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Abstract: Multi-level shaking table tests were performed on a 1:3 reduced scale two-story reinforced
concrete (RC) intermediate moment resisting frame (IMRF) conforming to the requirements given
in the ACI-318-19. The exterior joints lacked shear reinforcement to assess the viability of the ACI
model recommended for determining the design shear strength of the beam–column joint panel. One
of the horizontal components of the 1994 Northridge earthquake accelerogram (090 CDMG Station
24278, Source: PEER strong motion database) was input to the frame for multi-level shaking table
testing. Plastic hinges developed in beams under base input motion with a maximum acceleration
equal to 0.40 g. The exterior joints incurred extensive damage under base input motion with a
maximum acceleration equal to 0.70 g. The frame achieved displacement ductility and overstrength
factors (determined as the ratio of the maximum resistance of the frame to the design base share
force) equal to 2.40 and 2.50, respectively. This gives a response modification factor equal to 6. The
satisfactory performance of the frame is attributed to the high efficiency of the beam–column joint,
which was confined by spandrel beams on two faces and the high strength of the concrete. The
inherent minimal confinement is sufficient to ensure satisfactory seismic behavior. The analysis
confirmed overstrength equal to 1.58 for joint shear strength in comparison to the design strength
determined using the ACI model. The data might serve as a reference for calibrating and validating
numerical modeling techniques for performance evaluation, which are crucial in the context of
performance-based engineering.

Keywords: joint shear capacity; overstrength; ductility factor; IMRF; reinforced concrete

1. Introduction

A ductile frame exhibits reduced lateral stiffness and increased energy dissipation
that tends to reduce seismic forces relative to forces that would occur in a linearly elastic
frame [1–3]. Therefore, such a frame can be designed for the lower seismic force given in
seismic code ASCE/SEI-7-22 [4]. It is achievable if frames are properly detailed to attain
such ductile behaviour. Therefore, the IBC-2021 [5] relies primarily on the ACI-318-19 [6]
code that lists design procedures and minimum requirements for ductile detailing. The
structural frame members are intended to resist design basis earthquake motion through
ductile response but without critical deterioration of strength.

The ASCE/SEI-7-22 permits the use of an intermediate moment-resisting frame (IMRF)
as a lateral load-resisting system for frames assigned to the seismic design category (SDC)
B and C. The code suggests it may also be permitted as part of dual systems for frames
assigned to SDC D, E, and F. In the later, the IMRF is designed for a portion of a lateral load
(e.g., 25% of total base shear) but intended to deform in congruence with the dual system.
The SDC assigned to a frame depends on the intended use and occupancy of the building
and the ground motions at the site. The IBC-2021 suggests the building should be assigned
to the more severe SDC.
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Based on the observations from past experimental tests performed on interior and
exterior beam–column sub-assemblages [7], the ACI-318-19 recommends transverse rein-
forcement in beam–column joints unless the joint is restrained on all four sides by beams.
The joint transverse reinforcement is intended to confine the joint concrete and preclude
longitudinal column bar buckling. This requirement is relieved when the beam framing
into the joint extends from the opposite face of the joint up to a length at least equal to the
beam depth [8], ensuring the extending beam/column members are properly dimensioned
and reinforced to provide effective restraints to the joint. This research discusses a field
practice in which lateral ties are not provided in the joint panel due to installation chal-
lenges, which is common in most underdeveloped countries. This research proposes to
improve the behavior of such frames by employing high-strength concrete and spandrel
beams to confine joints, and to confirm this through dynamic shaking table tests. The ACI
model that was used in the design is also examined for application to a similar problem for
structural design and verification.

The present research confirms through a series of shake-table tests performed on a
two-story IMRF that if the exterior beam–column joint is confined by appropriately de-
tailed spandrel beams on two faces and the joint concrete has compressive strength equal
to/greater than 28 MPa, the joint efficiency will improve. The frame achieved strength and
toughness sufficient to resist design basis earthquake ground motions without deterioration
of strength. One of the horizontal components of the 1994 Northridge earthquake accelero-
gram (090 CDMG Station 24278, Source: PEER strong motion database) was selected as
input motion to the frame. The selected frame was tested progressively (using a single input
motion linearly scaled to multiple hazard levels) until the joint capacity was fully exhausted
and the frame was found to be in a near collapse state. The joint efficiency was quantified
and compared with the joint shear strength obtained using the ACI model given in the
ACI-318-19 to assess the efficacy of the design strength model for the considered frame.

The ACI-318-19 suggests the exterior beam–column joints of the intermediate moment-
resisting frame should have transverse reinforcements that are distributed within the
column height equal to the beam depth. This shear reinforcement is based on the require-
ments of ACI-352R [9] and intends to prevent deterioration due to shear cracking and
buckling of longitudinal column reinforcement. The present research confirms through
shake-table tests that such stringent requirements may be relaxed especially for low-rise
intermediate moment-resisting frames when the exterior joints are confined by beams on
three faces and concrete has compressive strength equal to or more than 28 MPa. The
inherent minimal joint confinement is sufficient to ensure satisfactory seismic behavior.

2. Design of Selected Moment-Resisting Frame
2.1. Lateral Seismic Forces

The selected frame is a two-story one-bay moment-resisting frame (Figure 1). The
preliminary member sizes chosen and material properties considered for the frame are re-
ported in Table 1. The seismic base shear force V for the frame was computed in accordance
with the equivalent lateral force procedure given in the ASCE/SEI-7-22:

V = CSW. (1)

Table 1. Preliminary chosen sizes of beams and columns and basic material properties.

Member Depth
in. (mm)

Width
in. (mm)

Clear Span
in. (mm)

fc
′

ksi (MPa)
Ec

ksi (GPa)
fy

ksi (MPa)
Es

ksi (GPa)

Beams: 18 (457) 12 (305) 204 (5182) 4 (28) 3605 (24.86) 60 (414) 29,000 (200)

Columns: 12 (305) 12 (305) 138 (3505) 4 (28) 3605 (24.86) 60 (414) 29,000 (200)
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Figure 1. Selected moment-resisting reinforced concrete frame.

The value of seismic response coefficient CS depends on a number of geotechnical
parameters and seismicity of the site and the type of structural system used to resist lateral
seismic forces. Table 2 reports the values considered for the selected frame. The value of CS
was determined in accordance with the procedure given in the ASCE/SEI-7-22 (12.8.1.1).
The response modification coefficient R needs attention, as this accounts for reduction of
the design spectral response acceleration for ductile frames capable of dissipating seismic
energy through inelastic deformation in the hinging regions of members. The ASCE/SEI-
7-22 recommends taking R = 5.0 for an intermediate moment-resisting frame. Moreover,
the selected frame was assigned to SDC C and earthquake importance factor Ie was taken
as equal to 1.25. The Rayleigh method and eigenvalue analysis of the elastic frame model
provide accurate estimates of the fundamental vibration period of frames [10]; however,
the fundamental vibration period of frame T = 0.42 s was computed in accordance with the
empirical equation suggested in the ASCE/SEI-7-22 (12.8.2.1), which is based on the earlier
work of Goel and Chopra [11,12], which provides a conservative estimate of the seismic
response coefficient. The upper limit coefficient Cu was taken as 1.5 in accordance with
the ASCE/SEI-7-22 for the selected design spectral response acceleration parameter. This
results in a seismic response coefficient CS equal to 0.118, which was increased by 30 percent
(i.e., CS = 1.3 × 0.118 ≈ 0.15) in accordance with the orthogonal seismic loads combination
procedure proposed in the ASCE/SEI-7-22 (C12.5.3) based on the earlier work of Veletsos
and Newmark [13]. The design base shear force V is equal to 42.42 kN. The lateral seismic
forces Fx = [28 kN, 14 kN] for roof and first floor, respectively, were computed in accordance
with the vertical distribution factor Cvx given in ASCE/SEI (12.8.3).

Table 2. Geotechnical, seismic and structural parameters considered for the design of frame.

SDC SDS SD1 Soil Ie R Ωo Cd

C 0.5 0.2 B 1.25 5.0 3 4.5

2.2. Design of Beams

The beams were designed for flexure and shear actions in accordance with ACI-318
(18.4.2). The design of the beams was based on the demands for beam member CD, since it
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will be subjected to higher bending and shear actions. Figure 2 shows the factored design
moment Mub for combined gravity and lateral seismic forces. Positive bending moments are
plotted below the beam centroid and negative moments are plotted above the centroid. The
ACI-318-19 mention the beam should have at least two continuous longitudinal bars at both
top and bottom faces. For this reason, and to simplify the construction of the test frame,
three longitudinal steel bars of 19 mm were selected for both top/bottom faces of the beam.
The nominal moment strength Mnb of the selected doubly reinforced beam section was
calculated through an iterative procedure as described by Wight [14]. For the properties of
the material given in Table 1, a value of Mnb = 133 kN·m and the reduced nominal moment
strength φMnb equal to 120 kN·m were determined. The demand-to-capacity ratio of the
selected beam is 0.85 which gives a flexural overstrength equal to 1.17. This indicates the
appropriateness of the selected tension reinforcement for the top face of the beam. Under
lateral seismic load reversal, the reinforcement in the bottom face of the beam will develop
similar flexural strength in tension.
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The factored shear force was computed in accordance with the ACI-318-19 (18.4.2.3)
which suggests two procedures for determining shear: a) based on the free body diagram
and assuming that nominal moment strengths (taking φ = 1) are developed at both ends of
the beam, and (b) analyzing the frame for lateral seismic forces including the earthquake
effects doubled, i.e., 2E. For the present case, procedure (a) gives value 7% higher than
procedure (b). Figure 3 shows the considered factored design shear Vub for combined
gravity and lateral seismic forces.

The nominal shear strength Vnb was calculated in accordance with the ACI-318-19
(22.5.1) for one-way shear. In comparison with the classical model for the shear strength
of concrete Vcb [15], the updated models now include the effects of member depth and
the longitudinal reinforcement ratio on shear strength [16,17]. This is due to the fact that
the beams with increased depth and reduced area of longitudinal reinforcement exhibit
lower shear stress at failure [18–21]. The updated model gives a value equal to 48.26 kN for
reduced nominal shear strength of concrete φVcb. This is 31% less than the previous simple
model [16]. The shear reinforcement was computed in accordance with the ACI-318-19
(22.5.8.5.3). In present case, 9.53 mm double-leg stirrups were used as shear reinforcement,
taking the longitudinal spacing s of the shear reinforcement as equal to 76 mm. The demand-
to-capacity ratio computed for shear reinforcement is 0.55. The section still maintains a
demand-to-capacity ratio equal to 0.72, even if the concrete component is ignored. This
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gives shear overstrength equal to 1.40. Moreover, the appropriateness of the selected
cross-sectional dimensions was also checked in accordance with the ACI-318-19 (22.5.1.2),
which gives a demand-to-capacity ratio of 0.42, indicating the efficacy of the selected sizes
of beam cross-sections. The designed shear reinforcement also conforms to the provisions
of the ACI-318-19 (18.4.2.4).
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2.3. Design of Columns

The beams of the frame are designed as yielding members while columns and beam–
column joints are capacity-protected through appropriate dimensions and detailing. This is
intended to ensure a strong-column and weak-beam lateral load-resisting frame for seismic
energy dissipation without compromising the stability of the frame [22]. However, the
additional requirement of the ACI-318-19 (18.7.3.2) that recommends flexural strengths
of the special moment resisting columns should satisfy the criteria ∑ Mnc ≥ (6/5)∑ Mnb
is compromised for intermediate moment-resisting frames; the factor (6/5) is equal to 1.
Therefore, factored moments Muc for columns were computed for the combined gravity
and lateral seismic forces (Figure 4). The design of the columns was based on the member
BD, since ground story columns are subjected to higher combined actions (moment, axial,
shear, and story-drift). The column design moments were further increased to take into
account the flexural overstrength of the beam (i.e., 1.17). Values of 64 kN·m and 196 kN
were obtained for design moment Muc and the corresponding axial force Puc, respectively.

The selected columns were assumed as having eight 19 mm longitudinal bars. Like-
wise, the nominal moment strength Mnc of the selected column section was calculated
through an iterative procedure as described by Wight [14]. For the properties of the material
given in Table 1, values of Mnc = 81 kN·m and the reduced nominal moment strength φMnc
equal to 73 kN·m were determined for the tension-controlled section with pre-compression
Puc. The demand-to-capacity ratio of the selected column is 0.87 which gives a flexural
overstrength equal to 1.15. This indicates the appropriateness of the selected reinforcement
for the column section.
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The factored shear force for the column was computed in accordance with the ACI-318-
19 (18.4.3.1) which suggests procedures given in the ACI-318-19 (18.4.2.3) for beam shear.
However, the earthquake effect E is increased by an overstrength factor Ωo equal to 3.0.
Figure 5 shows the factored design shear force for columns. Likewise, the nominal shear
strength Vnc was calculated in accordance with the ACI-318-19 (22.5.1). Similarly, 9.53 mm
double-leg stirrups were used as shear reinforcement of columns taking the longitudinal
spacing s equal to 76 mm. The demand-to-capacity ratio computed for shear reinforcement
is equal to 0.33, and it is equal to 0.40 if the concrete component is ignored. This gives
shear overstrength equal to 2.50 and confirms the appropriateness of the selected shear
reinforcement.
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2.4. Design of Beam–column Joints

The beam–column joints of the test frame were confined on all three faces: a main
beam resisting in-plane loads and two transverse beams of similar sizes and reinforcement.
The design of joint C is discussed. The joint shear Vu,joint was computed in accordance with
the ACI-318-19 (18.4.4.7.1). This requires horizontal shear force on a plane at mid-height of
the joint Vu,joint to be calculated using Equations (2) and (3), as described by Wight [14]:

Vu,joint = Tpr −Vcol (2)

Tpr = αAS fy. (3)

Moreover, the ACI-318-19 suggests using tensile and compressive beam forces and
column shear consistent with beam nominal moment strength Mnb. Therefore, parameter α
is equal to 1.0. The tensile force Tpr is equal to 356 kN. For Mnb = 9133 kN-m, Vcol is equal
to 311 kN. The nominal joint shear strength Vn,joint was computed in accordance with the
ACI-318-19 (18.8.4.3) using Equation (4):

Vn,joint = 15λ
√

f ′c Aj. (4)

The modification factor λ is equal to 1.0 for normal concrete. The joint area Aj is taken
as equal to 92,903 mm2. The value of Vn,joint is found equal to 610 kN. This gives nominal
joint shear strength φVn,joint equal to 366 kN. The demand-to-capacity ratio was found
equal to 0.86, indicating joint shear overstrength equal to 1.17 for design base actions. This
shows the efficacy of the considered joint laterally supported by beams on three faces and
the high compressive strength of concrete. In the present research, the shake-table tests will
also confirm the efficiency of the considered joint. Figure 6 shows the reinforcement details
of the selected beam/column members and beam–column joint panels for test frames.
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3. Shake-Table Tests on Selected Frame

Figure 7 shows the 1:3 reduced-scale test frame prepared using the similitude require-
ments for a simple model. The linear dimensions of beam/column members, slab, and
diameter of reinforcement were reduced by a scale factor SL = 3. The concrete used con-
stituents in a mix proportion as 1:1.68:1.72 (cement: sand: aggregate) with water-to-cement
weight equal to 0.48, in order to achieve the required compressive strength of concrete. The
test frame model was also provisioned with additional floor mass Mmf in accordance with
the similitude requirements for dynamic seismic analysis of the model, as described in
Moncarz and Krawinkler [23]:

Mr =
Mp

Mm
= S2

L (5)

Mm f =
Mp1

S2
L
−Mm0. (6)Buildings 2022, 12, x FOR PEER REVIEW 9 of 20 
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Figure 7. A 1:3 reduced scale test frame.

An additional floor mass equal to 5.90 kN was applied on each floor using steel blocks
of 300 kg on each side of the main beam. The weights were placed outside the effective
width of beam. Two displacement string pots and two accelerometers were mounted at the
mid-height of the slab at each floor level on transverse beams, in order to measure response
histories of floor displacements and floor accelerations. One string pot and accelerometer
were also mounted at the base of the model to measure the actual input base motions.

The acceleration time history of 1994 Northridge Mw 6.7 earthquake was selected for
input base motion. This was recorded at the Castaic Old Ridge RT, 090 CDMG Station
24278, having the closest distance of 22.60 km to fault rupture. Figure 8 shows the design
response spectrum for parameters given in Table 2 and the scaled acceleration response
spectrum of the selected accelerogram. The scaling is performed by linearly matching the
spectral accelerations of accelerogram and the design spectrum at the fundamental time
period of frame (T = 0.42 s). Moreover, the accelerogram was time-compressed by a factor
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of SL
1/2 = 31/2 to satisfy the similitude requirement [24] for the base input motion of 1:3

reduced scale test frame.
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Table 3 reports the values of measured sustained maximum accelerations (the value of
the acceleration which is reached or exceeded at least three times) at the base of models for
a series of test runs. The observed damages in each test are also reported in Table 3 and
shown in Figures 9–11. The test frame exhibited horizontal and vertical flexural cracks at
the beam–joint interface, which were aggravated with the increasing amplitude of base
motions. The beam–column joint panels incurred extensive damages under base motions
with a sustained maximum acceleration equal to 0.70 g.

Table 3. Measured sustained maximum acceleration of base motions of the test frame.

Test Runs PHA * (g) Remarks

1 0.20 -

2 0.40 Horizontal and vertical flexural cracks at the
beam–joint interface.

3 0.45
Aggravation of horizontal flexural cracks at the

beam ends. Occurrence of slight cracks in
beam–column joints

4 0.70 Extensive damages occurred at the beam–column
joint panels on both floor levels.

* Peak horizontal acceleration.
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4. Seismic Design Factors for Selected Frame
4.1. Overstrength Factor

The beam/column members of the selected frame were designed with capacities
greater than the design forces. It is most likely the actual material strength is higher than
the nominal strength specified in the design. Moreover, the test frame also comprised
the slab that acts monolithically with the beam. These sources are likely to increase the
actual maximum lateral strength (Vmax) of the frame in comparison to the design lateral
strength (V). The ratio of the Vmax to V is referred to as the overstrength factor Ωo. The
ASCE/SEI-7-22 suggests Ωo equal to 3 for IMRF.

The measured response histories of floor accelerations and displacements for all test
runs were processed to compute the relative displacement of the roof and the corresponding
base shear force for the prototype of the test frame. The first three runs were analyzed
to develop a force-displacement capacity curve for the prototype of the tested frame
(Figure 12). The capacity curve exhibits a hardening response in the post-yield state. The
ASCE/SEI 7-22(12.12) suggests the allowable story drift of 0.020 hsx for the selected frame
that was considered as the maximum drift for computing the peak base shear force. A
value equal to 106 kN is obtained. This gives an overstrength factor equal to 2.50, which is
20% less than the value suggested by the ASCE/SEI-7-22 for the selected frame.
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Figure 13 shows the considered plastic mechanism of the selected frame for the
analytical prediction of peak base shear force. The virtual work method was used to
compute Vmax using Equations (7) and (8):

Wve = Wvi (7)

0.835Vmax = θ
(

4Mpb + 2Mpc

)
(8)
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Figure 13. Considered plastic mechanism of the selected frame.

For Mpb = 133 kN·m, Mpc = 81 kN·m, θ = 1/24 rad (1/7.315 rad) and Vmax equal to
113.62 kN is obtained. This gives an overstrength factor equal to 2.68, which is approxi-
mately 11% less than the value suggested by the ASCE/SEI-7-22 and 7.20% higher than
the value obtained using the experimental force-displacement curve. This confirms the
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efficacy of the simplified analytical method for computing the peak base shear force at the
maximum permissible drift.

4.2. Ductility Factor

The ductility factor of a frame is a measure of its global nonlinear response, which
is related to the global displacement ductility of the frame [25]. The global effective yield
displacement ∆y was obtained using the FEMA-P695 procedure [26]. Considering the
allowable story drift of 0.020 hsx as the maximum permissible drift, the displacement
ductility ratio µ was found equal to 2.40 (µ = ∆max/∆y ≈ 2.40). The bi-linearized capacity
curve gives a yield vibration period Ty of frame equal to 0.72 s for the first mode of vibration
assuming linear deflected shape, which is greater than 0.50 s. Thus, the ductility factor Rµ

is taken as equal to the displacement ductility ratio, i.e., Rµ = µ = 2.40 in accordance with
the suggestion of Newmark and Hall [25].

Alternatively, the effective yield displacement was computed in accordance with the
suggestion of Priestley et al. [27] in order to assess the efficacy of the simplified analytical
prediction. The yield drift of a story for the reinforced concrete frame is computed using
Equation (9):

θy = 0.5εy
Lb
hb

. (9)

For εy = 0.0021, Lb = 5486 mm and hb = 457 mm, the yield drift is equal to 1.24. It
is sufficiently accurate to approximate the global effective yield drift of the frame equal
to story drift for a linear deflected frame shape under lateral seismic forces. This gives a
displacement ductility ratio equal to 1.61, which is 33% less than the ductility ratio obtained
based on the experimental global nonlinear response curve. This significant difference is
due to the fact that the analytical model given in Equation (9) is based on the response of
beam–column connection sub-assemblages that did not include the slab. Nevertheless, this
analytical model is conservative for design purposes.

4.3. Response Modification Coefficient

This factor is used to calculate the seismic response coefficient required for the deter-
mination of seismic base shear using the equivalent lateral force procedure given in the
ASCE 7-16 for seismic design of frame. For a frame, the response modification coefficient R
is described as the product of the overstrength factor Ωo and the ductility factor Rµ, i.e.,
R = Ωo × Rµ. The experimental data gives R equal to 6.0 (R = 2.50 × 2.40 = 6.0), which is
20% higher than the value suggested in the ASCE 7-22 for the selected frame (i.e., R = 5).
This increase is due to the higher ductility capacity of the tested frame.

The analytical predictions based on the virtual work method for computation of peak
base shear and the empirical formula suggested by Priestley et al. for computation of
effective yield displacement gives R equal to 4.31 (R = 2.68 × 1.61 = 4.31), which is 28%
less in comparison to the R factor obtained using the experimental data. The analytically
computed R factor (i.e., 4.31) is approximately 14% less than the value suggested in the
ASCE 7-22. This confirms that simplified analytical models give a conservative value for
the response modification coefficient.

5. Assessment of Beam–Column Joint
5.1. Efficiency of Beam–Column Joint

The efficiency of a joint is the measure of its reserve strength. For a connection, this is
computed as the ratio of the force causing the failure of the joint to the force corresponding
to the moment capacity of the yielding beam entering the joint. For a global frame, the
efficiency of the considered beam–column joint, which is laterally supported by beams
on three faces, was determined by computing the ratio of the base shear force causing
failure of the joint Vf to the base shear force (Vmax) developed at the maximum permissible
drift under design base earthquake (Figure 14). The efficiency of joint is equal to 1.56 or
156%. The measured efficiency is significantly higher than the values reported for typical
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corner joints subjected to bending causing the opening of the joint [28,29]. This is due to
the fact that the considered beam–column joint was laterally supported by beams on two
faces in addition to the in-plane beam entering the joint. Moreover, the corresponding roof
deflection capacity determined is equal to 4.70%, which is 135% higher than the maximum
permissible drift under design base earthquake. Considering the maximum considered
earthquake (MCE) ground motions equal to 3/2 times of the design base earthquake
(DBE) ground motions, the measured roof drift capacity is 57% higher than the permissible
drift under MCE ground motions. This confirms the sufficient reserve strength and high
efficiency of the beam–column joint confined by beams on three faces (Figure 6), despite it
lacks shear reinforcement.
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Figure 14. Complete capacity curve for prototype of tested frame till beam–column joints were
extensively damaged.

5.2. Shear Strength of Beam–Column Joint

Joint C of the frame was analyzed for determination of joint shear strength. For test
run 4, from the forces [108 kN, 54 kN] for roof and first floor, respectively, the corresponding
story shear forces VS = [54 kN, 81 kN] were obtained for column CE and AC, respectively.
This gives bending moments at the joint Mc = [98 kN-m, 147 kN-m] for column CE (at
the base end) and column AC (at the top end), respectively. The point of contraflexure is
assumed as the mid-height of the column for computing moments at the column end. The
equilibrium of bending moments at the joint will require the bending moment in the beam
equal to 246 kN-m. This gives flexural overstrength of beam equal to 1.85 in comparison
to nominal bending moment capacity of beam. This increase is attributed to the material
overstrength and slab contribution to flexural strength of beam, as suggested earlier by
French and Moehle [30], and recently reported [31]. This develops a maximum tension
force Tpr,max in the joint equal to 658 kN. The corresponding maximum joint shear force
Vu,joint,max was found equal to 577 kN using Equation (2) and the experimentally obtained
story shear and joint tensile force. This gives overstrength equal to 1.58 for joint shear
strength in comparison to nominal shear strength determined in accordance with the ACI-
318-19 (18.8.4.3). This confirms the efficacy of the considered beam–column joint (Figure 6)
of the selected frame despite its lack of shear reinforcement. However, concrete must have
a compressive strength equal to or more than 28 MPa for such satisfactory behavior.

6. Discussions

The damages observed in reinforced concrete frames reported following earthquakes [32]
highlight the urgent need for seismic performance evaluations of current structures and
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infrastructures, as well as the development of some cost-effective upgrade strategies for
future designs. To aid in joint shear transfer, current seismic standards require significant
amounts of transverse reinforcement to be provided in beam–column joints of reinforced
concrete frames. However, the standards do not offer the necessary information to deter-
mine the strength and deformation capacity of frames lacking transverse reinforcement in
beam–column joints. Because frame constructions in developing countries are almost typi-
cally built without special joint reinforcement, there is an urgent need for viable techniques
to improve seismic resistance of RC frames, particularly low-rise when the axial load on
the column is less.

The use of spandrel beams to confine the beam–column joint and the use of high-
strength concrete (compressive strength ≥ 28 MPa) allow for improved construction of
the IMRF with weaker beam–column joints. The present ACI strength model, which is
dependent on the connection’s configuration and the compressive strength of joint core
concrete, served as an inspiration for the envisaged improvement strategy. This was
validated for a low-rise two-story frame that was designed using the analytical force-based
seismic procedure given in the code and conforms to the earthquake-resistant design
concept described in the recent standards. The frame’s satisfactory seismic performance
is verified through a series of dynamic shaking table tests performed on a 1:3 reduced
scale frame. The results indicated that the joint shear capacity has a sufficient overstrength,
which is ascribed to the geometry of the connection (joint confined on all three faces) and
material overstrength.

To assist practicing engineers, simplified analytical methods are employed to deter-
mine the force-deformation response of the selected IMRF, which is critically compared to
the experimental response. The formulae and procedures are judged to be promising; how-
ever, where adjustments to the formulae are required, they are emphasized. Suggestions
are presented for analytical approaches to estimating available seismic force-deformation
capacity. Based on the results of the experimental program, analytical approaches for
analyzing frame resistance are validated, giving better predictions of performance than the
ACI model.

Because the design ensured a beam-sway mechanism under the design level input
motions, a caution for numerical modeling technique [33] is to consider material/section
overstrength for beam/column members, as the beam provided enough hardening to cause
significant damage to the joint panel at large deformation demand. The development of
severe damage in the joint core confirms hardening in the joint force-deformation behavior,
which is critical for joint nonlinear modeling [34].

7. Conclusions

Based on the preliminary design of the selected frame, the following conclusions
are drawn:

1. The analysis of the beam indicates overstrength equal to 1.17 for flexural strength and
1.40 for shear strength. The corresponding flexural and shear overstrength obtained
for columns are 1.15 and 2.50, respectively;

2. The factored shear force computed in accordance with the ACI-318-19 provisions
18.4.2.3 (a) and 18.4.2.3 (b) gives roughly similar shear force, with the procedure (a)
giving relatively high shear force by 7% in comparison to procedure (b);

3. The updated model for the shear strength of concrete included in ACI-318-19 gives a
strength 31% less than the previous simple model;

4. The analytical model gives overstrength equal to 1.17 for the shear capacity of the
joint for design base action. This confirms the efficacy of the joint laterally supported
by beams on three faces despite its lack of shear reinforcement. However, it must be
ensured that the concrete has compressive strength equal to or more than 28 MPa.

Based on the observed seismic performance of the selected moment-resisting frame
under series of shake-table tests, the following conclusions are drawn:
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1. The selected frame exhibited flexural mechanism in beams under base motions with
sustained maximum acceleration up to 0.40 g. Only a few slight cracks were de-
veloped in beam–column joints under base motions with a sustained maximum
acceleration equal to 0.45 g. The joints incurred extensive damage under base motion
with sustained maximum acceleration of 0.70 g;

2. The selected frame achieved an overstrength factor equal to 2.50, which is 20% less
than the value suggested by the ASCE/SEI-7-22. The ductility factor determined is
equal to 2.40, which is 44% higher than the ductility factor inherently available in the
response modification coefficient suggested by the ASCE/SEI-7-22 for the selected
frame. This gives a response modification coefficient equal to 6.0, which is 20% higher
than the value suggested by the ASCE/SEI-7-22;

3. The available analytical model for yield drifts provided an estimate of the ductility
factor 33% less than the experimental value. This is due to the fact that such models
are based on the response of beam–column connection sub-assemblages lacking
slab effects;

4. The virtual work method based on the presumed beam-sway plastic mechanism
predicted the peak base shear of the selected frame at roof drift of 2% with sufficient
accuracy; it was slightly overestimated by 7%. However, this method underestimated
the maximum resistance of the frame at the roof drift of 4.20% by 31%. This is due to
the fact that the method ignored the material overstrength and slab contribution to
flexural strength. Re-calculating Vmax using Equation (8) and amplifying the bending
moment capacity of the beam by flexural overstrength of 1.85 gives Vmax equal to
188 kN. This is approximately 14% higher than the experimentally observed maximum
resistance of 165 kN;

5. The efficiency of joint that defines the ratio of force causing failure of the joint to
the force developed in the frame at the maximum permissible drift is equal to 1.56
(or 156%). This measured efficiency is significantly higher than the values reported
previously [28,29]. This increase is attributed to the material overstrength and the
fact that the joint was confined by beams on three faces and the concrete strength is
28 MPa;

6. Analysis of beam–column joints based on the experimental response at the roof drift
equal to 4.70% gives overstrength equal to 1.58 for joint shear strength in comparison to
nominal shear strength determined in accordance with the ACI-318-19 (18.8.4.3). The
measured high overstrength confirms the efficacy of the beam–column joint confined
by beams on three faces despite the fact it lacks shear reinforcement. However, it is a
must to use concrete that has compressive strength equal to or more than 28 MPa. The
inherent minimal confinement is sufficient to ensure satisfactory seismic behavior.
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Notation
Aj joint area
AS area of longitudinal steel reinforcement in tension
Cd deflection amplification factor
CS seismic response coefficient
Cu coefficient for upper limit on fundamental time period, 1.5 for SD1 equal to 0.20
Cvx Vertical distribution factor
E effect of earthquake-induced forces
Ec Young’s modulus of concrete
Es Young’s modulus of steel
Fx lateral seismic design forces at level x
Fx, f lateral seismic forces at level x at lateral force causing failure of the joint
f ′c compressive strength of concrete
fy yield strength of steel
g acceleration due to gravity equal to 32.17 ft/s2 (9.81 m/s2)
hb depth of beam
hsx story height below level x
Ie earthquake importance factor based on the use and occupancy of the frame
Lb length of beam
Mm0 floor mass of test model
Mm f additional floor mass for test model
Mn nominal moment strength

Mnb
the sum of the nominal flexural strengths of the beams that framing into the joint
and measured at the faces of the joint

Mnc
the sum of the nominal flexural strengths of the columns that framing into the joint
and measured at the faces of the joint

Mp1 floor mass of prototype of test model
Mpb plastic moment of beam section
Mpc plastic moment of column section
Mr prototype-to-model mass ratio
Mu factored design moment
Pu factored axial load
R response modification coefficient
Rµ ductility factor
SDS design spectral response acceleration parameter in the short period range
SD1 design spectral response acceleration parameter for structural period equal to 1.0 s
SL scale factor
s center-to-center spacing of transverse reinforcements (ties)
T fundamental period of the frame
Tpr tensile force in longitudinal reinforcement of beam in tension
V design lateral strength, design base shear force
Vc shear strength of concrete
Vcol column shear force
Vf peak lateral force causing failure of the joint
Vmax maximum lateral strength, up to permissible maximum design drift
Vn nominal shear strength
VS story shear force
Vu factored shear force
Vn,joint nominal shear strength of joint
Vu,joint factored shear strength of joint
W effective seismic weight of frame
Wve virtual external work
Wvi virtual internal work
∆y effective yield displacement
∆max maximum displacement corresponding to maximum permissible design drift
εy strain of steel corresponding to yield stress
µ displacement ductility ratio
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Ωo overstrength factor
φ strength reduction factor
θ story drift
θy effective yield drift
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