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Abstract: In this paper, 30 SFRC (Steel Fiber Reinforced Concrete) spindle specimens with different
steel fiber contents were subjected to static loading tests and blast wave loading tests on spindle
specimens with different steel fiber contents using a self-developed planar blast wave loading device
(a new type of patent recognized by the State Intellectual Property Rights). The dynamic response,
impact performance and damage mode of Steel Fiber Reinforced Concrete under blast loading were
investigated. The experimental results show that with the increase of steel fiber content (within 2%),
the strength of the Steel Fiber Reinforced Concrete increases slightly. The flatter the falling section
of the stress-strain curve, the better the energy absorption effect. With the increase of explosive
equivalent(24 g RDX and 36 g RDX), the more obvious the strain rate effect, the greater the increase
of peak stress, and the SFRC with 2% steel fiber content has the best energy absorption effect.
Furthermore, the dynamic response of SFRC spindle specimens was numerically simulated using
the improved K&C material model with LS-DYNA explicit finite element dynamic analysis software.
The results verify the validity and reliability of the improved K&C material model.

Keywords: steel fiber reinforced concrete; blast loading; numerical simulation; impact performance;
energy absorption

1. Introduction

As the world’s population continues to grow and the desire for scarce resources in-
creases, the risk of large-scale, high-precision, high-powered warfare continues to rise!
The power of unmanned aerial devices for precise positioning poses a serious challenge
to protective engineering in warfare. The optimization of blast-resistant protective engi-
neering for warfare purposes has received much attention. With the accelerating pace of
industrial development, SFRC has gained the attention of scholars and experts in the fields
of construction (bridge engineering, airport and port engineering), defense and military as
well as academic research because of its high crack resistance, good elongation, excellent
energy dissipation and energy absorption, and good impact resistance [1–3].

Many scholars have added different fibers to concrete for reinforcement. They usually
include glass fibers [4,5], organic fibers [6,7], carbon fibers [8–10], synthetic fibers [11] and
steel fibers [12–16], etc. And some scholars have conducted experimental and numerical
simulations to compare glass/epoxy composite glass panels [17]. Zhao [18] and Zhang [19]
proposed several different types of composite shields that can improve explosion resistance
while maintaining light weight, and experimental and theoretical analyses were carried out.
Steel fiber is one of the most preferred materials due to its wide availability and relative
cheapness and better engineering economic value. Some studies have shown that the
compressive strength as well as the modulus of elasticity of concrete is less affected by the
steel fiber content, but it greatly enhances the performance of concrete after cracking with
good resistance to blast local dislodgement [20–22].
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As early as the 1940s, scholars from various countries, represented by the US and
the USSR, successively mixed steel fiber of different shapes and proportions into plain
concrete and studied its crack resistance and wear resistance. In the later part of the last
century, in Asia, Europe and the United States, SFRC has been used in airport projects
and highway pavement projects [22–24]. SFRC exhibited greater strength in direct ten-
sile experiments [25], and scholars from various countries have further investigated the
effect of different types of steel fibers and different contents on SFRC beams [26–28].
Yang et al. [29] conducted compression and splitting tensile tests on steel fiber concrete
slabs and investigated the dynamic response and damage modes of concrete slabs by ex-
plosion tests. At present, research on steel fiber high performance concrete under low and
medium strain rate loading has been fruitful [30–32].Yehya et al. [33] used ABAQUS
to model and validate the experimental results for several beams under blast condi-
tions; Jacques E et al. [34] studied lapped reinforced concrete beams at high strain rates.
Li et al. [35] further used two-dimensional finite element individuals to predict the blast
response of the beam and compared it with the test. While research on Steel Fiber Re-
inforced Concrete under blast impact is limited in terms of data and experiments, and,
due to the lack of design guidelines, there is a lack of in-depth understanding of the basic
characteristics of Steel Fiber Reinforced Concrete under blast impact. The intrinsic structure
of Steel Fiber Reinforced Concrete at high strain rates is also not well developed. Due
to the difficulty of controlled blast testing, scholars have remained at the stage of single
experimental studies or numerical simulations [36], lacking specific comparative analyses
for verification.

In this paper, an electro-hydraulic servo testing machine was used to carry out uniaxial
compressive static load tests. The planar blast wave loading system exploded SFRC spindle
specimens with strength C40 and steel fiber content (Vf) of 0, 0.5%, 1%, 1.5% and 2% at
the blast load. The dynamic response, impact properties and damage characteristics were
systematically investigated using a combination of experimental analysis and ANSYS/LS-
DYNA numerical simulations [37] based on a modified K&C material model [38–40]. The
mechanical characteristic curves and damage characteristics were obtained experimentally.
This paper is to provide valuable research methods and data for the application of SFRC
blast-resistant structures in academic research fields and engineering fields, and also
provide a basis for the further research.

2. Experimental Study
2.1. Specimen Preparation
2.1.1. Experimental Raw Materials

Cement. P-I 42.5 bulk cement; water. Natural tap water; fine aggregate: river sand, dry
apparent density of 2580 kg/m3, maximum particle size of 5 mm, coarse aggregate using
crushed stone, bulk density of 1480 kg/m3, maximum particle size of 10 mm, copper-plated
straight steel fiber, yield strength of 780 MPa, density of 7750 kg/m3, diameter of 0.20 mm,
length of about 12 mm. The specimens used in the test were spindle-shaped, manually
mixed, compacted by vibrating table, and demolded after 24 h. After demolding, the
specimens were immediately put into a standard maintenance room at 20 ◦C ± 3 ◦C and
95% or more humidity. See Figure 1 for specific materials used.
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2.1.2. SFRC Mix Ratio

Table 1 shows the mix ratios of the materials used.

Table 1. SFRC mix proportion.

Vf (%) Cement
(kg/m3)

River Sand
(kg/m3)

Gravel
(kg/m3)

Steel Fiber
(kg/m3)

Water
(kg/m3)

0 571.43 1033.77 556.65 0 200
0.5 571.43 1025.09 551.97 39.335 200
1.0 571.43 1016.40 547.30 78.67 200
1.5 571.43 1007.74 542.63 118.005 200
2.0 571.43 999.06 537.95 157.4 200

Note: water-cement ratio—water/cement = 0.35.

2.2. Quasi-Static Experimental Device and Principle

Electro-hydraulic servo testing machine: servo system is automatic control system
which use a mechanical position or angle as the control range. In the electro-hydraulic
servo pressure testing machine, the servo control system is used to control the piston move-
ment of the loading cylinder position and movement speed. Electro-hydraulic servo test
system can complete the conventional single-axis compression test, three-axis compression
test, etc. In the quasi-static uniaxial compression test, three specimens of different steel fiber
content were used in each group. The uniaxial compression test allows the compressive
strength and the damage pattern of the SFRC specimens to be obtained directly, using an
electro-hydraulic servo tester to obtain the time course of the pressure on the SFRC axis.

2.3. Plane Blast Wave Experimental Device and Principle

A self-developed planar blast wave loading device [41] (a new type of patent recog-
nized by the State Intellectual Property Rights) as shown in Figure 2, was used to perform
blast shock wave loading tests on the experimentally designed spindle specimens. The
principle is: to perform multi-point simultaneous detonation through tandem detonation
simultaneously detonating reticulated detonating cord; to obtain a plane blast wave condi-
tioned by a wave guide tube; and after a certain distance through the impact plate (upper
ball hinge) on the specimen loading which can achieve uniform symmetric loading effect,
and fully and truly reflect the actual application of the specimen by high-speed impact
loading in the high strain rate state, thus, can effectively test the damage characteristics
and mechanical properties of concrete materials under high strain rate loading.

The advantage of this is that it overcomes the limitations on specimen size and length
in the Hopkinson experiment [42] favoured by most authors. In SHPB (Split Hopkinson
Pressure Bar), one-dimensional stress waves are used to cause concrete to be damaged
under high strain rate conditions. If the diameter of the rod is too large, the spatial
transmission characteristics of the waves cause different fluctuation characteristics at
the interface of the input rod, which can lead to uneven stresses being applied to the
concrete specimens.
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Figure 2. Plane wave explosive test device diagram.

2.4. Experimental Data Acquisition

The piezoelectric transducer gauge is mounted on the bottom cover of the axial explo-
sion chamber. Experimental setup with INV3062T2 dynamic strain data acquisition instru-
ment, INV1861A strain conditioner and COINV DASP V11 software system. Blast/shock
loads are characterized by the short duration of the load action, which is the significant
changes in kinematic parameters (displacement, velocity, acceleration) on short time scales
measured in milliseconds (ms), microseconds (us) or even nanoseconds (ns). Under such
dynamic loading conditions, the micro-elements of the medium are in a dynamic process
that changes rapidly with time, and this data acquisition system is capable of.

Under such dynamic loading conditions, the micro-elements of the medium are rapidly
changing and the data acquisition system INV3062T2 can acquire a wide range of physical
signals such as noise, shock, strain, pressure and voltage under distributed, multi-point,
long-range or wirelessly transmitted vibration conditions. The acquisition frequency is
up to 51.2 kHz and, together with the DASP software, forms a high-performance data
acquisition and signal processing system with more than 100 advanced technologies.

The INV1861A portable 8-channel strain conditioner with power conversion, bridge
voltage supply, signal amplification, low-pass filtering, pre-balance, program control and
voltage output provides a qualified voltage signal for subsequent analysis and recording
equipment. It can be widely used to detect foundation subsidence, soil pressure and stress,
strain, load and displacement of large engineering structures on railways, roads and bridges.

The DASP platform is made up of a dynamic test section and signal analysis software,
which includes dozens of test and analysis modules, including signal oscilloscope acqui-
sition, signal generation and DA output, and basic signal analysis. Different platforms
contain different combinations of modules, which are divided into three main approaches
during the sampling process. The oscilloscope acquisition part of the signal can be sampled
continuously in large volume, with triple-think sampling (i.e., sampling, oscilloscope and
spectrum analysis at the same time, oscilloscope acquisition and analysis at the same time);
the instrument system flow for dynamic measurements is shown in Figure 3.
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3. Experimental Results and Analysis
3.1. Quasi-Static Experimental Results

The basic mechanical parameters of Steel Fiber Reinforced Concrete and plain concrete
(Vf = 0%) were obtained by uniaxial compression test as shown in Table 2.

After testing, the static compressive strengths of SFRC with steel fiber content of 0%,
0.5%, 1%, 1.5%, and 2% are: 42.24 MPa, 45.26 MPa, 48.87 MPa, 54.27 MPa, 56.54 MPa,
respectively. The value of the specimen is slightly larger than the strength of C40 concrete
in the current specification. The uniaxial compressive pressure time-history curve of the
spindle specimen with different steel fiber content is shown in Figure 4 and the relationship
between the dimensionless parameter value fc and the steel fiber content as shown in
Figure 4, where fc represents the ratio of static compressive strength of different steel fiber
content to 0% steel fiber content.

During the static load experiment, first install the specimen into the loading system,
start the oil pump to load the specimen, set the loading speed to 0.3 MPa/s (2.355 kN/s);
When the specimen loses its strength, the loading is terminated; the loading table is cleaned,
and the next set of specimens are loaded. After the specimen is fixed for preloading,
the pressure of the specimen reaches its peak value and the specimen loses its strength
completely. The fracture process and crack development of the lower specimen; the photo
of the quasi-static test results is shown in Figure 4.
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Figure 4. Quasi-static experimental results: (a) SFRC basic mechanical parameters; (b) The relation-
ship between the dimensionless parameters of SFRC and steel fiber content; (c) The damage process
of SFRC with different steel fiber content under uniaxial compression.

Table 2. Uniaxial compression test results of spindles with different steel fiber content.

Vf (%) Peak Pressure F (kN)

0% 1© 79.06 2© 80.94 3© 88.70
0.5% 1© 88.20 2© 92.85 3© 85.45
1.0% 1© 101.63 2© 94.35 3© 91.76
1.5% 1© 96.49 2© 113.21 3© 109.85
2.0% 1© 113.82 2© 105.41 3© 113.67

3.2. Explosion Plane Wave Experiment
3.2.1. Sensor Development

In the study of the supporting facilities for the plane blast wave loading device, a
pressure sensor for use with the plane blast wave loading device was studied. The sensor
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uses the principle of metal pressure contraction deformation to estimate the cross-sectional
area required for the mechanical behavior of Q235 steel by combining the static compressive
strength of the spindle under quasi-static experiments with a dynamic enhancement factor.
First, the transducer was made according to the design drawing (see Figure 5a), and the
surface of the specimen was polished, cleaned, and positioned. Then, a wire grid model
BFH1K-3BB (see Figure 5b) was attached to the abdomen of the transducer, and the grid
was arranged horizontally and vertically at 90 degrees. The sensor was calibrated by
the pressure tester several times during the experiment (see Figure 5c) until the sensor
stress-strain relationship was stable, forming a one-to-one data sheet for later data analysis.
The physical sensor is shown in Figure 5d below.
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3.2.2. Plane Blast Wave Experiment

The key to this experimental loading is that the plane blast wave loading device is loaded
with different explosive equivalents and detonated synchronously with detonators, and the
wave guide tube forms one-dimensional stress waves with different high strain rates. The
experiments were conducted with 24 g and 36 g of black gold (RDX) explosives, respectively,
and the pressure time profiles were measured by a dynamic strain acquisition system. The
objectives of the experimental study were: (1) To study the data of 12 sets of SFRC spindle
specimens with different steel fiber contents with constant explosive equivalents, and to
investigate the effects of steel fiber contents on the impact resistance, blast resistance, ductility
of stress peak and stress-strain drop section curves, and energy absorption performance of
SFRC. (2) The explosive equivalents were varied on the basis of 6 groups of specimens with
the same steel fiber content, respectively. Study the strain rate effect, stress peak, impact and
blast resistance, energy dissipation and energy absorption of SFRC under different high-speed
strain rate loading; the test site pictures are shown in Figure 6.
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3.3. Explosion Plane Wave Experimental Results

The experimental simulation results to calculate the plane explosion wave experimen-
tal explosive equivalent, the experimental explosive used for the black gold (RDX), its
power is about 1.5 times the TNT; experimental testing, in 24 g, 36 g black gold conditions,
the steel fiber content of 0%, 0.5%, 1%, 1.5%, 2% of the plane explosion wave load peak
pressure is shown in Table 3; pressure time curve is shown in Figure 7.

Buildings 2022, 12, x FOR PEER REVIEW 10 of 22 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Cont.



Buildings 2022, 12, 2119 9 of 19

Buildings 2022, 12, x FOR PEER REVIEW 10 of 22 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Buildings 2022, 12, x FOR PEER REVIEW 11 of 22 
 

  
(g) (h) 

  
(i) (j) 

Figure 7. Time history curve of plane explosive wave pressure: (a) 0%SFRC pressure time course 
curve under 24 g RDX; (b) 0%SFRC pressure time history curve under 36 g RDX; (c) 0.5%SFRC 
pressure time course curve under 24 g RDX; (d) 0.5%SFRC pressure time history curve under 36 g 
RDX; (e) 1%SFRC pressure time course curve under 24 g RDX; (f) 1%SFRC pressure time history 
curve under 36 g RDX; (g) 1.5%SFRC pressure time course curve under 24 g RDX; (h) 1.5%SFRC 
pressure time history curve under 36 g RDX; (i) 2%SFRC pressure time course curve under 24 g 
RDX; (j) 2%SFRC pressure time history curve under 36 g RDX. 

After testing, the SFRC compressive strengths of 24 g of black gold (RDX) detonated 
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MPa respectively. The dynamic strengthening factors are shown in Figure 8. 

Figure 7. Time history curve of plane explosive wave pressure: (a) 0%SFRC pressure time course
curve under 24 g RDX; (b) 0%SFRC pressure time history curve under 36 g RDX; (c) 0.5%SFRC
pressure time course curve under 24 g RDX; (d) 0.5%SFRC pressure time history curve under 36 g
RDX; (e) 1%SFRC pressure time course curve under 24 g RDX; (f) 1%SFRC pressure time history
curve under 36 g RDX; (g) 1.5%SFRC pressure time course curve under 24 g RDX; (h) 1.5%SFRC
pressure time history curve under 36 g RDX; (i) 2%SFRC pressure time course curve under 24 g RDX;
(j) 2%SFRC pressure time history curve under 36 g RDX.

After testing, the SFRC compressive strengths of 24 g of black gold (RDX) detonated
by detonator with steel fiber contents of 0%, 0.5%, 1%, 1.5%, 2%, respectively, are as follows:
The compressive strength of SFRC was 69.99 MPa, 76.39 MPa, 83.68 MPa, 89.48 MPa,
97.83 MPa, and 36 g of black gold (RDX).The compressive strengths of SFRC with steel
fiber content of 0%, 0.5%, 1%, 1.5%, and 2% under the action of 36 g of black sorghum
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(RDX) were 111.38 MPa, 120.34 MPa, 127.19 MPa, 127.19 Mpa, 128.73 MPa, and 139.41 MPa
respectively. The dynamic strengthening factors are shown in Figure 8.

Table 3. Experimental results of plane explosion wave of spindle specimens with different steel
fiber content.

The Content of Steel Fibers Sensor 24 g RDX 36 g RDX

0%
Sensor 1 137.3618 kN 218.5890 kN
Sensor 2 122.3219 kN 206.9213 kN

0.5%
Sensor 1 149.9283 kN 236.1744 kN
Sensor 2 138.7203 kN 216.0022 kN

1.0%
Sensor 1 164.2276 kN 249.6245 kN
Sensor 2 148.8229 kN 229.8580 kN

1.5%
Sensor 1 175.6098 kN 252.6477 kN
Sensor 2 157.6046 kN 232.7547 kN

2.0%
Sensor 1 192.0013 kN 273.5909 kN
Sensor 2 170.7523 kN 253.6979 kN
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4. Numerical Simulation of the Blast Resistance of Steel Fiber Reinforced Concrete
4.1. LS-DYNA Geometric Model

The validity and reliability of the improved failure strength surface parameter model,
damage model, and compressive dynamical enhancement factor model are simulated for
the Steel Fiber Reinforced Concrete spindle specimens under blast load. The numerical
simulations are as follows: spindle body specimens with steel fibers of 0%, 0.5%, 1%, 1.5%,
and 2%, respectively, are placed in a planar blast wave loading device with symmetric
restraints applied on their symmetry surfaces. The explosive and SFRC plates were dis-
cretized using SOLID164 unit with a discretization element size of 2 mm and a single-point
Gaussian integral Lagrangian algorithm. The SFRC spindle specimens are coupled with
*EOS_TABULATED_COMPACTION equation of state using a modified K&C material model.

In this study, the 1/4 computational model for the SFRC spindle explosion experiment
is shown in Figure 9, using the keyword (*BOUNDARY_SPC_SET) on the symmetry surface
of the model to apply surface constraints, using SOLID164 solid unit for rigid mat, SFRC
spindle specimen for unit discretization, size 2 mm, using a single-point Gaussian integral
Lagrangian algorithm, single-point integration of the display unit can be well applied to
the explosion event caused by large deformation, material failure and contact and other
high-precision nonlinear problems.
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4.2. Introduction to LS-DYNA Algorithm

Finite unit method, finite volume method and finite difference method have been
developed for medium unit. In engineering, for discontinuous media such as concrete and
fractured rocks, the algorithms developed discrete element method, finite block method,
and numerical manifold method. At this stage, the methods used for analysis using
coordinate systems are mainly arbitrary Lagrangian method, Eulerian method (ALE) and
coupled Lagrangian and Eulerian methods (CLE), as well as the smooth mass dynamics
method (SPH), which has been widely used in the field of explosion analysis in recent years.
The above methods allow simpler implementation of complex intrinsic behavior and more
accurate material damage calculations for materials under explosive loading.

4.3. K&C Material Model for Dynamic Damage of LS-DYNA Concrete

K&C material model [43–48]: the establishment of: Malvar et al. extracted independent
failure yield surfaces based on the Pseudo-Tensor model (*MAT_16), modified the cut-
off pressure values, established three fixed failure strength surfaces, modified the shear
modulus and defined the relationship between the triaxial tensile to compressive ratio
and pressure.

Yin, Huawei [49] et al. improved the Malvar model. They improved the model with
three fixed failure strength surfaces, modified the damage mechanism, which into the
SFRC’s dynamic enhancement factor model. Due to the dynamic generation of the original
K&C material model since, the strength surface parameters of ordinary concrete were
used. In the improved model, the strength surface parameters applicable to high-strength,
highly energy-absorbing concrete such as SFRC were used based on 96 sets of SFRC triaxial
compression experimental data, and this measure greatly improved the ability of the model
to express the toughness, ductility, and energy absorption of high-strength, highly energy-
absorbing concrete such as SFRC. The ability to express the mechanical behavior of the
strain-softening section is improved.

4.3.1. Improvement of Maximum Strength Surface Parameters

Malvar defined three independent failure strength surfaces using compression meridi-
ans with a maximum strength surface ∆σm, an initial yield strength surface ∆σy, and the
residual strength surface ∆σr

∆σm = a0 +
p

a1 + a2 p
(1)

∆σy = a0y +
p

a1y + a2y p
(2)
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∆σr =
p

a1 f + a2 f p
(3)

where: ai, aiy, aif (i = 0,1,2), a set of parameters obtained from the triaxial compression test
of concrete; hydrostatic pressure p = (σ1 + σ2 + σ3)/3, where σ1, σ2, σ3 are the 1st, 2nd, and
3rd principal stresses, respectively; failure strength surface deflection stress:

∆σ =

√[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
/2

It was found that the volume fraction of steel fibers has a large effect on the triaxial
compression strength of SFRC. Therefore, based on the original maximum strength surface,
Yin et al. [49] used the least two-layer method to establish a new parametric model of the
maximum strength surface based on a large amount of experimental data.

The maximum strength surface parameters a0, a1, and a2 of SFRC are given in the
following equation

a0 = (0.232 + 0.133Vf ) fc; a1 = 0.378 + 0.103Vf ;
a2 = (0.149 − 0.047Vf )/ fc;

(4)

a0y = (0.194 + 0.068Vf ) fc; a1y = 0.524 + 0.202Vf ;
a2y = (0.452 − 0.142Vf )/ fc;

(5)

a1 f = 0.347 + 0.102Vf ;
a2 f = (0.218 − 0.068Vf )/ fc;

(6)

4.3.2. Modified Damage Mechanisms

The addition of steel fibers changes the damage evolution mechanism of the original
concrete. In order to better express the excellent ductility, toughness and high energy
absorption capacity of SFRC, to improve the defect of too fast damage evolution of the
original model, and to accurately express the process of damage evolution due to plas-
tic shear strain and plastic volume strain, the damage evolution function is modified
as follows.

η(λ) =

 α
{

λ
λm

}
+ (3 − 2α)( λ

λm
)

2
+ (α − 2)( λ

λm
)

3
λ < λm

λ/λm
αc(λ/λm)αd+λ/λm

λ ≥ λm

 (7)

where α is the constant of the control strain hardening section, αc and αd are the constants
of control the strain softening section, and λm is the peak effective plastic strain, λ is the
effective plastic strain.

4.3.3. Calibration of Damage Parameters

The effective plastic strain accumulation function in the K&C material model is as
follows [50]:

λ =


εp∫
0

dεp

γ f (1+p/γ f ft)
b1

p ≥ 0

εp∫
0

dεp

γ f (1+p/γ f ft)
b2

p < 0

 (8)

where: εp is the effective plastic strain increment; γ f is the strain rate enhancement factor;
ft is the uniaxial tensile strength; b1 and b2 are the mechanical behaviors involved in
controlling the uniaxial compression and tensile softening sections, respectively.

4.3.4. Improved SFRC Dynamic Enhancement Factor Model

In this study, based on the CEB-FIP [50] compressive dynamic strengthening factor
model, the SFRC compressive dynamic strengthening factor (CDIF) model was improved
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by introducing the fiber volume fraction factor γVf and modifying the transition strain
rate, and conducting least-squares linear regression analysis for 122 experimental data sets.
(CDIF) model with the following functional relationship equation.

CDIF =


(

•
ε
•
εs

)1.026δ•
ε < εts−1

γVf

(
•
ε
•
εs

) 1+0.018Vf
3 •

ε > εts−1

 (9)

where: εt is the transition strain rate, εt = 41.087 + 7.677Vf − 0.746Vf
2; γVf is the steel fiber

volume fraction factor
γVf = 0.607 exp(−Vf /4.972) + 0.294 is the model of improved SFRC tensile dynamic

enhancement factor (TDIF)
•
εs is the reference strain rate. The relationship equation is

as follows.

TDIF =
ft,d

ft,s
=


(

•
ε
•
εs

)1.026δ•
ε < 30s−1

β

(
•
ε
•
εs

) 1
3 •
ε ≥ 30s−1

 (10)

where: ft,d is the dynamic tensile strength, ft,s is the static tensile strength, the reference

strain rate log β = 7.11δ − 2.33; fc,0 = 10MPa;
•
ε is the current strain rate,

•
ε = 3 × 10−6;

δ = 1/(10 + 6 fc/ fc,0).

4.3.5. TNT Explosive Model

The TNT explosive is modeled as a high-energy explosive material model
(*MAT_HIGH_EXPLOSIVE_BURN) with the *EOS_JWL equation of state. The material
parameters of the explosives are shown in Table 4.

Table 4. Explosive material parameters.

ρ/(g·cm−3) VD/(cm us−1) PCJ/(GPa)

1.63 0.693 27

In the table: ρ is the mass density, VD is the explosion velocity, PCJ is the Chapman-
Jouget pressure. The JWL equation of state defines the pressure as:

p = A(1 − ω

R1V
)e−R1V + B(1 − ω

R2V
)e−R2V +

ωE
V

(11)

where: p is the pressure generated by explosive products; A, B, R1, R2, ω are status
parameters; V is the specific volume; E0 is the energy density. The values of the equation of
state parameters for TNT explosives are shown in Table 5.

Table 5. TNT explosive equation of state parameter.

A/GPa B/GPa R1 R2 ω E0/GPa V0

374 3.23 4.15 0.95 0.30 7 1.0

4.3.6. Material Model for Steel Fiber Concrete

The process of compression and even damage under the action of high strain rates
such as explosive loads is very complex, the use of a reasonable and reliable material model
is essential, the general material model is mostly applicable to the experiments or low speed
or ordinary concrete, in the explosive load and other high strain rates by the action of the
SFRC material models are few and far between, this paper uses the original K&C material
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model to improve the maximum strength surface, initial strength surface, residual strength
surface and other parameter values, damage evolution function, damage scale factor, DIF
model; can better predict the dynamic response of SFRC and other high-strength concrete
components, and capture the mechanical behavior of the SFRC spindle to receive the whole
process of blast shock wave penetration; improved K&C material The main parameters of
the model are shown in Tables 6 and 7.

Table 6. Main parameters of the improved K&C material model.

ρ/(g·cm−3) fc/MPa ft/MPa lw/mm v b1

2.60 A B 24 0.19 X
b2 b3 a0/MPa−1 a1 a2/MPa−1 a0y/MPa
Y Z C D E F

a1y a2y/MPa−1 a1f a2f /MPa−1

G H I J

Table 7. Improved K&C material model parameters for steel fiber concrete.

Parameter A B C D E F G H I J

0.5% 45.26 3.017 13.510 0.430 0.003 10.319 0.625 0.008 0.425 0.004
1% 48.87 3.491 17.838 0.481 0.002 12.804 0.726 0.006 0.476 0.003

1.5% 54.27 4.170 23.418 0.533 0.001 16.064 0.827 0.004 0.527 0.002
2% 56.54 4.710 28.157 0.584 0.001 18.658 0.928 0.003 0.578 0.001

In the table: ρ is the mass density of steel fiber reinforced concrete, fC is the uniaxial
compressive strength, ft is the uniaxial tensile strength, lw is the local crack width, v is the
Poisson’s ratio, b1 is the compression damage parameter, b2 is the tensile strength Damage
parameters, b1 is the volume damage parameter, a0, a1, a2 are the maximum strength surface
parameters, a0y, a1y, a2y are the initial strength surface parameters, a1f , a2f are the residual
strength surface parameters.

4.3.7. Air Material Model

In the simulation, the air domain material model of the blast chamber in the waveguide
in the simulation uses *MAT_NULL, coupling *EOS_LINEAR_POLYNOMIAL equation of
state. This equation of state is used to define a fluid material model such as air, and requires
input parameters including: density, modulus of elasticity, Poisson’s ratio, pressure cutoff
(less than 0.0), dynamic viscosity coefficient, relative volume for dilatational erosion process
(ignored by 0), and relative volume for compressive erosion process (ignored by 0). The
coefficients C0 to C6 of the equation of state, the initial internal energy and initial relative
volume, and the air material model parameters are shown in Table 8 below.

Table 8. Air material model parameters.

ρ/(g·cm−3) C0/MPa C1 C2/GPa C3/GPa

1.29 × 10−6 −0.1 0 0 0
C4/GPa C5/GPa C6/GPa V0

40 40 0 1.0

4.3.8. The Simulation Results of SRRC Spindle Body by Explosion Shock Wave

The peak stresses (Fm) of the spindle specimens under different explosive equivalent
(D0) conditions are shown in Table 9 below.
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Table 9. Ls-dyna simulation results and experimental comparison of spindle specimens with different
steel fiber content.

Explosive
Equivalent (g)

Steel Fiber
Vf (%)

Peak Stress on
Top Surface Fm

(MPa)

Peak Top Strain
εm

Simulated
Peak Pressure

(kN)

Experimental
Peak Pressure

(kN)

Absolute
Value of Peak
Pressure Error

31.99

0.5 58.60 0.37 144.25 149.93 3.7%
1.0 69.81 0.36 171.85 164.22 4.6%
1.5 69.30 0.22 170.60 175.61 2.8%
2.0 75.41 0.25 185.64 192.00 3.3%

47.99

0.5 155.74 0.42 226.68 236.17 4.2%
1.0 175.85 0.42 243.50 249.62 2.4%
1.5 187.03 0.44 258.98 252.64 2.5%
2.0 205.00 0.50 283.87 273.69 3.7%

Due to the low controllability of the explosion test, through multiple numerical simu-
lations, the explosive equivalent required for the specimen to yield under the explosion
load was gradually approached, and after several adjustments, the steel fiber content was 0
under the action of 31.99 g and 47.99 g TNT, respectively. 0%, 0.5%, 1%, 1.5%, 2% SFRC
energy time history curve, stress time history curve, (as shown in Figure 10), the numerical
simulation of SFRC specimen under plane blast wave loading.
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5. Results and Discussion

Through the collation of experimental data; through the quasi-static experimental,
numerical simulation results of comparative analysis, steel fiber concrete has a significant
strain rate effect. This phenomenon can be explained by the fact that the main cause of
concrete damage is the appearance and development of cracks. As the blast impact velocity
increases, the number of cracks increases and the appearance of cracks requires a large
amount of energy. Due to the extremely short duration of the blast impact load, the crack
expansion rate is much smaller than the stress expansion rate. The concrete does not have
enough time to accumulate energy, so the energy can only be absorbed by increasing the
stress. This leads to an increase in dynamic strength as the strain rate increases.

Through the quasi-static experiments in Table 2 and Figure 4, the research results show
that under static loading, the mechanical properties of SFRC with the content of steel fibers
are characterized: with the increase of fiber content, the compressive strength of SFRC
increases, and the steel fiber content is 2% is about 33% higher than the steel fiber content
of 0%.And this finding proves the study of Semsi et al. [40].

Combined with Tables 2 and 3 and Figures 4 and 7, the experiments were conducted
under quasi-static loading, as well as explosive equivalent of 24 g RDX (approximately equal
to 31.99 g TNT), 36 g RDX (approximately equal to 47.99 g TNT), and comparative analysis by
plane blast wave loading; the results showed that the SFRC strain rate effect was obvious, and
the dynamic enhancement factor under the blast load of 24 g RDX loading increased with The
results showed that the SFRC strain rate effect was obvious, and the dynamic enhancement
factor was stable from 0% to 2.0% with the steel fiber content of 24 g RDX loading at about 1.6.
With the increase of explosive equivalent, the DIF value of SFRC increased with the increase
of explosive equivalent (loading rate) from 0% to 2.0% and stabilized at about 2.4 with the
steel fiber content at 36 g RDX.

Through a comprehensive analysis of the plane blast wave experimental data and
LS-DYNA numerical analysis of the two data results, under the blast load, due to the blast
impact time is very short, SFRC has more crack formation, so the steel fiber doping for the
blast impact performance, and with the increasing amount of steel fiber doping, blast impact
resistance enhanced; stress-strain curve in the Stress softening section (falling section) is
more gentle, showing that SFRC has better toughness, ductility and more excellent energy
absorption properties.

By analyzing the data from the blast side (sensor No. 1) and the support side (sensor
No. 2) of the specimen in the plane blast wave experiment (shown in Figure 7), the data
showed that the blast shock wave propagated in the specimen at a speed of about 0.02 ms;
the stress peak on the support side of the specimen was reduced by about 10% compared
with the blast side.

The experiments were conducted using a modified K&C material model and a compre-
hensive comparison between the experimental data of plane blast wave and the numerical
analysis data of LS-DYNA. The experiments verify the validity of the numerical simulation
results and further show that the improved K&C material model has better applicability,
effectiveness and high reduction in the simulation of steel fiber concrete. In contrast to
the prediction model proposed by Monjee K et al. [51], the use of conventional software
simulation has better applicability and generality.

Obviously, we need to conduct more experimental studies on steel fiber concrete blast
resistance test research in order to establish a large database for more in-depth quantitative
analysis. Secondly, a large amount of experimental data is needed to calibrate the material
parameter model. In the existing material model, there are still places such as damping,
incomplete parameters, etc. The study of a complete set of material intrinsic model will
help the research.
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6. Conclusions

The purpose of the experiment was to investigate the effect of steel fiber volume
fraction and blast loading rate on dynamic properties under blast loading. The research
and finite element analysis of this experiment are reviewed. In this paper, SFRC specimens
with different conditions were studied by using a planar blast wave device loading and
LS-DYNA software simulation for comparative analysis, they were: five groups with
different steel fiber contents (0%, 0.5%, 1.0%, 1.5% and 2.0% volume fraction) and different
explosive equivalents (24 g RDX and 36 g RDX). In this paper, the mechanical properties of
SFRC were analyzed in detail under different steel fiber content conditions and different
explosive equivalent loading, and the strain rate effect and impact properties of SFRC were
explained, and the following conclusions were drawn:

(1) With the increase of explosive equivalent (increase of strain rate), the dynamic peak
stress and corresponding strain as well as dynamic modulus of elasticity of steel fiber
concrete are increased, and the strain rate effect is obvious

(2) Under the same conditions of steel fiber content, as the explosive equivalent (blast
loading rate) increases, the strain rate effect is obvious, the peak stress is significantly
increased, and the energy absorption effect is better. For example, 2% steel fiber
concrete at 36 g RDX increased the peak pressure by 42% compared to 24 g, while also
absorbing more energy.

(3) Under the same conditions of explosive equivalent (blast loading rate), with the
increase in steel fiber content, the compressive strength of steel fiber concrete has
a small increase (15% increase in 2% steel fiber concrete compared to 0% at 36 g
RDX). At the same time, the splash phenomenon is effectively reduced and anti-blast
performance significantly improved.

(4) The dynamic response of SFRC spindle specimens loaded by planar blast wave
device was simulated by LS-DYNA software, The damage pattern of the specimen is
basically the same as the simulation results; meanwhile, the error of the simulated peak
pressure and the actual pressure are within 5%. It can show that the improved K&C
material model can accurately represent the dynamic response of SFRC subjected to
blast loading.
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