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Abstract: The high yielding strength of advanced high-strength steel (AHSS) provides great oppor-
tunities for cold-formed steel (CFS) members with much higher load-carrying capability. However,
if manufactured into the traditional cross-section shapes, such as C and Z, the material advantage
cannot be fully exploited due to the cross-section instabilities. The purpose of this study was to
establish a shape optimization method for cold-formed sections with AHSS and explore the poten-
tially material efficiency that AHSS could provide to these sections in terms of their axial strength.
In this study, the insights provided from the elastic buckling analysis and nonlinear finite element
(FE) simulations of a set of traditional CFS sections were employed to determine the appropriate
section size and length for optimization. Then, the optimization method was established using the
particle swarm optimization (PSO) algorithm with the integration of computational analysis through
CUFSM and the design approach (i.e., the direct strength method, DSM). The objective function is the
maximum axial strength of the CFS sections manufactured with AHSS using the same amount of
material (i.e., the same cross-section area). Finally, the optimal sections were simulated and verified
by FE analysis, and the characteristics of the optimal cross-sections were analyzed. Overall, the
optimization method in this paper achieved good optimization results with greatly improved axial
strength capacity from the optimal sections.

Keywords: advanced high strength steels; direct strength method; mode identification; particle
swarm optimization; cross-section optimization

1. Introduction

Cold-formed steel (CFS) structures [1] are widely used structural systems due to the
material’s high strength and light weight. In addition, benefiting from the widespread use
of pre-fabricated structures [2–7], the use of cold-formed steel structures has expanded into
a wide range of applications. Expanded research on building thermal insulation [8] and
fire protection [9] can also be found for cold-formed steel structures. However, improving
the load-bearing capacity of CFS members is still a key objective for high-performance CFS
structures [10–14]. Benefiting from the research and development progress of advanced
high-strength steel (AHSS) [15,16] in recent years, cold-formed steel structures have entered
a new era in terms of material selection. The third-generation AHSS, e.g., Q&P1180
material [17], has great yield strength along with good ductility [18], and is thus an excellent
choice for construction applications. Therefore, exploring the applications of AHSS in
structures, such as CFS structural systems, has generated numerous research interest.

Cold-formed steel sections are usually open cross-sections, such as C-shape and Z-
shape [19–21]. Due to their high yielding strength, the load-carrying capacities of these con-
ventional cross-section shapes fabricated from AHSS are higher than those made from conven-
tional steel, such as Q235/355 [22], which has a nominal yield strength of 235/355 MPa. How-
ever, the high yielding strength also amplifies the cross-sectional slenderness, which renders
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a lower material efficiency if fabricated into these conventional shapes. Thus, significant oppor-
tunities exist for shape optimization to take advantage of the high
material strength.

Furthermore, shape optimization has been a popular research topic for cold-formed
steel sections due to their manufacturing convenience. Researchers previously focused
on the optimization of conventional shapes, such as C and Z shapes, using the effective
width method (EWM) [23,24]. Although the optimization scope was further expanded to
other shapes and loading conditions, such as those in [25–28], these studies were generally
subjected to the limitation of EWM, namely, that it is not applicable to more complex
geometries. Later, the direct strength method (DSM) [29] opened the door for optimization
of more complex sections, particularly when integrated with a numerical implementation
of DSM [30–38]. Liu et al. [30] proposed a knowledge-based overall optimization of cold-
formed steel columns and proved that it is highly suitable for the design of cold-formed
steel members. Leng et al. demonstrated the application of the shape-optimization tools
in maximizing the compressive strength of the open cold-formed steel cross-section [31],
and created practical and economical cross-sections, whose strength was more than 50%
greater than the section strength before optimization [32]. Moharrami et al. [33] calculated
the compressive strength of the section by combining the finite strip method with the
direct strength method, and found the best folding of the open cold-formed steel sections
under compression through genetic algorithm and gradient descent optimization. The
results show that optimal cross-sections are more than 3 times stronger than that before
optimization in many cases. Ye et al. [34] calculated the bending strength of the section
by the effective width method, and verified the bending strength by the nonlinear finite
element. The optimized section was obtained by the particle swarm optimization method,
and its bending strength was 57% higher than the standard optimized shape. While
these focused on individual members under single load actions, Li et al. [35] and Auchrin
et al. [36] developed a two-level optimization strategy for a family of optimal sections
under both axial and bending actions. It was found that 12 sections have the same or
better performance than the sections being sold in the American market, and the optimized
sections are smaller than the 186 sections available in the market. Gatheeshgar et al. [37]
used the particle swarm optimization algorithm combined with the finite element method
to obtain the optimized section, and its bending bearing capacity increased by 30–65%.
Note that the studies listed here are not comprehensive; please refer to the review of the
most recent optimization efforts in CFS sections in [38].

However, for AHSS CFS sections, the optimization studies are limited, partially due
the fact that there are almost no official design specifications to particularly address the
complex behaviors of AHSS CFS members [39,40]. Current design specifications, such as
DSM, were calibrated based on conventional steel grades. Extension to higher grade, such
as AHSS grades, needs validation through experimental studies. Moreover, due to the
high yielding strength, the AHSS CFS members in general tend to have more interactive
behaviors among their buckling modes, such as local–distortional, local–global, distortional–
global, or even local–distortional–global interactions [40]. The current DSM only considers
local–global interaction, but consideration of other interactions is needed for AHSS CFS
members. Recent studies have demonstrated some validation of the current DSM for AHSS
CFS members, while certain aspects need to be fine-tuned, such as the local–distortional
interaction [40].

In this study, an optimization scheme was proposed for free-form shape optimization
of CFS sections using AHSS to identify sections that can maximize the material efficiency.
The member length was selected as 600 mm with loading as the axial compression. Modal
analysis was conducted on a set of commonly used C-sections using AHSS, which highlights
the peculiarity of the failure modes at this member length. The objective function was
constrained to a fixed amount of material (i.e., same cross-section area). For efficiency of
the optimization, the strength evaluation adopted a numerical implementation of the DSM
method due to its current drawbacks, as mentioned previously. Note that the numerical
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implementation here refers in particular to using CUFSM [41] to calculate the elastic
buckling strengths needed for DSM. To validate the optimization results, the nonlinear
finite element simulations of these optimal sections were modeled and analyzed to validate
their strengths. The optimization algorithm uses a stochastic search algorithm—particle
swarm optimization (PSO) [42].

2. Modal analysis and Member Selection
2.1. Elastic Buckling Analysis and Nonlinear Shell FE Models

The modal analyses of the CFS members were performed both on the elastic buckling
solutions and the nonlinear shell FE solutions. The elastic buckling analysis was con-
ducted through the CUFSM using the modal identification of the constrained finite strip
method [43]. For the nonlinear shell FE solutions, the computational model was established
using the commercial finite element package ABAQUS. Several key modeling parameters
are summarized here:

- Material model: based on the coupon test as shown in Figure 1 of the Q&P1180 AHSS
material. The yield strength fy is 1079 MPa, and the Young’s modulus E is 203 GPa.

- Element type: S4R, which is a general-purpose type of shell element that has four
nodes (linear formulation) with reduced integration.

- Mesh size: about 10 mm × 15 mm, resulting in a fine mesh. The lip has slightly finer mesh,
such as 5 mm × 15 mm. Mesh sensitivity studies were conducted to determine this mesh
size, which ensures a reasonable accuracy while balancing computational costs.

- Boundary conditions: globally pinned but warping fixed. Centroid RP-1 and RP-2 are
defined as the reference points for end sections. The boundary conditions listed in
Figure 2 were applied through the reference points.

- Solution scheme: Rik’s method in ABAQUS; the way of convergence judgment follows
the traditional theory [44].

- Geometric imperfections: The initial imperfections are defined according to the one-
dimensional spectrum method [45]. For the five initial imperfections in the one-dimensional
spectrum method illustrated in Figure 3, based on the existing test results [46], the follow-
ing amplitudes are adopted: overall buckling imperfection δG,1 = L/2909, δG,2 = L/4010,
θG,3 = 0.3 × L/1000; local buckling imperfections δL = 0.75 × t; distortion buckling imper-
fection δL = 0.31 × t; where L is the member length and t is the cross-section thickness.

- Residual stress: this effect was ignored in the model [47].

Two of the experimental results in [10] was utilized to validate these modeling pa-
rameters. Tests in [10] are for conventional steel grade. In [10], the simulation result of
the No. 20 medium long column is 63.46 kN against the test result of 63.79 kN, and the
simulation result of the No. 18 long column is 48.35 kN against a test result of 49.18 kN.
These validated the reliability of the modeling parameters. Hence, with the tested AHSS
materials, the same set of modeling parameters were employed in the study.
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2.2. Modal Analysis

In this study, a typical C cross-section in the CN Code GB50018 was taken as an
example, and the elastic buckling mode analysis as shown in Figure 4 was carried out by
CUFSM. The modal identification results indicate the participation of the modes. At the
local minimum (i.e., 1st local minimum), 96.9% participation is from the local buckling
mode and the critical load at here is the lowest (compared to the 2nd local minimum:
distortional buckling mode).

Then, using the modal identification developed by Li et al. [49] the mode participation
along the load response curve as shown in Figure 5 could also be identified. The participa-
tions are plotted in Figures 6–9 (for one section with different member lengths as examples).
Three participation values are highlighted in particular: elastic critical point, at peak, and
ultimate point, as labeled in Figure 5.
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It can be seen from Figures 6–9 that the members with No.1 cross-section have complex
mode interaction. For longer members, i.e., 900 and 1200 mm, the failure at peak is
dominated by the global mode (very high global participation). Alternatively, for short
members such as that of 300 mm, the failure is dominated by local buckling. With a member
length of 600 mm, the strong mode interaction along all three modes can be observed and
possesses interesting behavior for AHSS sections, due to the high yielding strength, which
allows more mode interaction to develop. Hence, the optimization in the study will focus
on a member length of 600 mm to allow this interesting phenomenon to happen.
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2.3. Limiting Factors of Axial Load Capacity

According to the classic formula of DSM [29], when the yield strength fy increases, the
slenderness λi (i = g, d, l) of the member will increase, making the corresponding nominal
load bearing capacity of each mode decrease, as shown in Equation (1), where Pcrg is the
elastic critical load corresponding to the global buckling mode, Pcrl is the elastic critical load
corresponding to the local buckling mode, and Pcrd is the elastic critical load corresponding
to the distortional buckling mode; Py = Afy is the bearing capacity of the non-weakened
member, and Png, Pnl, and Pnd correspond to the nominal bearing capacity of the three basic
modes (global, local, and distortion, respectively) of the member.

Png
Py

= h(λg) ∼ λ−2
g ≤ 1

Pnd
Py

= h(λd) ∼ λ−1.2
d ≤ 1

Pnl
Py

= h(λl) ∼ λ−1
l ≤ 1

where : λg =

√
Py

Pcrg
, λl =

√
Png
Pcrl

, λd =
√

Py
Pcrd

(1)

Although the DSM has not been validated for AHSS sections, the approximate application
can still provide significant insight into the material efficiency. Take the member length as
600 mm as selected in Section 2.2. Varying the material’s yielding strength with the section
in Figure 10, the nominal axial strength of the section (local, distortional, and global) from
the DSM is shown. With the increase in the yielding strength, the axial load strength does
not proportionally increase. The axial load strength is greatly limited by the local buckling
strength Pnl. Moreover, for this case, the distortional buckling strength is also low and might
be controlling for some sections. This indicates the traditional cross-section shape, such as this
C-shape, cannot fully take advantage of the high material yielding strength.
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3. Construction of Cross-Section Optimization Model

Particle swarm optimization (PSO), a classical neural network optimization algorithm,
was used to optimize the cross-section with the highest axial compression bearing capacity
as the objective.
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3.1. Definition of Free-Form Cross-Section in PSO

According to the classic PSO formula, the algorithm mainly optimizes the particle
position in the iterative process. This means that the definition of the particle position is
the key to the application of the algorithm, which is to establish a unique corresponding
relationship between the particle position and the free-form shape of the cross-section.

In the most basic definition of PSO, the single particle coordinate is a two-dimensional
plane coordinate (x, y). In this paper, its order is raised to produce an n-order coordinate
matrix. The n-order coordinate vector is defined as the corner vector of the cross-section.
The definition of the free-form cross-section is realized by this n-order rotation vector
corner_list. With the coordinate origin (0,0) as the starting point, a free-form shape of the
cross-section (polyline) is drawn according to the preset order. Each polyline generates a
random corner based on the previous polyline, as shown in Figure 11.
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Figure 11. Generation method of cross-section.

A single particle has a single corner vector corner_list. The generation step of a single
particle is repeated m times to obtain the optimized object of PSO, a complete particle
swarm, which also represents m random cross-section segments. This particle swarm is
presented as a rotation matrix corner_matrix in this algorithm. The node coordinate matrix
point_list and element matrix element_list of the segment can also be obtained, as shown in
the following formula:

corner_list = [θ1, θ2, θ3, · · · , θn] (2)

corner_matrix = [corner_list_1, corner_list_2, · · · , corner_list_m] (3)

point_list = [[x1, y1], [x2, y2], [x3, y3], · · · , [xn, yn]] (4)

point_matrix = [point_list_1, point_list_2, · · · , point_list_m + 1] (5)

θsum,i =
i

∑
j=1

θj (6)

x1 = 0, y1 = 0
xi = xi−1 + len_elemt × cos(θsum,i)
yi = yi−1 + len_elemt × sin(θsum,i)

(7)

where corner_list is the nth order rotation vector, corner_matrix is the m × n order rotation
matrix, point_list is the nth order rotation vector, point_matrix is the m × n order rotation
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matrix, θj is the relative angle of the j-th element in the j-1 element, θsum,i is the total angle
of the i-th element, that is, the angle between the i-th element and the x-axis; x1 and y1
represent the coordinates of the starting (origin) point; xi and yi represent the coordinates
of the second node; len_elemt represents the length of a single element.

In addition to the above basic definitions, two conditions are imposed to enhance
the uniqueness of the relationship between the corner matrix and the cross-section shape:
(1) The definition of uniaxial symmetry is added to the cross-section type. If the axis of
symmetry is set as x = 0, the free folded line segment will expand on the right side of the axis
of x = 0 and the complete cross-section will be obtained by folding. (2) The length of each
element len_elemt is fixed and the cross-section has an equal length and is a multi-section
broken line.

3.2. Objective Function and Constraint Conditions

The definition of the objective function is another key to the application of the PSO
algorithm to the optimization in this paper. It has certain universality for PSO classical
application, and the difference is mainly in the process of optimization calculation. The
process begins with the introduction of the corner matrix into the algorithm model and
ends with the derivation of the bearing capacity of the member. After the PSO iteration
module generates a set of corner matrices, the objective calculation steps can begin. The
corner matrix is used to generate a unique corresponding cross-section fold, which also
corresponds to a unique node matrix and an element matrix. In this paper, a simple CUFSM
calculation platform, which can be docked with PSO, was built using MATLAB software.
After the input of the node and element matrices, the calculation of the constrained finite
strip method can be realized by matching with other pre-defined conditions, such as
material parameters. Consistent with the conventional CUFSM calculation, the output
of the simple calculation platform is mainly the load characteristic curve along the half-
wavelength of the member. The load characteristic values independently corresponding to
each mode in the curve are extracted, and then the elastic critical loads corresponding to
each mode are calculated.

The modal slenderness ratio can be calculated from the critical elastic load, and the
calculation enters the DSM step. The buckling bearing capacity of members calculated
by the DSM formula is defined as the objective function and participates in the optimal
particle comparison in PSO iteration, as shown in Equations (8)–(11):

PnG
Py

=

{
0.658λ2

G , if λG ≤ 1.5
0.877λ−2

G , if λG > 1.5
(8)

PnLG
PnG

=

{
1.0, if λLG ≤ 0.776(

1 − 0.15λ−0.8
LG

)
λ−0.8

LG , if λLG > 0.776
(9)

PnD
Py

=

{
1.0, if λD ≤ 0.561(

1 − 0.25λ−1.2
D

)
λ−1.2

D , if λD > 0.561
(10)

Pn = min(PnG, PnL, PnD)
objective f unction= Max (Pn)

(11)

The objective function in this paper is essentially the buckling bearing capacity of
members calculated by the DSM. Unlike the classical DSM method, which takes the mini-
mum nominal bearing capacity, the optimum selection in this paper seeks to balance the
nominal bearing capacity. Based on the principle of DSM, this method avoids the problem
that the cross-section can easily induce local or distorted buckling; thus, the single nominal
bearing capacity is too small. By suppressing the coupling of L or D or L-D, the buckling
mode coupling effect can be considered more comprehensively.

In addition to the above process, in order to cater to the actual process conditions
of CFS, some additional constraints are also set in the part of generating the corner list.
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According to the definition of the free-form cross-section based on the PSO algorithm,
the foundation free-form cross-section can be created and the subsequent optimization
iteration can be achieved. However, the degree of freedom of the cross-section generated
by this method is too high, and it is easy to have excessive corner and knotting of the
segment itself. The object of optimization is a uniaxial symmetric cold-formed thin-walled
open member, whose cross-section has certain conditions. Four constraint conditions for
cross-section creation are defined to ensure that the optimization results of the algorithm
conform to the characteristics of actual members and are suitable for industrial production.
The restrictions mainly include two points:

(1) The included angle between two adjacent elements shall not be less than 90◦. Since
the free-form shape of the cross-section in this paper is the complete cross-section
obtained by first forming the polyline on the right side of the y-axis, and then mirror
folding the y-axis, the first element needs to meet the state shown in Figure 12a,
so as to meet the requirement that the included angle between element1 and the
folded element is not less than 90◦. For other elements, the included angle of adjacent
elements shall not be less than 90◦ according to the restrictions in Figure 12b. The code
for this condition in optimization is shown as Equation (12), where θ1 is the corner of
the first element, and θi (i = 2, 3, 4, . . . ) is the corner of the subsequent elements:

θ1 ≤ 0.25π
θi ≤ 0.5π(i = 2, 3, 4, . . .)

(12)
Buildings 2022, 12, x FOR PEER REVIEW 12 of 24 
 

−45°

Point 1
（ 0 , 0 ）

Point 2

y

x

Element 1

+45°

 
−90°

+90°

Element i
Element i+1

 
(a) (b) 

Original 
Element i+1

Element i

Stop at this node
Abandon subsequent elements

 

Element i

Original Element i+1

y ( axis of symmetry )

Stop at this node
Abandon subsequent elements

 

(c) (d) 

Figure 12. Constraints on the free-form shape of cross-section. 

3.3. Optimizing Processes and Parameters 
The PSO algorithm determines the trajectory of particles through three factors, 

namely, global optimum, individual historical optimum, and velocity inertia of particles 
themselves. After particle generation and definition of the objective function, it can be 
optimized iteratively according to established rules. Equations (15) and (16) are the clas-
sical formulas of PSO, which means that the i-particle of the particle group moves in 
three directions, superimposing the actual direction of motion and producing the posi-
tion of the i-particle in the k + 1 wheel under the influence of the group optimum position, 
individual optimum position, and speed inertia of the last wheel: 

   1
1 1 2 2

k k k k k k
id id id id gd idV wV c r P X c r P X       (15)

1 1k k k
id id idX X V    (16)

where k is the iteration cycle; V is the particle velocity; X is the particle coordinate, which 
is n-order corner_list; Pgdk represents the optimum particle in the k-th population, which 
has the largest objective in the k-th population data; Pidk represents the individual optimal 
particle of the kth round, which is the largest corner_list selected from the historical data 
of particle i in the first k rounds; Vidk+1 is the motion speed of particles in the k+1 round; w 
is the inertial coefficient, indicating that the speed of the previous wheel will have a cer-
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increase the uncertainty of particle motion; r1 and r2 are acceleration coefficients, or 
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Figure 12. Constraints on the free-form shape of cross-section. (a) The included angle between
element1 and the folded element is not less than 90◦; (b) The included angle of adjacent elements
shall not be less than 90◦ according to the restrictions; (c) The member element itself does not cross
and tie; (d) The self-inter cross-section of the complete cross-section will also occur.

(2) The member element itself does not cross and tie, as shown in Figure 12c. Note that
since the cross-section is a complete cross-section obtained by folding the mirror image
of the y-axis, if the one-sided cross-section intersects the y-axis of the symmetry axis,
the self-inter cross-section of the complete cross-section will also occur, as shown in
Figure 12d, which also needs to be avoided. The code for this condition in optimization
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is shown as Equations (13) and (14), where xi is the abscissa of the point, (xm, ym) and
(xm+1, ym+1) are the end-node coordinates of the m-th element, (xn, yn) and (xn+1, yn+1)
are the end-node coordinates of the n-th element, f(x, y) is the functional expression of
the m-th element:

xi > 0(i = 2, 3, 4, . . .) (13)

f (xn, yn)× f (xn+1, yn+1) < 0
f (x, y) = (y − ym)× (xm − xm+1)− (x − xm)× (ym − ym+1)

(14)

3.3. Optimizing Processes and Parameters

The PSO algorithm determines the trajectory of particles through three factors, namely,
global optimum, individual historical optimum, and velocity inertia of particles themselves.
After particle generation and definition of the objective function, it can be optimized
iteratively according to established rules. Equations (15) and (16) are the classical formulas
of PSO, which means that the i-particle of the particle group moves in three directions,
superimposing the actual direction of motion and producing the position of the i-particle
in the k + 1 wheel under the influence of the group optimum position, individual optimum
position, and speed inertia of the last wheel:

Vk+1
id = wVk

id + c1r1

(
Pk

id − Xk
id

)
+ c2r2

(
Pk

gd − Xk
id

)
(15)

Xk+1
id = Xk

id + Vk+1
id (16)

where k is the iteration cycle; V is the particle velocity; X is the particle coordinate, which
is n-order corner_list; Pgd

k represents the optimum particle in the k-th population, which
has the largest objective in the k-th population data; Pid

k represents the individual optimal
particle of the kth round, which is the largest corner_list selected from the historical data of
particle i in the first k rounds; Vid

k+1 is the motion speed of particles in the k + 1 round; w is
the inertial coefficient, indicating that the speed of the previous wheel will have a certain
influence on this wheel; c1 and c2 are two independent random constants within 0~1, which
randomly weaken the influence of group optimum and individual optimum, and increase
the uncertainty of particle motion; r1 and r2 are acceleration coefficients, or learning factors.
r1 is an individual learning factor, and r2 is a group learning factor. Their effects are similar
to those of c1 and c2. The difference is that the learning factors are not randomly generated
and are manually designated to directly control the influence of groups and individuals on
particles; Xid

k is a single particle, the position coordinate of the i-th particle of the particle
swarm in the k-th round; Xid

k+1 is the position coordinate of the i-th particle of the particle
swarm in the k + 1 round.

The single round iteration of PSO is completed by executing all corner_list in the
particle swarm in Equations (15) and (16) once. When the number of iterations reaches the
preset value, the iteration is stopped for subsequent convergence check and data collection.
The complete algorithm flow is shown in Figure 13. See Table 1 for all parameters used in
this document and their descriptions.
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Table 1. PSO parameter definition.

Parameter Symbol Parameter Name Amplitude Note

n_particle Number of particles 50 Number of particles in a single particle swarm
(number of cross-sections)

n_order Order of the particle Positive integer Number of elements of a single particle (number of
polyline segments)

len_element Length of element 10 mm The length of a single polyline segment

t_element Thickness of element 1.2 mm The actual thickness of the member cross-section,
selected from the material properties test of Figure 1

w Weight of inertia 0.9 Increase the randomness of motion, selected according
to reference [50]

r1 Personal learning factors 1.0 Increase the randomness of motion, selected according
to reference [51]

r2 Global learning factors 2.0 Increase the randomness of motion, selected according
to reference [51]

max_gen Maximum number of iterations 300 The iteration upper bound, where the optimization
terminates.

pop_range Motion boundary (−0.5, 0.5) Corner of a single round is limited to the interval
(−π/2, π/2).

speed_range Velocity boundary (−0.5, 0.5) Corner of a single round is limited to the interval
(−π/2, π/2).

fy Yield strength 1079 MPa Material parameters of CUFSM, selected from the
material properties test of Figure 1

E Elasticity modulus 203 GPa Material parameters of CUFSM, selected from the
material properties test of Figure 1
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4. Optimization Results and FE Verification

Three groups of optimizations were carried out to explore the optimization of the
AHSS cross-section. The optimization object is a medium-length column with a length of
600 mm. The thickness of the plate is 1.2 mm, which is consistent with the raw material
parameters of the material property test. The plates with total lengths of 260, 300, and
340 mm were used for optimization. The three optimization groups were named FS260,
FS300, and FS340.

4.1. Optimization Path and Optimization Result

During the execution of the PSO algorithm, the single-step optimal cross-section can
be output in each iteration step, so the optimization history path shown in Figure 14 is
summarized. The ordinate is the optimization progress, the ratio of the optimal bearing
capacity of each generation to the final optimization result, and finally tends to 1. The
abscissa is an iterative algebra. The three groups of optimizations reached the maximum
value in a single group in the 150–200 generations, and did not change in the subsequent
100 generations, achieving convergence.
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From Figure 14, the optimization of fixed time nodes was selected, and the cross-
section shape is shown in Table 2. Starting from the first generation, the table records
the optimal cross-section of the current particle swarm every 75 rounds. Among them,
the cross-section of the first generation is completely random, and in the 75th and 150th
generations, there is a clear trend of cross-section optimization, evolving to a cross-section
similar to the shape of Ω. In the 225th generation, all three groups of optimizations achieved
convergence, so the cross-section at this time was the optimization result.
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Table 2. Summary of cross-section optimization process.

ID Iteration k 1 75 150 225 (Convergence)

FS260
Cross-Section

k
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4.2. FE Verification

The optimized cross-section and its corresponding bearing capacity were calculated
using CUFSM and DSM. Further verification was required in combination with FE simula-
tion. The establishment method of the FE model is the same as that in Section 2.1. The three
groups of load displacement curves and the buckling state of the members simulated and
summarized are shown in Figures 15–17. In order to reflect the difference between the free-
form shape of the cross-section optimized in this paper and the traditional cross-section,
two traditional C cross-sections were added to each optimization group for comparative
calculation under the same conditions. Traditional C cross-sections for comparison are
shown in Table 3, where TC260-1, TC300-1, and TC340-1 (traditional C cross-section) are
the initial cross-section forms in the literature [30], and TC260-2, TC300-2, and TC340-2 are
the standard C cross-sections in CN code GB50018 [52]. The member length is 600 mm, and
the cross-section thickness is 1.2 mm. The cross-section area and cross-section thickness in
a single control group are consistent.
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Table 3. Parameters of C cross-section.
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Grouping C Cross-Section Web h (mm) Flange b (mm) Hemming a (mm) Cross-Section
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The optimization results are calculated and verified in Sections 4.1 and 4.2, and it is
preliminarily believed that the optimization in this paper has certain reliability. It can be
seen from Figures 15–18 and Table 4 that:

(1) The bearing capacity results of FE simulation are basically consistent with those of
PSO optimization.

(2) The PSO-CUFSM in this paper has a remarkable effect. For the free-form shape of
cross-sections of FS260, FS300, and FS340, the maximum bearing capacity can be
increased by 2.57, 2.05, and 2.43 times, respectively, effectively improving the material
utilization of AHSS members.
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Table 4. Comparison between PSO and FE results.

Specimen Pmax, PSO (MPa) Pmax, FEM (MPa) Variation
(Pmax, PSO–Pmax, FEM)/Pmax, PSO

FS260 208.92 205.65 1.57%
FS300 235.10 210.50 10.46%
FS340 268.42 285.87 −6.50%

4.3. Modal Verification

The three groups of free-form cross-sections FS260, FS300, and FS340 were analyzed
by modal classification, and the modal participation of each FE analysis step was extracted.
The extraction method is the same as in Section 2.2. The participation of each group of
members is shown in Figures 19–21.
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For AHSS members, the elastic critical stress of local buckling is too low when the tra-
ditional cross-section is used. Furthermore, the coupling of local buckling and distortional
buckling has a limiting effect on the bearing capacity of members.

In Figures 19–21, the local modal participation of the optimized cross-section is lower
than that of the traditional C cross-section (Section 2.2). In this way, the premature occur-
rence of local buckling is restrained, and the local–distortional coupling induced by local
buckling is avoided, thus effectively improving the bearing capacity of members.

5. Discussion

The main purpose of this study was to explore the PSO-DSM cross-section shape
optimization method for AHSS members. Through modal analysis and FE simulation,
the feasibility of the optimization method was confirmed, and the shape optimization of
Q&P1180 material was carried out.

First, the modeling parameters of this study were validated using a conventional steel
grade. More validation dedicated directly to AHSS members is necessary. Some of the
modeling parameters, such as the residual stresses, warrant additional study given the
high yielding strength of AHSS. The residual stress pattern and magnitude, and its impact
on strength, are worth more studies given the limited available studies.

Second, the optimization method developed in this study demonstrates excellent
feasibility for a wide range of section optimization using AHSS. Given the wide range of
AHSS grades, optimization across these steel grades would be an interesting future study.
The different section profiles the optimization may yield would be of significant interest.

Third, the optimization in this study is termed free-form optimization. In terms of
manufacturing, only certain limitations of turn angles to avoid self-knotting were consid-
ered, and many practical constraints were not fully considered. Hence, the optimal shapes
from this study are too complex to manufacture (or would be too costly to manufacture).
In future studies, more manufacturing constraints, including connection concerns, will be
added to seek a balance between performance and manufacturability.
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6. Conclusions

In this study, the free-form shape optimization of AHSS columns was examined.
Modal analyses from CUFSM and the FE method illustrate the complex mode interaction
potentials for AHSS sections due to the material’s high yielding strength. Then, a feasible
optimization member was identified as 600 mm to accommodate the potential interesting
interaction among modes. The free-form shape optimization method using the PSO al-
gorithm along with the numerically implemented DSM was established to conduct three
groups of optimizations with a varying total length (i.e., material). The optimization pro-
vides promising optimal shapes. Their strengths were validated further using the nonlinear
FE models given the drawbacks in the DSM regarding the application of AHSS members.
The following conclusions can be drawn:

(1) Through nonlinear FE modal identification and classification, it can be seen that the
critical stress of the local buckling (L) of the traditional cross-section is low; hence local
buckling (L) occurs early, and the interaction with distortional buckling (D) limits the
bearing capacity. The optimized cross-section restrains the early occurrence of (L),
reduces the coupling effect of local buckling (L) and distortional buckling (D), and
thus improves the bearing capacity.

(2) The proposed PSO-DSM method shows promising optimal results, although the DSM
was only approximately applied to AHSS sections. Based on the further validation
with nonlinear FE results, for the three groups of optimizations, the load bearing
capacity was increased by 2.57, 2.05, and 2.43 times, respectively, compared to that of
the traditional cross-sections.

(3) The free-form shape optimization mainly restricts the local buckling in the optimiza-
tion direction. The three groups of optimized cross-sections are similar, and the
optimized cross-sections all have web stiffeners, a flange bending inward, and a large
area curling outward. In this study, it is defined as “a cross-section similar to Ω
shape”.

Overall, in this study, the AHSS cross-sections were demonstrated to have significant
potential to maximize the material efficiency. The optimized shapes in this study have
excellent load-carrying capacity but may suffer significantly in terms of manufacturability.
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