-reinforced concrete circular
cross-sections without loss of accuracy, compared to a calculation with more realistic
stress-distributions in the cross-section.

4.5. Load-Displacement Calculation and Comparison with Load Test Results

The load-displacement behavior of the tetrapod L22033_2_1 was calculated using
the same static model as for the load-bearing-capacity calculation (Figure 11, right). A
numeric algorithm was written where, in the first step, the tetrapod leg was divided into 100
segments and where for each segment cross-section, the bending-moment-versus-curvature
relation was calculated (as for the critical cross-section in Section 4.2). The total deflection
was calculated as the sum of the deflection coming from the flexural, shear, and axial
deformation of the tetrapod leg and the axial deformation of the vertical (axially loaded)
tetrapod leg.

The flexural deflection was calculated by numerically integrating (the trapezoidal rule)
the curvature along the tetrapod leg with virtual bending-moments resulting from a virtual
unit-force at the location, and oriented in the direction of the actual tetrapod-loading during
the load tests. For each calculated curvature and the corresponding bending moment of the
critical cross-section, the corresponding curvatures along the tetrapod leg were calculated,
taking into consideration the fact that the bending moments vary linearly along the tetrapod
leg and are a function of the segment location along the tetrapod leg. The shear deflections
were calculated by integrating the shear forces with virtual shear-forces and considering
the shear correction-factor (κS) as equal to 0.9 (as per [30], for example). The deflections
resulting from axial forces were calculated by integrating the axial forces with the virtual
axial-forces. Variation of the cross-section area along the tetrapod leg was considered. The
following equation was used for calculating the deflection ∆ (for different loads):

∆ = 3·
99

∑
i=0

(
Lseg

2
·
(
κfli·Mi+κfli+1·Mi+1

))
+3·

∫ Lleg

0

N· N
Ecm·A(x)

dx + 3·
∫ Lleg

0

V· V
Ecm

2·(1+ν) ·κS·A(x)
dx+

∫ Lleg

0

Fpre· 1
Ecm·A(x)

dx, (19)

where κfl,i are curvatures at different segment cross-sections along the tetrapod leg. Index
0 denotes the cross-section at the beginning of the tetrapod leg, and index 100 (99+1)
denotes the critical cross-section of the tetrapod leg. Mi are virtual bending-moments at
different segment cross-sections, Lseg is the length of the segments, Lleg is the length of
the tetrapod leg, N is the axial force in the tetrapod leg, N is the virtual axial-force in the
tetrapod leg, Ecm is the mean elastic-modulus of the used concrete-strength-class, A(x) is
the tetrapod-leg cross-section area at location x, V is the shear force in the tetrapod leg, V is
the virtual shear-force in the tetrapod leg, ν is the Poisson’s ratio for concrete (0.2), and Fpre
the different load (force) steps.

This procedure was, however, only appropriate up to curvatures of the critical cross-
section corresponding to a bending-moment less than or equal to the maximum bending-
moment from the bending-moment-versus-curvature relation from Figure 13. For larger
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curvatures, the plastic-hinge approach was applied. Many studies state different values
for the appropriate plastic-hinge lengths, as shown in [31], where different studies’ plastic-
hinge lengths (also called characteristic or structural-characteristic length) range from half
of the cross-section height to twice the cross-section height for steel-fiber-reinforced concrete.
As steel-fiber-reinforced-concrete design procedures are commonly also applied to polymer-
fiber-reinforced concrete, the plastic-hinge length applied for the deflection calculation
in this study was chosen as equal to the diameter of the critical cross-section. After all,
this value was already used for transforming the stress-versus-crack-width relation into
the stress-versus-strain relation in Section 4.2. However, for the present case of three bent
tetrapod-legs (the fourth is only axially loaded) joined at one location, the plastic-hinge
length for beams translates to half of the chosen plastic-hinge length at the end of each of
the three bent tetrapod-legs.

For the tetrapod leg-segments inside the plastic-hinge length, a constant curvature
equal to the curvature of the critical cross-section, was considered. According to [32],
this is a valid assumption for fiber-reinforced concrete elements with tensile-softening
behavior, as was the case in this study. For tetrapod leg-segments outside the plastic
hinge, the curvature for a specific bending-moment acting on the segment cross-section was
read (from Figure 13) from the quasi-elastic part of the bending-moment-versus-curvature
relation curve (part of the curve from zero curvature up to curvature corresponding to the
maximum bending-moment of the segment cross-section).

After reaching the maximum load-bearing capacity of the tetrapod, or for loading after
reaching the curvature corresponding to the maximum bending-moment of the critical
cross-section, the shear deflection consisted of two parts: shear deflection of the tetrapod
leg outside the plastic-hinge (calculated as before) and shear deflection of the plastic-hinge
part. A shear area equal to the uncracked critical cross-section area multiplied by the
shear correction-factor (κS) was considered for the integration of the shear forces with
virtual shear-forces for the plastic-hinge part. The crack depth was calculated based on
the assumption that the layers of the critical cross-section with tensile strains larger than
0.15‰ are cracked. The portion of the total deflection resulting from flexural and shear
deformations (∆fl+s) of the plastic-hinge part was calculated with:

∆fl+s= 3·LP

2
·
M
(

Lleg − 0.5·LP

)
+ M

(
Lleg

)
2

·κfl.cs+3·LP

2
· V·V

Ecm
2·(1+ν) ·κS·Acs.uncr.

, (20)

where LP is the plastic-hinge length, M(L leg – 0.5·LP) and M(L leg) the virtual bending-
moments at the beginning and the end of the plastic-hinge part, κfl.cs the curvature of the
critical cross-section (considered as uniform curvature along the plastic-hinge length), and
Acs.uncr. the uncracked area of the critical cross-section. The deflection resulting from the
tetrapod parts outside the plastic-hinge length is calculated according to Equation (19), but
with accordingly lower integration-lengths. The deflection calculations with Equations (19)
and (20) were performed at each load (force) step.

In order to compare the experimental and calculated load-deflection relations, the
displacements of the supports had to be subtracted from the total deflection (deflection of
point T1 in Figure 3). Only the support displacements of two tetrapod legs were monitored
(points T9 and T11 in Figure 3). However, as the displacements were measured in three
dimensions, the measured displacements were used to estimate the unmonitored leg-
support-point displacement (point T12 in Figure 14). It was assumed that the displacement
of point T1 in the vertical direction was mainly the result of the support-point displacements
(displacements of points T9, T11, T12) and that the displacements of point T1 result from
rotations about the three axes going through the ground-contact points (G9, G11, and G12),
as shown in Figure 14.
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Figure 14. Rotation axes (dashed lines) going through the ground-contact points (G9, G11, G12)
and support displacements (solid arrows) corresponding to rotations about the rotation axes (the
specific-rotation-axis color is the same as the color of the corresponding support-point (T9, T11,
T12) displacement).

By knowing the coordinates of the monitored points and the unmonitored support-
point (given in Table 5), an algorithm was written to estimate the displacements of the
support-point T12. The Rodrigues’ rotation matrix (R
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By knowing the coordinates of the monitored points and the unmonitored support-
point (given in Table 5), an algorithm was written to estimate the displacements of the 
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ῶ 
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By knowing the coordinates of the monitored points and the unmonitored support-
point (given in Table 5), an algorithm was written to estimate the displacements of the 
support-point T12. The Rodrigues’ rotation matrix (Rῶ(θ)) formula [33] was applied: 

Rῶ(θ)=eῶ·θ, (21)

where θ denotes the rotation angle, and ῶ denotes the antisymmetric matrix: 

ῶ 
0 -ωz ωy

ωz 0 -ωx
-ωy ωx 0

቏. (22)=

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

. (22)

ωx,ωy, andωz are components of the unit vector, which specifies the axis of rotation. For
each step of the measurement data (measured displacements of point T1 for each load
stage), the rotation angles (θ1, θ2, θ3) about the three axes going through the support points
were calculated by applying the equality condition of the measured displacements being
the same as the calculated displacements of point T1 (with coordinates from Table 5), due
to the three rotations θ1, θ2, and θ3. The rotation-axes unit vectors were calculated from
the coordinates of points G9, G11, and G12, from Table 5. The three rotation angles and
Rodrigues’-rotation-matrix formula were then used to calculate the estimated displacement
of the unmonitored support-point T12 (based on the coordinates of point T12, from Table 5).

Table 5. Coordinates of tetrapod points (as marked in Figures 3 and 14).

X-Coordinate [mm] Y-Coordinate [mm] Z-Coordinate [mm]

T1 786.9997 1071.5262 −284.3356
T9 1453.1087 97.7042 −106.9244
G9 1408.6737 −43.7168 −129.8494
T11 139.8844 101.3237 −44.7575
G11 181.9554 −40.0973 −71.7775
T12 742.9991 99.5139 −1205.9470
G12 745.3630 −41.9071 −1156.0019
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The average of the vertical displacements of the three support points was then sub-
tracted from the measured vertical-displacement of point T1, to extract the deflection
portion resulting from the flexural, shear, and axial deformations of the tetrapod legs.
The comparison of the measured and calculated load-deflection response can be seen in
Figure 15.
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A comparison of the load-displacement relations of the tetrapod L22033_2_1 in
Figure 15, shows reasonable agreement between the experimental and calculated results.
The most significant difference is in the region of displacements less than or equal to the
displacement corresponding to the maximum load-bearing capacity. This difference is
most likely the result of considering standard material-properties of the specific concrete-
strength-class as input parameters for the calculation. However, the post-maximum load-
bearing-capacity deflection region (residual load-bearing region of the load-displacement
behavior) shows much better agreement between the experimental and calculated results.
The latter is another indication of adequate evaluation of the residual strengths of the fiber-
reinforced concrete at different crack widths. In future research, the load-displacement
results can be used in combination with numerical tools considering fracture and dynamic
effects, such as the combined finite–discrete element method (FDEM) in the studies [34,35],
where the FDEM method was applied to different structural problems.

5. Conclusions

This paper presents load tests of concrete tetrapods. Two tetrapods made of plain
concrete and two fiber-reinforced-concrete tetrapods were tested in quasi-static load con-
ditions up to complete rupture. The selected fibers were the STRUX® 75/32 synthetic-
polymer fibers. Two computational procedures for calculating the load-bearing capacity
of the tetrapods were presented. The simplified and detailed procedures were applied
inversely, where the tensile and residual-tensile strengths were back-calculated, to match
the calculated load-bearing capacity to the experimentally observed load-bearing capacity
(maximum and residual). A load-displacement relationship calculation employing the
calculated moment-versus-curvature relation (calculated with the detailed procedure) was
also performed. The following conclusions can be drawn from the present research:

• The tetrapods failed, due to cracks forming at similar locations, whether the concrete
was fiber-reinforced or plain. The plain-concrete tetrapods failed after reaching their
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maximum load-bearing capacity, while the fiber-reinforced tetrapods retained some
load-bearing capacity.

• The plain concrete tetrapods failed, due to exceeded tensile-strength of plain concrete,
while the fiber-reinforced concrete tetrapods failed mainly due to fiber pull-out in the
critical (cracked) cross-section.

• Concrete tetrapods with synthetic-polymer fibers had a similar (maximum) load-
bearing capacity and a significantly higher residual-load-bearing capacity (load-
bearing capacity at large crack-widths) compared to tetrapods made of plain concrete.
The fiber-reinforced tetrapods demonstrated a higher ductility, and consequently en-
sure a more effective interlocking of the tetrapods, as these are most often stacked
together to form a cohesive whole.

• The comparison of the back-calculated tensile- and residual-tensile-strength values
indicated the applicability of the calculation procedures presented in the article, as
they give conservative results—the calculated tensile- and residual-tensile-strength
values were always equal to or greater than the concrete C25/30 tensile- and residual-
tensile-strength values (estimated based on data available in the literature).

• The detailed calculation-procedure, which considered a realistic stress-distribution in
the cross-section (constitutive model), is more appropriate for estimating the concrete
tensile-strength from the experimentally observed maximum load-bearing capac-
ity, compared to the simplified procedure, which considered simple linear-stress-
distribution in the cross-section.

• Regarding the residual-strength values calculated from the residual load-bearing
capacities at different crack widths, both the simplified procedure (based on the rigid-
plastic model with constant compressive- and tensile-stresses in the cross-section) and
the detailed procedure (which considers a realistic stress-distribution in the cross-
section), resulted in similar residual-strength values. The rigid-plastic model can
therefore be considered for calculating the residual load-bearing capacity of fiber-
reinforced-concrete elements without a loss of accuracy, compared to the detailed and
more demanding calculation-procedure.

• The calculated load-displacement relationship was reasonably comparable to the
experimentally observed load-displacement relationship, which additionally demon-
strated the adequacy of the presented detailed-calculation procedure for calculating
the deflections of fiber-reinforced concrete tetrapods with strain-softening behavior.
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22. Cakiroglu, C.; Islam, K.; Bekdaş, G.; Kim, S.; Geem, Z.W. Interpretable Machine Learning Algorithms to Predict the Axial Capacity

of FRP-Reinforced Concrete Columns. Materials 2022, 15, 2742. [CrossRef] [PubMed]
23. International Federation for Structural Concrete. fib Model Code for Concrete Structures 2010; Ernst & Sohn, a Wiley brand: Hoboken,

NJ, USA, 2013; ISBN 978-3-433-60421-2.
24. EN 14651: 2005+A1: 2007; Test Method for Metallic Fibre Concrete–Measuring the Flexural Tensile Strength (Limit of Proportion-

ality (LOP), Residual). European Committee for Standardization: Brussels, Belgium, 2007.
25. Di Prisco, M.; Colombo, M.; Dozio, D. Fibre-reinforced Concrete in Fib Model Code 2010: Principles, Models and Test Validation.

Struct. Concr. 2013, 14, 342–361. [CrossRef]
26. GCP Applied Technologies. GCP Applied Technologies Presentation: GCP—Solutions Fibrées; GCP Applied Technologies: Alpharetta,

GA, USA, 2021.
27. ASTM C 1018-97; Standard Test Method for Flexural Toughness and First Crack Strength of Fiber Reinforced Concrete (Using

Beam with Third Point Loading). American Society for Testing and Materials: West Conshohocken, PA, USA, 2001.
28. STRUX® 90/40; Fiber Reinforcement. GCP Engineering Bulletin: Alfalita, GA, USA, 2002.
29. Commission Chargée de Formuler des Avis Techniques (CCFAT) Document Technique d’Application Référence Avis Technique

3.3/17-938_V3/Semelles Filantes STRUX ®90/40 et 75/32 2019.
30. Krastev, R. Consistent Presentation of the Beam Deflection Theory Including Shear Correction. Int. Sci. J. Math. Model. 2021, 5,

120–123.
31. de Montaignac, R.; Massicotte, B.; Charron, J.-P. Design of SFRC Structural Elements: Flexural Behaviour Prediction. Mater. Struct.

2012, 45, 623–636. [CrossRef]
32. Soranakom, C.; Mobasher, B. Closed-Form Solutions for Flexural Response of Fiber-Reinforced Concrete Beams. J. Eng. Mech.

2007, 133, 933–941. [CrossRef]

http://doi.org/10.9765/KSCOE.2015.27.2.135
http://doi.org/10.3390/buildings12091436
http://doi.org/10.3390/buildings12091450
http://doi.org/10.3390/buildings12091364
http://doi.org/10.3390/buildings12091339
http://doi.org/10.3390/buildings12030279
http://doi.org/10.3390/buildings12020091
http://doi.org/10.3390/buildings11120648
http://doi.org/10.3390/buildings11100454
http://doi.org/10.3390/ma14020409
http://www.ncbi.nlm.nih.gov/pubmed/33467581
http://doi.org/10.3390/ma15082742
http://www.ncbi.nlm.nih.gov/pubmed/35454439
http://doi.org/10.1002/suco.201300021
http://doi.org/10.1617/s11527-011-9785-y
http://doi.org/10.1061/(ASCE)0733-9399(2007)133:8(933)


Buildings 2022, 12, 2143 21 of 21

33. Belongie, S. “Rodrigues’ Rotation Formula.” From MathWorld—A Wolfram Web Resource, Created by Eric W. Weisstein. Available
online: https://mathworld.wolfram.com/RodriguesRotationFormula.html (accessed on 14 November 2022).
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