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Abstract: In the past few years, structural health monitoring (SHM) has become an important
technology to ensure the safety of structures. Structural damage identification methods based
on machine learning techniques have gained wide attention due to the advantages of effectively
extracting features from monitoring data. However, the existing machine learning-based methods
heavily depend on manually selected feature parameters from raw signals. This will cause the
selected feature to obtain the optimal solution for a specific condition but may fail to provide a
similar performance in other cases. In addition, the feature selection takes a long time, which
can fail to achieve real-time performance in a practical structure. To address these problems, this
article proposes a hybrid deep learning framework for structural damage identification that includes
three components, namely, ensemble empirical mode decomposition (EEMD), Pearson correlation
coefficient (PCC), and a convolutional neural network (CNN). The proposed EEMD-PCC-CNN
method is capable of automatically extracting features from raw signals to satisfy any damage
identification objective. To evaluate the performance of the proposed EEMD-PCC-CNN method,
a three-story building structure is investigated. The acceleration signal of the three-story building
structure is first analyzed by EEMD. After obtaining the time-frequency information, PCC is utilized
to select optimal time-frequency information as the input of the CNN for damage identification.
Compared with other classical methods (SVM, KNN, RF, etc.), the experimental results show that
the newly proposed EEMD-PCC-CNN method has significant performance advantages in damage
identification. In addition, the accuracy of the proposed damage identification method is improved
by more than 4% after utilizing EEMD in comparison with CNN alone.

Keywords: structural health monitoring; damage identification; deep learning; ensemble empirical
mode decomposition; Pearson correlation coefficient; convolutional neural network

1. Introduction

The safety of civil infrastructures is of the utmost concern to the public because
it is prone to damage during service life. Nowadays, SHM is utilized worldwide to
maintain civil infrastructure systems to monitor the evolution status of a structure [1–4].
For example, the SHM system of Sutong Bridge in China has installed 785 sensors and
produces 2.5 TB of data each year. Thus, discovering how to effectively mine and utilize
SHM data for identifying structural damage has been an important topic [5]. Structural
damage identification is generally classified into two categories: model-based [6] and data-
driven methods [7]. The model-based method needs to establish the finite element, but
boundary conditions and material settings can differ from the actual situation. The result
of the finite element model for identifying structural damage is inaccurate. In addition,
model-based methods cannot recognize the local damage, and the complex computation
and model updating, especially for large-scale structures, is a challenge in SHM [8]. Unlike
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model-based methods, data-driven methods are inexpensive and only utilize measured
data without the need for structural, geometrical, and material information, which has
a better promotion in actual engineering. Due to this reason, data-driven methods have
drawn much attention from science and industry.

Nowadays, various kinds of data-driven methods have been applied to damage identi-
fication, including support vector machine (SVM) [9–11], K-nearest neighbor (KNN) [12,13],
random forest (RF) [14,15], extreme gradient boosting (XGBoost) [16,17], principal com-
ponent analysis (PCA) [18–20], etc. Wang et al. [21] proposed an improved PCA method
to extract damaged features between undamaged and damaged structural responses to
identify structural damage. The experimental results showed that PCA exhibited reliable
and effective performance in structural damage identification. Leon-Medina et al. [22] pro-
posed a KNN-based algorithm for damage identification. It showed that KNN obtained the
best classification accuracy when the isomap algorithm was used as the input of the KNN
classification machine. Kourehli et al. [23] presented a least-squares support vector machine
(LS-SVM) to evaluate structural damage detection. The result showed that the LS-SVM
was sensitive to the location and severity of the structural damage. Lu et al. [24] utilized
principal component analysis (PCA) and random forest algorithms to evaluate structural
damage. PCA was used to extract the damaged feature from the dynamic response signal.
Then, the extracted feature was fed into a random forest algorithm for assessing structural
status. The testing result showed that the proposed method was effective. Xu et al. [25]
identified damage on a steel girder surface using a restricted Boltzmann machine. The
accuracy and ability to identify cracks from new images with different resolutions were
validated. Generally, the above methods belong to ‘shallow’ machine learning methods
that heavily depend on manually selected feature parameters. It is the best solution for
some cases but may generate worse results for other cases [26]. Thus, the ability of feature
extraction for damage identification needs to be further improved.

Recently, with computer hardware advances, deep learning has been developed and
applied in various application fields. Compared with ‘shallow’ machine learning, deep
learning has a significant benefit in the feature-learning field and overcomes the shortcom-
ings of the manual feature. As a commonly used deep learning method, convolutional
neural networks (CNNs) have been widely applied in SHM fields. For example, Duan
et al. [27] proposed an automatic damage identification method for hanger cables in a tied-
arch bridge using a CNN. The method used raw measurement data from Fourier amplitude
spectra (FAS), and the results showed that the CNN using FAS data performed better than
the CNN using time history data. The robustness of the current CNN has been demon-
strated under various observed noise levels and wind speeds. Vu et al. [28] proposed a
method for identifying simulated damage in concrete using the CNN method. The method
can classify three different damage stages with an overall accuracy of 77%. By analyzing the
average envelope of the signals and refining the dataset, the overall accuracy was improved
to 90%. Considering that modal frequency is a crucial indicator that facilitates damage
diagnosis and condition assessment of long-span bridges, Wang et al. [29] proposed a novel
localized thermal–frequency correlation model to remove the temperature interference.
The result showed the validity of eliminating the temperature-induced change in modal
frequency based on long-term monitoring data of a cable-stayed bridge. Xu et al. [30]
proposed an improved region-based convolutional neural network (fast R-CNN) that can
automatically identify and localize many types of earthquake damage with an overall
average accuracy of 80%. In general, most damage identification studies only use time or
frequency information. The feature extraction ability of original data is weak. Developing
an extracted method based on time–frequency information for damage identification in
building structures is a significant challenge.

Time series data collected from the SHM system have non-stationary and nonlinear
characteristics. Ensemble empirical mode decomposition (EEMD), as an improved EMD
algorithm, can convert time series to each intrinsic mode functions (IMF) component,
including time and frequency information, namely time-frequency information, which can
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be used as the input of deep learning. Thus, many scholars study EEMD-based algorithms
for damage identification. For example, Chen et al. [31] presented an EEMD-LSTM for
predicting missing measured data. The experimental results showed the proposed method
could predict missing raw acceleration data of a liquefied natural gas (LNG) storage
tank. Zhai et al. [32] proposed a new gas consumption prediction method based on
EEMD and the backpropagation neural network, which has a unique superiority in data
analysis. Considering the advantages of EEMD, this study proposes a hybrid deep learning
framework based on EEMD-PCC-CNN for structural damage identification, where EEMD
converts time series data into IMF components with time-frequency information. Then,
the PCC method selects optimal time-frequency information as the input of CNN for
damage identification. Finally, a three-story building structure is utilized to evaluate the
effectiveness of the proposed method.

The main contributions of this paper are as follows: (1) A hybrid deep learning
framework for structural damage identification is proposed based on the EEMD-PCC-CNN
method, which can automatically extract features from raw signals to recognize damage
conditions. (2) The PCC method is applied to analyze the correlation between every IMF,
residual sequence, and raw acceleration data, which can reduce the dimensions of input
samples and improve the training efficiency of EEMD-PCC-CNN. (3) Compared with the
classical CNN, SVM, KNN, RF, and XGBoost methods, the experimental results show
that the newly proposed EEMD-PCC-CNN has significant performance advantages in
damage identification.

The remainder of this article is expanded in the following sections. Section 2 in-
troduces the procedure of a hybrid deep learning framework for damage identification
based on EEMD-PCC-CNN. Section 3 presents the training procedure of EEMD-PCC-CNN.
Section 4 builds a dataset to verify the feasibility and effectiveness of the proposed method.
Section 5 discusses the performance between the proposed method and the classical method.
Section 6 concludes this study and discusses future work.

2. Proposed EEMD-PCC-CNN Architecture

Figure 1 depicts a hybrid deep learning framework for damage identification based
on EEMD-PCC-CNN. It mainly includes three parts: data acquisition and preprocessing,
obtaining time-frequency information, and damage identification based on EEMD-PCC-
CNN. Firstly, acceleration sensors installed in a structure collect massive monitoring data.
Then, a fixed sliding window is utilized to split acceleration data to obtain datasets [33].
Secondly, the EEMD method converts datasets under damaged conditions into IMF and
a residual sequence that includes time-frequency information. To obtain optimal time-
frequency information, the PCC method is applied to analyze the correlation between
every IMF, residual sequence, and raw acceleration data [34]. The larger correlation value
indicates that IMF or the residual sequence has more time-frequency information, which can
be selected as the input of the CNN. The lower correlation value is removed, which not only
improves the accuracy of damage identification, but also decreases the sample dimension
fed into the CNN to improve training efficiency. Finally, the optimal time-frequency
information is fed into the CNN to extract features for damage identification. During the
training procedure, the CNN has three main layers, namely, a convolutional layer, a pooling
layer, and a fully connected layer. The convoluting and pooling layers extract representative
features from the time-frequency information. Then, the extracted features are fed into
a fully connected network with a ‘softmax’ activation function to identify the structural
damage. In addition, the loss function is applied to iterate and update the CNN parameters
via training datasets continuously. The CNN finishes the renewal of model parameters
and the training procedure when the model obtains a preferred result of structural damage
identification on validation datasets. The testing datasets are fed into the trained CNN to
assess structural damage.
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2.1. Ensemble Empirical Mode Decomposition Layer

Ensemble empirical mode decomposition (EEMD) is a signal processing method
proposed by Flandrin et al. [35] that uses white noise signals as an auxiliary process. EEMD
is a modification of empirical mode decomposition (EMD) and is well-suited for processing
time-series data with non-smoothness and nonlinear properties, such as structural vibration
response information [36]. The EEMD operation procedure consists of the following several
aspects. Firstly, the white noise of uniform amplitude is added to the original signal.
Then, the EMD method decomposes the signal into several intrinsic mode functions (IMF)
components and a residual sequence. Since the original signal has the property of a uniform
spectral distribution after adding white noise, the signals with different time scales will be
automatically distributed to the appropriate reference scale, thus overcoming the mode
mixing problem that easily occurs in the EMD method. At the same time, the fitting error
problem of the envelope above and below the signal extremum is also overcome so that the
IMF components closest to the real values are obtained. The specific process of the EEMD
method is as follows.

(1) The white noise sequence is added to the original sequence s(t) to obtain the new
sequence xj(t).

xj(t) = s(t) + nj(t) (1)

where nj(t) is the jth added white noise sequence.
(2) The EMD method decomposes xj(t) to obtain a residual sequence rj(t) and several

IMF components cij(t).
(3) Repeat step (1) and step (2) for N times with a new white noise sequence added

to the original sequence each time, which can obtain N sets of IMF components cij(t) and
residual sequences rj(t).
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(4) The mean values of N group cij(t) and rj(t) based on EMD decomposition are
calculated respectively.

ci(t) =
1
N ∑N

j=1cij(t) (2)

r(t) =
1
N ∑N

j=1rj(t) (3)

After the above operation, the N group IMF components and the residual sequence
are averaged so that the white noise with zero mean added to the original sequence is
eliminated. Therefore, the result obtained by EEMD decomposition of the original sequence
is the same as its sequence itself.

(5) The final EEMD decomposition results are described as follows:

s(t) = ∑n
j=1ci(t) + r(t) (4)

where n denotes the number of IMF components.

2.2. Convolutional Layer

In the convolutional layer, the convolution kernel is utilized to extract the time-
frequency features from decomposed data based on EEMD. It uses a fixed stride to slide
the decomposed data and convolve with the data until all the receptive fields are traversed.
Thus, the output feature can be obtained. The procedure of the convolutional layer reduces
the model parameters and increases the efficiency of the network, which is expressed in b.

Cj = f
(
s(t) ∗Wj

)
(5)

C =
[
C1, C2, . . . , Cj, . . . , CKC

]
(6)

where s(t) is the decomposed data based on EEMD; Wj is the convolutional kernel; ∗ repre-
sents the convolutional operation; f (·) denotes activation function; Cj is the jth output result
based on the convolutional operation; and C represents a combination of pooling layers.

2.3. Pooling Layer

After the convolutional layer, the dimension of the output feature remains large
and can lead to an overfitting phenomenon during the training procedure. Thus, the
pooling layer is introduced to ensure the invariance of feature maps and further reduce the
dimension of the feature maps. Max-pooling operations are used in this study, which is
described as follows.

Pj = MaxPooling
(
Cj
)

(7)

P =
[
P1, P2, . . . , Pj, . . . , PN

]
(8)

where Cj is jth convolutional layer, Pj is the pooling result of jth convolutional layer, and P
represents the combination of pooling layers.

2.4. Fully Connected Layer

Subsequently, the feature extracted by convolution and pooling operations is fed
into two fully connected layers. For two fully connected layers, the feature output of
the previous fully connected layer is used as the input of the next layer. The final fully
connected layer with a softmax activation function is applied to predict the structural
damage conditions. It can be expressed as:

y f = (Pl)
Tw + b (9)
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ci = So f tmax
(

y f
)

i
=

ey f
i

∑Nc
j=1 ey f

j

(10)

D = argmaxi∈1,...,Nc
ci (11)

where y f is the output result of fully connected layer; w, b represents the weight matrix and
bias vector; ci = P(D = i | X) is the prediction probability of the ith damaged condition;
and D is the final classification result.

3. Structural Damage Identification Method Using Proposed
EEMD-PCC-CNN Architecture

For real-time monitoring data, the proposed EEMD-PCC-CNN method has non-
stationary and nonlinear properties. This study proposed the EEMD-PCC-CNN method for
damage identification based on monitoring data, as shown in Figure 2. Firstly, the datasets
are randomly divided into training, validation, and testing datasets with a ratio of 6:2:2.
The EEMD, in the proposed method, converts time signal s(t) into several components
including several IMF and residual sequences with time-frequency information. The PCC
method is applied to select optimal time-frequency information. During the training
procedure of EEMD-PCC-CNN, the optimal time-frequency information is fed into the
convolutional and max-pooling layers to extract features. Subsequently, the output feature
map P is fed into fully connected networks to predict structural damage conditions D.
To reduce overfitting problems, dropout is added to a fully connected network. Finally,
considering that the optimizer Adam combines the momentum algorithm and the RMS
(rate-monotonic scheduling) prop algorithm, it is utilized to update the parameters of the
EEMD-PCC-CNN in every iteration. The initial learning rate is 0.001. The updated Adam
procedure is described as follows:

mt = β1mt−1 + (1− β)gt (12)

vt = β2vt−1 + (1− β2)g2
t (13)

m̂t =
mt

1− βt
1

(14)

v̂t =
vt

1− βt
2

(15)

θt+1 = θt −
η√

v̂t + ε
m̂t (16)

where βt
1 and βt

2 are set as 0.9 and 0.99; ε is set to 1 × 10−8; and gt is the gradient.
The dropout value in the fully connected layer is set to 0.5, and the batch size is set

to 512 during the training procedure. The cross-entropy function to evaluate the training
results is described as follows:

CrossEntropy = −∑N
K=1(PK × log Qk) (17)

where Qk and PK represent the predicted value and the real value. If the cross-entropy
function is low, it reflects that EEMD-PCC-CNN has an excellent performance in structural
damage identification.



Buildings 2022, 12, 2130 7 of 18Buildings 2022, 12, 2130 7 of 19 
 

 
Figure 2. Flowchart of the proposed EEMD-PCC-CNN for structural damage identification. 

4. Experimental Setups and Data Description 
This section mainly introduces a three-story building structure, experimental 

settings, the flow of EEMD decomposition, and evaluation criteria. 

4.1. Data Description 
A three-story building structure is used as the baseline benchmark for damage 

identification, as shown in Figure 3 [37,38]. The structure consists of two parts: an 
aluminum plate and an aluminum column, connected by bolts with a rigid foundation. 
At each floor, four aluminum columns are attached to the top and bottom panels, forming 
a four degree-of-freedom system. In addition, the central column is suspended at the top 
floor, and a nonlinearity effect can be produced by varying the gap between the buffer 
and the central column. The structure slides on rails are only moved in the x-direction. A 
force transducer is utilized to measure input force from the shaker. 
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4. Experimental Setups and Data Description

This section mainly introduces a three-story building structure, experimental settings,
the flow of EEMD decomposition, and evaluation criteria.

4.1. Data Description

A three-story building structure is used as the baseline benchmark for damage identi-
fication, as shown in Figure 3 [37,38]. The structure consists of two parts: an aluminum
plate and an aluminum column, connected by bolts with a rigid foundation. At each
floor, four aluminum columns are attached to the top and bottom panels, forming a four
degree-of-freedom system. In addition, the central column is suspended at the top floor,
and a nonlinearity effect can be produced by varying the gap between the buffer and the
central column. The structure slides on rails are only moved in the x-direction. A force
transducer is utilized to measure input force from the shaker.

The experimental procedure of the structure is as follows. Firstly, the shaker mounted
on a baseplate provides excitation to the bottom of the structure with a level of 2.6 V. Then,
Dacron Spectralbook FFT Analyzer is utilized to obtain measured data. The sampling
interval and frequency are 3.1 ms and 322.58 Hz, respectively. The fixed sliding window is
set to 324. According to the different structural state conditions, it can be divided into four
states, namely, C1, C2, C3, and C4, as shown in Table 1. The C1 state represents that the
gap between the bumper and the suspended column is varied (0.05, 0.10, 0.13). C2 denotes
that the gap is increased at the same time, and a 1.2 kg mass is added to the first floor and
base. C3 represents that the stiffness of a selected column is reduced by 50%. C4 represents
a 50% reduction in the stiffness of several columns.
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Table 1. Different state conditions of the structure.

Damaged Conditions State Condition

C1 Different gap
C2 Different gaps and 1.2 kg mass on the 1st floor
C3 50% reduction in stiffness of a selected column
C4 50% reduction in stiffness of several columns

The original curves obtained from acceleration sensor four under different structural
conditions are shown in Figure 4. It can be seen that acceleration data changes with increas-
ing structural damage. The EEMD-PCC-CNN, as a data-driven method, can effectively
extract damaged features from acceleration data for damage identification. In addition, the
four types of damage conditions can be divided into the training, testing, and validation
datasets with a ratio of 6:2:2. The samples number of training, validation, and test datasets
are 7883, 2630, and 2627, respectively.

Buildings 2022, 12, 2130 9 of 19 
 

 
Figure 4. The acceleration curves on the three-story building structure. 

4.2. EEMD Decomposition Results of Acceleration Data 
Acceleration data under different damage conditions are decomposed to obtain 

time–frequency information using EEMD. Figure 5 depicts that these series are sorted 
according to the order from highest to lowest frequency. 

 
(a) (b) 

Figure 4. The acceleration curves on the three-story building structure.



Buildings 2022, 12, 2130 9 of 18

4.2. EEMD Decomposition Results of Acceleration Data

Acceleration data under different damage conditions are decomposed to obtain time–
frequency information using EEMD. Figure 5 depicts that these series are sorted according
to the order from highest to lowest frequency.
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As shown in Figure 6 and Table 2, optimal time–frequency information not only
improves the accuracy of damage identification but also reduces input dimensions of
the CNN to improve training efficiency. EEMD converts time series into several IMF
components and a residual sequence. The PCC method is applied to analyze the correlations
between the component and acceleration data. Subsequently, all correlation values are
averaged to obtain the correlation coefficient graph. The larger correlation value indicates
that the IMF or residual sequence has more time-frequency information. High mean
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correlation values corresponding to the IMF or residual sequence are selected as the input
of the CNN.
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Table 2. Mean correlation coefficient between each component and the original acceleration signal.

Mean Value of Components Correlation Coefficient

IMF1 0.921
IMF2 0.442
IMF3 0.101
IMF4 0.070
IMF5 0.001
IMF6 0.001
IMF7 0.000
IMF8 0.000

Residual sequence 0.000

It can be seen from the results shown in Table 2 that the mean correlation coefficient
from the IMF1 component to the residual component gradually decreases. To be specific,
the correlation coefficient between the IMF1 component and the original acceleration signal
is close to 1.0, representing that it contains more time-frequency information. IMF1 can
be selected as the input of the CNN. Table 2 depicts the mean correlation coefficients of
eight components. The mean correlation values of IMF1-IMF4 are more than 0.01, which
is selected as the study of structural damage. Finally, the IMF1-IMF4 components are
recorded as the feature matrix, which is marked as follows.

EIMF = [EIMF1, EIMF2, EIMF3, EIMF4] (18)

where EIMF1 represents the IMF1 component. EIMF represents a combination of all selected
IMF components. EIMF is fed into the CNN for damage identification.

4.3. Evaluation Metric

Four standard evaluation metrics, namely, accuracy, precision, recall, and F1-score, are
used to evaluate the performance of the damage identification. Accuracy represents the
overall performance of the classification methods, and higher accuracy represents better
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classification. Precision, Recall, and F1-score represent the classification accuracy for each
category. These evaluation metrics are formulated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1-score = 2× Precision × Recall
Precision + Recall

(22)

where TP, FP, TN, FN indicate true positive, false positive, true negative, and false negative,
respectively.

5. Experimental Results and Discussion

To validate the effectiveness of the proposed method in this study, the EEMD-PCC-
CNN method is tested on a three-story building structure compared with classical damage
identification methods, including CNN, SVM, KNN, RF, and XGBoost.

5.1. Experimental Results of the Proposed EEMD-PCC-CNN

For setting the parameters of EEMD-PCC-CNN, only the CNN parameters need to be
set. The parameters of EEMD-PCC-CNN are shown in Table 3, and there is a total of six
layers. In the first layer, the size of a convolution kernel is 4 × 120 where 4 represents the
IMF components, and 120 is the window width of the convolution kernel. The stride of the
convolutional kernel is set to one. Then, obtained feature matrix based on convolution 1
operation is used as the input of the max-pooling second layer. The size of stride is set to
four in maximum pooling. Then, the extracted feature is used as the input of convolution 3.
In the third layer, the convolutional kernel size is set to 1 × 10. The filter number is set to
sixty. Subsequently, the feature is fed into fully connected layers 4 and 5 with 128 and 64
neurons. The activation function of each layer is ReLU. Finally, the damage identification
results are output by the fully connected layer 6 using the softmax activation function.

Table 3. Parameters setting of EEMD-PCC-CNN.

Layer Filter Size Kernel Size Stride Padding Input/Output Activation

Convolution 1 30 4 × 120 1 SAME 4 × 324/4 × 324 ReLU
Max-pooling 2 30 4 × 4 4 VALID 4 × 324/1 × 81 ReLU
Convolution 3 60 1 × 10 1 VALID 1 × 81/1 × 72 ReLU

Fully connected layer 4 - - - - 4320/128 ReLU
Dropout - - - - 0.5 -

Fully connected layer 5 - - - - 128/64 ReLU
Fully connected layer 6 - - - - 64/4 softmax

To further validate the superior performance of EEMD-PCC-CNN in structural dam-
age identification, the method is applied to a three-story building structure for testing.
The damage identification accuracy curves are shown in Figure 7, from which it can be
intuitively shown that the accuracy of the validation dataset will increase gradually with
the accuracy of the training dataset. When the iteration number is 200, the accuracy of
validation datasets is more than 0.9, indicating that the EEMD-PCC-CNN method has a
robust learning and fitting ability. The damage identification loss curves are shown in
Figure 8, from which it can be intuitively observed that the validation dataset decreases
continuously with the loss of the training dataset. The loss curves show a smooth trend,
proving an excellent fitting ability.
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5.2. Compared with Other Methods

To further verify superiority of EEMD-PCC-CNN in structural damage identification,
it is compared with classical CNN, SVM, KNN, RF, and XGBoost methods.

Moreover, to obtain optimal hyper-parameter tuples in this study, the grid search is
utilized to optimize the hyper-parameters for different methods, which is an exhaustive
search through a subset of the searching space of the parameters. Table 4 shows the
searching space of the hyper-parameters and the corresponding optimal values.

Table 4. Hyper-parameters optimization of different methods.

Algorithm Optimal Parameters Search Space Optimal Value

SVM 1. Kernel coefficient
2. Regularization parameter

{0.1, 0.4, 0.6, . . . ,10}
{1, 2, 3, 4, 5, . . . , 20}

{1.4}
{10}

RF
1. Maximum leaf nodes
2. Maximum tree depth
3. Features number

{5, 10, 15, 20, . . . , 100}
{1, 2, 4, 6, 8, 10, . . . , 26}
{10, 20, 40, 60, 80, . . . , 320}

{40}
{16}
{100}

KNN 1. Leaf size {10, 20, 30, 40, . . . , 200} {30}

XGBoost
1. N_estimators
2. Maximum depth
3. Learning_rate

{1, 2, 4, 6, 8, 10, . . . , 26}
{5, 10, 15, 20, . . . , 100}
{0.1, 0.2, 0.3, 0.4, . . . ,1}

{10}
{80}
{0.5}

The results of each method in terms of accuracy, precision, recall, and F1-score are
shown in Table 5. It shows that the proposed EEMD-PCC-CNN method achieved the
highest evaluation result among comparison methods. The EEMD-PCC-CNN achieves
accuracy in 94.02%, precision in 92.92%, recall in 92.69%, and F1-score in 92.80%. The
main reason is that the EEMD-PCC-CNN method effectively captures time-frequency
features from acceleration data, while the comparison methods only capture a single time
or frequency feature. In particular, compared with the CNN method, the EEMD-PCC-CNN
improves by 4.34%, 4.52%, 5.54%, and 5.11% in accuracy, precision, recall, and F1-score,
respectively. The result shows the effectiveness of EEMD decomposition, and EEMD-PCC-
CNN based on time-frequency information significantly improves the accuracy of damage
identification. Compared with SVM, KNN, RF, and XGBoost methods, the accuracy of
EEMD-PCC-CNN is improved by at least 8%.

Table 5. Experimental results of EEMD-PCC-CNN on the three-story building structure.

Methods EEMD-
PCC-CNN CNN SVM KNN RF XGBoost

Accuracy 0.9402 0.8968 0.8561 0.6837 0.6917 0.7545
Precision 0.9292 0.8840 0.8411 0.6478 0.7716 0.7172

Recall 0.9269 0.8715 0.8126 0.6214 0.5882 0.6897
F1-score 0.9280 0.8769 0.8236 0.6279 0.5723 0.6963

The specific results of the six methods for four damage conditions are shown in
Figure 9 and Table 6, where the EEMD-PCC-CNN method presents an excellent ability to
distinguish the structural damage conditions. The precision, recall, and F1-score values of
EEMD-PCC-CNN are above 90% in C1, C3, and C4. These metrics are relatively lower, all at
85.40% under C2. For other methods, including CNN, SVM, KNN, RF, and XGBoost, SVM
achieves recall in 99.31% under C1, and RF achieves accuracy in 92.86% under C2. However,
the above method has lousy accuracy in other conditions. In general, the proposed EEMD-
PCC-CNN method has a reliable and higher accuracy than the comparison methods.
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Table 6. Classification results of the three-story building structure under four damage conditions.

Methods
C1 C2 C3 C4

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

EEMD-PCC-CNN 0.9620 0.9773 0.9696 0.8540 0.8540 0.8540 0.9224 0.9026 0.9124 0.9784 0.9736 0.9760
CNN 0.9259 0.9644 0.9448 0.8144 0.7277 0.7686 0.8413 0.8663 0.8537 0.9542 0.9274 0.9406
SVM 0.8792 0.9931 0.9327 0.7593 0.6089 0.6758 0.7920 0.7855 0.7887 0.9339 0.8630 0.8971
KNN 0.7203 0.9041 0.8018 0.4080 0.3787 0.3928 0.6275 0.4587 0.5300 0.8352 0.7442 0.7871

RF 0.6370 0.9286 0.6756 0.9286 0.0644 0.1204 0.6756 0.4983 0.5736 0.8451 0.7921 0.8177
XGBoost 0.8043 0.9634 0.8767 0.5926 0.3960 0.4748 0.6654 0.5941 0.6277 0.8066 0.8053 0.8059

To analyze the ability of damage identification in each category, the confusion matrix
of EEMD-PCC-CNN and other compared methods is shown in Figure 10. It can be seen
that the accuracy of the damage condition for each category is more than 85% using EEMD-
PCC-CNN method. To be specific, for C1 and C4, the sample numbers of each category
are 1027, 593, and 603, and the correct numbers are 988, 547, and 590. The precision of C1,
C3, and C4 are 96.20%, 92.24%, and 97.84%. The total classification accuracy is more than
90%, indicating that EEMD-PCC-CNN has a high classification accuracy. For C2, there are
404 samples where the correct number is 345. The precision of C2 reaches 85.40%. The effect
of classification is also acceptable. The damage recognition ability of other methods is lower
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than that of EEMD-PCC-CNN in C1-C4. This further indicates that the EEMD-PCC-CNN
method significantly improves the accuracy of damage identification.
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6. Conclusions and Future Work

This study proposes a hybrid deep learning framework for damage identification
based on the EEMD-PCC-CNN method. EEMD is responsible for acquiring time-frequency
information from monitoring data. PCC selects optimal time-frequency information as the
input of the CNN for damage identification. A three-story building structure verifies the
effectiveness of the proposed method. The following is a summary of the main findings of
this study.

(1) The proposed hybrid framework using EEMD-PCC-CNN to deeply mine the
features of building structures not only can significantly improve the accuracy in structural
damage identification, but also avoids the feature selection of traditional identification
methods.

(2) The PCC selects optimal time-frequency information from components decom-
posed by EEMD as the input of the CNN, which can reduce the dimensions of input
samples and improve the training efficiency of EEMD-PCC-CNN.
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(3) The experimental comparison between the EEMD-PCC-CNN and CNN methods
shows that acceleration data analyzed by EEMD-PCC are fed into CNN, whose accuracy is
improved by 4.34% in damage identification. This indicates that EEMD-PCC-CNN based
on time-frequency features can improve the accuracy of structural damage identification in
comparison with only the feature extraction method.

(4) Compared with the classical CNN, SVM, KNN, RF, and XGBoost methods that
are often used in the direction of damage identification, the EEMD-PCC-CNN method
has the highest accuracy of 94.02%, which guarantees the performance of the method in
practical applications.

(5) The EEMD-PCC-CNN method proposed in this study also has some limitations.
Compared to machine methods such as SVM, KNN, and RF, the method requires a large
amount of training data to improve damage recognition accuracy. Therefore, migration
learning methods can be utilized to simplify training for accurate identification of future
structural damage detection. In addition, the dataset used in this study is the acceleration
signal of a three-story building structure, while a large number of different types of sensors
are deployed on the actual structure to obtain data, including deflection, stress, strain, etc.
Therefore, multimodal fusion of different data can be performed to further improve the
accuracy of the method.
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