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Abstract: Terrorist bombing-induced casualties are not only related to immediate fatalities but also
to structural deterioration, damage, or even collapse that might occur and may lead to tremendous
loss of life. Efficient assessment of blast-induced structural damage following explosion events is
becoming a growing problem in modern societies. An attempt based on machine learning is made
in this study to anticipate structures’ responses and the associated structural damage to reinforced
concrete (RC) buildings exposed to extremely short-duration explosive loads. A program is developed
to generate a set of analytically derived data for nonlinear building models subjected to explosive
loads. Common machine learning models and Python libraries were utilized during the development
of our program implementation to learn from a dataset. The latter has different features or input
parameters, such as the amount of explosive charge, the distance from the building, fundamental
period, and the building’s mass and rigidity, as well as the soil type. Our database is thus used,
along with our regression-and-classification based implementations, to generate an output index that
estimates and categorizes the state of damage based on the several most-important parameters of
the explosion exposure. In the input database, the state of damage, based on the values of captured
damage indices, is classified into one of four cases. Our code efficiently predicts those cases using a
model that learns from the database. The prediction rates of the presented model reach an overall high
accuracy. Therefore, the proposed model provides an accurate prediction of the level of structural
damage by using the computed damage indices.

Keywords: structural damage; machine learning; reinforced concrete buildings; structural response;
blast loading

1. Introduction

Over the past several decades, the rate of terrorist attacks on civilian structures has
increased all over the world. This phenomenon has become hazardous to the attacked
structures and may lead to severe damage or collapse, and consequentially, social panic and
loss of lives [1,2]. The challenge faced by structural designers is to design important and
government structures to provide safety against numerous terroristic threats of explosion.
Based on an assessment of the damage that could be caused to civil structures by terrorist
attacks, quick-reconstruction strategies can be developed in which the damaged elements
can be quickly restored.

Meanwhile, the dynamic response of engineering structures subjected to explosive
loads has attracted more and more attention in the field of structural engineering. Several
studies were conducted to appropriately investigate the intrinsic dynamic behavior of
different structural components under high-intensity explosions [3]. Zhang et al. [4] studied
the nature and level of damage to RC beams subjected to close-in explosive loads. Anas and
Alam [5] conducted a comprehensive review of the blast response of RC slabs, and further
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investigation was carried out on methods of repair. Yan et al. [6] investigated the impact
of explosive loads and failure characteristics on CFRP-strengthened reinforced concrete
columns using numerical and experimental approaches. Additionally, a substantial number
of studies were carried out to explore the effects of explosive loads on whole structures
under uniform or localized blast loading [7,8].

Due to the prohibitively significant expense, explosion tests on structures cannot be
easily conducted, which is especially problematic in developing countries. Furthermore,
obtaining reasonably credible estimations of testing data such as explosion overpressure
and structural component deformation during the explosion test is somewhat more diffi-
cult [9]. As a result, analytical or numerical approaches are commonly used to model and
forecast the dynamic responses of structures under blast load. Various numerical method-
ologies for studying the responses of structures under blast loading in particular have been
devised [10–12]. Nevertheless, numerical methods may still require long research plans,
manpower skills, and perhaps long computation times. Nowadays, applications that are
based on machine learning (ML) techniques or their older brother, artificial intelligence
(AI), are literally innumerable, and they are also becoming more indispensable. Applied
ML is in fact a numerical discipline, where an optimization problem is broadly nested in
the core of a learning model: a search for the unknown values of the parameters that best
solve or approximate the problem’s solution or fill in the numerical equation based on
observed samples of data. A learning model predicts a set of terms that (hopefully) helps in
calculating the relevant equation using the available data. It is not always easy to make an
accurate prediction because of the nature of these data, which is typically noisy, limited, and
partial, making predictions prone to inaccuracy. Nonetheless, the learning model attempts
to interpret the data in order to solve the problem by creating a mapping between input and
output. The accuracy of such a mapping is typically less than 100%. Like many technical
fields, the booming field of ML has recently been supported by not only technological
advancements but also by many researchers and developers who build on one another’s
work in various pathways and disciplines. Two major drivers are the wider availability of
greater data and constantly increasing computing power. The concepts of ML algorithms
are not new, and neither are concerns about safety. However, predicting the effect of explo-
sive threats on structural behavior by utilizing both numerical methods and emerging ML
concepts is more contemporary and crucial. There has been a significant amount of research
in the academic literature on using extensive learning techniques to identify corrosion
in civil infrastructure. Convolutional neural networks (CNNs), which are one type of
neural network, have particularly promising applicability for the automatic detection of
image features that are less impacted by picture noise. Munawar et al. [13] suggested a
modified version of extensive hierarchical CNN architecture, built on 16 convolution layers
and CycleGAN, to predict pixel-wise segmentation end-to-end photos of Victoria’s Bolte
Bridge and sky rail locations (Melbourne). Building damage poses a substantial threat to
the structural integrity and usability of structures. Jdrzejczyk et al. [14] compared CNN
and SVM algorithms for predicting multistory reinforced concrete building damage. Their
research focused on a collection of residential buildings that had been subjected to mining
impacts such as surface deformations and rock mass tremors throughout their technical life
cycle. To create a more advanced rapid risk-based analysis methodology, Kumari et al. [15]
have attempted to combine some of the most modern soft computing techniques with
conventional rapid visual screening methods. The methodology offers the potential of
analyzing the vulnerability of the structures in light of the aspects associated with the
significance and exposure of the buildings.

Artificial neural networks (ANN), for instance, can be used to solve complicated civil
engineering problems that cannot be handled by analytical methods such as analysis and
design of the structures [16–18], damage assessment of structures [19,20], or structural
control and earthquake engineering [21,22]. However, the black-box behavior of ANNs
is not negligible in our case: if researchers are to think about the effects of a blast load,
then they must be sure what process is going on. Afterall, the main strategic objective is
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to develop reconstruction strategies. Moreover, using ANNs does not provide acceptable
accuracy when the dataset contains a small number of samples (unlike this research).
Models that perhaps show a clearer formulation or a better efficiency than ANNs have
also been considered in recent years. For instance, an evolutionary-based algorithm has
been applied in [23] to evaluate the damage caused to H-section steel columns under
impulsive blast loads. The results of [23] show that a classic strategy (which is based
on implementing numerical investigations of a parametric finite element model using
gene expression programming) offers an acceptable level of accuracy and high calculation
efficiency. Additionally, in recent years, the ANN approach has been used in a number
of studies, for example as shown in references [24–28]. A more recent ML-based model is
introduced in [29] to predict the maximum displacement of reinforced concrete columns
exposed to blast loading. This study is close to ours, but it uses 13 features pertaining
to imperative column and blast properties based on a dataset consisting of 420 examples.
Unlike [29], the study in this paper uses a larger data set to support the efficiency estimation,
with a smaller number of features that are shown, both theoretically and empirically, to
have a noticeable effect on classifying damage indices with the help of a simpler tree-based
ML model. All this encouraged the authors of this research to further study the role that
specific ML ideas would play in the dynamic response of engineering structures subjected
to explosive loads based on the numerical study of their describing equations.

The main objective of this study is to investigate the viability of employing machine
learning algorithms to anticipate the dynamic response and associated damage state of
building structures subjected to bomb attacks. For this purpose, closed-form analytical
solutions to the nonlinear equations of motion that govern the responses of a structure
under explosive loads are first derived in order to provide a set of input data that classifies
the state of damage. Consequently, a quick assessment of the damage state is conducted to
identify which items are damaged and which are not, as well as to develop reconstruction
procedures that provide the speedy recovery of damaged structures. The results of this
study were obtained without taking the strain rate effect into consideration, and more
attention should be paid in using the results in cases where strain rate effects are taken
into account.

The paper is organized as follows: Section 2 presents a brief description of the blast
wave pressure profile, Section 3 reports the structural damage and associated damage
indices, Section 4 describes the generalized nonlinear single degree-of-freedom (SDOF)
model and the closed-form solution under accidental blast loads is derived, and Section 5
connects the more theoretical part of the work to the practical part by explaining in detail
how specific machine learning strategies are utilized. This longest section of the paper also
presents our code implementation methodology and discusses the obtained results in detail.
Finally, Section 6 summarizes the main conclusions of the work and gives suggestions for
future work.

2. Blast Wave Pressure Profile

Large amounts of energy may be released after the detonation of a highly explosive
chemical in an open environment. Extremely high temperatures and shock waves rapidly
propagate into the surrounding air as the released energy. Shock blast waves travel at
supersonic speeds and account for a significant portion of the energy produced. These
waves are the most important to consider in building structural design because they reflect
a building’s damage probability in an explosive event in which the front of the waves
encircles the structure, exposing it to blast pressure. Figure 1 depicts the ideal blast wave
pressure-time history that reaches a specific distance from the detonated charge’s center. An
explosion has two distinct phases: a positive one and a negative one. During the positive
phase, the pressure is higher than the ambient air pressure, and the value of the peak
overpressure Pso declines exponentially with increasing distance from the detonation center
until it meets atmospheric pressure at the end of the positive phase. On the other hand,
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during the negative phase period (which lasts longer than the positive), the pressure falls
below the ambient atmospheric pressure, generating suction on the building’s surface.
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Figure 1. An air explosion’s ideal blast wave pressure-time history.

The hazard of an explosion is essentially determined by two factors, both of which
are of comparable significance: (i) the explosive weight; and (ii) the stand-off distances.
Hopkinson’s law converts the charge weight of the explosive W in kilograms of equivalent
TNT into a scaled distance Z at any distance R as follows (Baker et al. [30]):

Z =
R

W1/3 , (1)

According to Kinny and Graham [31], the blast pressure can be described mathemati-
cally as:

P(t) = Pso

(
1− t

to

)
e(
−bt
to ), (2)

where Pso represents the peak overpressure to represent the duration of the blast load’s
positive phase, b represents the decay parameter, which is available with tabulated data
varying with scaled distance Z [21], and P(t) represents the pressure at time t.

On the basis of the atmospheric pressure Pa and the scaled distance Z, it is possible to
calculate the peak overpressure Pso for an air blast in pascals as follows [31]:

Pso =

808Pa

[
1 +

(
Z

4.5

)2
]

{[
1 +

(
Z

0.048

)2
][

1 +
(

Z
0.32

)2
][

1 +
(

Z
1.35

)2
]}0.5 , (3)

Furthermore, the positive loading duration to in milliseconds can take the following
form [31]:

to =

980W1/3
[

1 +
(

Z
0.54

)10
]

[
1 +

(
Z

0.02

)3
][

1 +
(

Z
0.74

)6
]√

1 +
(

Z
6.9

)2
, (4)

3. Damage Indices

Unexpected structural responses to explosive events are of great concern nowadays.
Due to the fact that the primary damage to structures is based on ductility capacity, defor-
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mation, and the global dissipated energy, these response characteristics might reflect the
damage caused by destructive loads. By comparing the explosive load response character-
istics to the structural capacity, a general damage index DI may be calculated. Powell and
Allahabadi [32] proposed a formula to define the damage index in terms of the maximum
displacement xmax, the yield displacement xy, and the ultimate displacement xu:

DI =
xmax − xy

xu − xy
=

µmax − 1
µu − 1

, (5)

In Equation (5), µmax is the maximum ductility (demand), while µu is the ultimate
ductility (capacity). Buildings’ structural damage can be classified into one of the following
four damage levels based on the values of the damage indices: insignificant damage,
repairable damage, damaged beyond repair, and complete collapse. All the aforementioned
levels of structure damage and associated damage indices are presented in Table 1 along
with the associated values that should be used instead.

Table 1. The damage indices and associated levels of structure damage [33]. The four values in the
last column are used in the implementations and results.

Damage Index ([DI]) Level of Structure Damage [Damage] Value

DI < 0.2 insignificant damage 1
0.2 ≤ DI < 0.5 repairable damage 2
0.5 ≤ DI < 1 damaged beyond repair 3

DI ≥ 1 complete collapse 4

4. Modelling and Idealization
4.1. Building the Damage Model

This paper’s primary objective is to provide a two-fold way to predict the degree of
damage that will be caused to building structures as a result of explosive loads. Using the
measured structural responses of the mathematical models of the structures, the damage
index of these structures is determined. When structures receive sudden extreme loads
such as blast loads, it is inevitable that they behave extremely nonlinearly, and the dynamic
response of structures goes to an inelastic range. Thereupon, nonlinear analysis is a
more suitable approach capable of evaluating the realistic behavior of these structures by
combining geometrical and material nonlinearities under blast loads. The simplest way to
model and discretize such complex applications is via an equivalent SDOF building model
that may be conveniently described by an idealized mathematical model, such as the one
shown in Figure 2. The dynamic nonlinear equation of motion governing the structural
response of the single-story building structure shown in Figure 2 to the blast loads shown
in Figure 1 can be written as

m
..
u(t) + c

.
u(t) + r(t) = f (t), (6)

where m and c are the mass representing the inertial characteristic of the building and the
viscous inherent damping coefficient representing the energy dissipation of the building,
respectively;

.
u(t) and

..
u(t) denote the velocity and acceleration responses of the structure,

respectively; r(t) is the nonlinear restoring force, and f (t) is the applied blast force to the
SDOF system.
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Structures always respond nonlinearly when subjected to unexpectedly extreme loads
such as blast loads, and the dynamic response of the structural system goes into an inelastic
region. As a result, the nonlinear analysis, which combines geometrical and material
nonlinearities, provides a better approach for assessing the actual behaviors of these
structures under blast loads. The SDOF building model has been regarded as elastic-
perfectly plastic with elastic unloading, as illustrated in Figure 3. The relation between
the SDOF system’s resistance, which is denoted by r(t), and its lateral degree of freedom,
which is denoted by u, may be divided into three different phases. During the elastic
phase, resistance is expressed as r(t) = k× u, whereas in the plastic phase it is expressed
as r(t) = ± fy, where k and fy are the structural stiffness and yield force for the structure,
respectively [34]. The values of structural stiffness and damping coefficient of the SDOF
building model in terms of the natural period Tn and the structural damping ratio ξ are
determined by the following equations [35]:

k =
4π2m

T2
n

, c = 2ξ
√

k m (7)

On the other hand, the resistance force during the elastic unloading phase is given
by r(t) = um − k(um − u), where um represents the structure’s maximum displacement.
Depending on the magnitude and stand-off distance of the blast, the maximum displace-
ment could be well inside the elastic range. However, if the building enters a plastic state
as a result of a blast, it is presumed that the structural elements have succumbed and
are damaged. Consequentially, two scenarios have been selected for analysis. In Case
1, the SDOF system’s response remains elastic during an explosion, and the maximum
displacement xm occurs in an elastic condition. The blast in Case 2 occurs in an elastic state,
but the maximum response occurs in a plastic state.

According to Equations (2) and (6), the explosion-loaded building model’s motion
equation is

m
..
u(t) + c

.
u(t) + r(t) =

[
Pso

(
1− t

to

)
e(
−bt
to )
]

Aeq, (8)

Exact solutions are obtained in the basic references for the displacement, velocity, and
acceleration of the SDOF [36,37].
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4.2. Formalized System Parameters

The examined building model parameters as well as the blast wave parameters used to
excite the building model are defined in this section to gain further insight into the dynamic
response of buildings and associated structural damage under blast loads. The dynamic
characteristics of the one-story shear building models considered in the current study are
listed in Table 2. Depending on the rigidity of the analyzed building models, the natural
period of the simulated buildings ranges from roughly 0.3 to 1.5 s. Short-period vibration
will occur in rigid buildings. The period of a flexible building may be larger than one second.
Table 2 shows the natural period ranges for flexible and rigid buildings. Furthermore, the
masses of the flexible building models ranged from 25 to 75 ton, while the rigid model mass
ranged from 100 to 200 ton. Regarding the building model’s foundation, two key situations
are postulated. In one of the scenarios, the supporting soil is assumed to be extremely stiff
(fixed base model). In the second scenario, the effect of the soil’s flexibility is taken into
account by taking into consideration the soil’s rotational and horizontal movements to
account for the soil’s flexibility effect. Accordingly, there are two types of supporting soil
considered in the analysis, i.e., rigid soil and flexible soil.

Table 2. Values describing the dynamic characteristics of building models [38–40].

Dynamic Parameters for Building Models

Type of Parameter Flexible [Building] Rigid [Building]

Yielding force (N) 1.369 × 105 1.442 × 107

Damping coefficient (N-sec/m) 6.699 × 104 1.058 × 107

Range of mass (ton) 25–75 100–200
Range of natural periods (sec) 1.0–1.5 0.3–0.5

The story height of all models is h = 3.5 (m). It is assumed that the suggested models
are fixed at their bases when analyzed during seismic occurrences, without taking into
account the impact of soil-structure interaction.

In addition, the advice of several structural engineers was also adopted to determine
the ranges of the explosive weights W and stand-off distances, which are presented in
Table 3. A decrease in the pressure value is represented by a wave decay coefficient (b),
depending on the scaled distance Z according to W and R values listed in Table 3.
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Table 3. Blast load parameters used in the analysis and their ranges [2].

Parameters Units Ranges Selected Values

TNT weight [w] kg 10–2000 10, 50, 100, 500, 1000, 2000
Stand-off distance [R] m 1.0–9.0 1, 2, 3, 5, 7, 9

4.3. Validation

On the basis of the analytical solutions described in the preceding sections, MATLAB
codes were generated for each of the analyzed cases. The proposed analytical solutions
were validated by conducting a comparison of the findings acquired from the proposed
methodology with those obtained in earlier studies. This served the purpose of determining
whether or not the findings gained from the proposed methodology were reliable. The
results were compared to those found by Li et al. [41] for the numerical system parameters
in terms of mass m = 100 kg, stiffness k = 10000 N/m, peak explosive load Pso = 1000 N,
duration of the blast to = 0.04 s, and maximum resistance fy = 20.042 N. As can be seen
from Figure 4, the present solutions show good agreement with the solution by Li et al.,
and the two solutions are also clearly identical.
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5. Data Treatment, Implementation Details, and Analysis

Following the presentation of the closed-form solution, an implementation pipeline for
the treatment of data in cases like ours usually consists of the following steps: preparing and
cleaning the data, deciding upon characteristics of the data and learning model, training the
model, and evaluating the model. This section describes the cleaned data collection, gives
hints on the implemented programs, shows some of the obtained results, and analyzes
the results.

The dataset and its accompanying value ranges are thoughtfully chosen, which re-
sulted in recording 1170 different cases (or table rows) of calculated observations from
exciting building models in a dataset. In our investigation, two types of viscoelastic shear-
type structures were modeled: fixed-base and flexible-base. A suite of reflected pressure
time-histories with different TNT charge weights located at different stand-off distances
ranging from 1 to 9 m are used in the analysis. The analyzed building models have fun-
damental periods ranging from 0.3 to 1.5 s. Our own finalized dataset consists of column
labels that serve as ‘features’ of the 1170 data cases. The labels correspond to either (1) input
parameters, (2) calculated parameters, or (3) output values. Elaborations on how these
types and their values are put into relations can be reviewed in the equations given in the
previous sections.
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The parameters, their labels, their arrangements, and their dependency graphs are all
illustrated pictorially in Figure 5 and are further verbally described in the following. Note
that terms like ‘parameters’ and their ‘labels’ are commonly used in computer scientific
contexts to indicate what ‘features’ would automatically be learned about the data from
within the data itself. ‘Hyperparameters’ are another term used in the same contexts to
indicate configurations that the program developers externally customize (manually or
using heuristics; not within the data) to control or improve the learning process and its
outcomes. Examples of hyperparameters are the training size and the cross-validation
value (see [42] and the next subsection).

1. The six ‘input parameters’ are abbreviated in the following sorted order: [w] the
amount of TNT explosive charge; [R] the stand-off distance from the building; [Build-
ing] rigidity (flexible/rigid); [soil] the type of soil; [Tn] the fundamental period; and
[m] the building’s mass. The subset comprising the first four labels is referred to as
‘Inputs [1]’, and the subset containing the other two input features, [Tn] and [m], as
‘Inputs [2]’ (see the top part of Figure 5).

2. Except for the damage index values [DI] and the corresponding four textual labels,
or [Damage] level descriptions (which are further described in the next item), the
five feature parameters [u], [Fy], [Ki], [uy], and [µmax] are referred to as the ‘directly
calculated parameters’. [v] and [a] are the ‘indirectly calculated’ parameters, which,
together with [u], form the set of features referred to as ‘Calculated [1]’ in Figure 5.

3. [DI] and [Damage] are the two ‘output’ values. [Damage]’s possible different levels
are only four values, whereas [DI] values constitute a whole range of floating-point
numbers. In our computer programs, [Damage] could either be treated as textual labels
or four different values, depending on the need; the association is shown in Table 1.
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Python was the programming language used for the development of our scripts,
mainly to implement models that would efficiently learn reliable estimations of the damage
levels in terms of the available input values. Both regression and classification are types
of supervised learning that were implemented [43,44] depending on the cases explained
below. The reader is reminded that the foundations of ML describe both regression and clas-
sification as algorithms that help predict the value of an output by finding the correlations
between the dependent and the independent variables. Regression finds an approximation
to a function of the input to the continuous output (e.g., a real value of the damage index
[DI]), whereas classification is more of a categorization process that finds a discretizing
mapping that divides the dataset into classes (e.g., when the output is one of the possible
four values of the damage level [Damage]). The efficiency of the modeling is evaluated
based on the resulting ‘train/test’ learning accuracy and other performance metrics of the
used model, such as confusion matrix, precision, and recall [42,45]. In a regression model
for example, the higher the learning accuracy, the better the estimation of further damages.
Accuracy is calculated based on training the model using part of the data and testing what
has been learned using the other withheld part. There is however more to this, as accuracy
is a useful metric when all the classes to be learned are equally important. The situation is
different in classification learning, where accuracy is not the only (or the best describing)
metric. Thus, the tests performed assumed that all the classes were equally important, but
the results in different situations were also studied and analyzed, particularly those where
the data samples neither showed well-balanced distributions nor good representatives of
the classes. For example, among the 1170 calculated samples constituting the whole dataset,
only 86 belonged to the class of ‘repairable damage’, whereas as many as 208 belonged to
the class of ‘total damage’. This is an important factor of analysis that should be considered
in later evaluations.

5.1. Learning Damage While Considering µmax

In our computational attempts to understand how the damage index correlates to
subsets of parameters using supervised machine learning [40,42], computer program
feeding was tested with subsets of both ‘input’ and ‘calculated’ parameters and then
determining how the learning of the output values [DI] and [Damage] was achieved.

• Learning [DI]’s (continuous) values using ‘multivariate regression’ is one way to
also ‘classify’ the (discrete) level of structure [Damage] into the four categories that
were taken into account, and from any given [DI] value, one immediately finds its
corresponding [Damage] level (1, 2, 3, or 4) using Table 1.

• As another way, one can learn the [Damage] category using regression by assigning a
value to each category, such as 1.0, 2.0, 3.0, or 4.0.

• A third way to estimate the [Damage] is to directly use a ‘classification’ algorithm
(instead of regression) to learn the level of damage itself.

Different combinations of input and calculated parameters were examined to confirm
the transitive dependency that is already readable from Figure 5 and our discussion in
earlier sections. Keep in mind that the features should be independent in a multivariate
regression. For example, it is obvious from Figure 5 that µmax (directly) depends on both
the parameters [u] and [uu], which themselves depend (directly, in turn) on all the directly
calculated parameters and the input parameters. The equations in Section 4 give the
closed forms of such transitive dependency, but the mere values in the dataset are not
enough to directly inform a supervised learning algorithm about such closed forms. The
dependency, alone, does not tell us which parameters play the most- (or least-) important
roles in affecting or controlling the learning result. This is exactly where the power of
machine learning comes into play: the coefficients of a multivariate regression play the role
of prioritizing the parameters used. This is a key goal of this research, where the data are
fed into a well-designed model that uses carefully-selected parameters, then the model
implementation both recognizes the indirect relationships and estimates future calculations
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with an evaluated accuracy. The algorithm’s ability to function through automatic learning
has given us better insights into the scenario.

It is, thus, immediately noticeable from the outputs of our programs that the inclusion
of µ_max among the labels to learn from is an extremely prominent situation: whenever
the continuous range of [DI] values is learned using that of the calculated parameter
[µ_max] (alone or in combination with other parameters) from our dataset in a regression
model, an accuracy of 100% is always obtainable. This seems to be a result of overfitting,
since the many values of [DI] and [µ_max] are strongly related through [DI] = 0.2 µ_max
(see Section 5). The 1-1 strong link (between the many [µ_max] and [DI] values) cancels
the noisy effect of the remaining parameters, whose discretized values are lower than
[DI]’s or [µ_max]’s. For example, the whole dataset has only 6 different possible values
for [w], [m], or [R], as well as only 2 different possible values for [soil], [Building], or
[Fy]; but around 1138 different [DI] values and 1146 different [µ_max] values. Thus, and
although the data have very few samples, one may even use a half of the whole dataset
as training (585 representative samples) and use only four out of the six input parameters
(namely: Inputs [1]), yet still obtain a nearly-perfect accuracy (again, with an obvious
case of overfitting). This is true even with a ‘linear’ regression model (see Figure 6).
Note that a linear regression algorithm assumes that (i) the input residuals (or errors)
are normally distributed, and (ii) the input features are mutually independent (no co-
linearity). According to the dependency graph in Figure 6 and the dataset experiments,
both assumptions are indeed not satisfied in this case.
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Figure 6. Relationships of the predicted [DI] with the tested [DI] and all [DI]. When one keeps
decreasing the training size and using k-fold cross-validation for different values of k > 2, one can
still achieve a 100% accuracy for any training size that is at least 0.171% of the whole 1170-row
dataset. This latter percentage, 0.171%, gives two quantitatively different samples from the dataset
with 1170 samples, which are geometrically enough to get a unique straight line in the 2D plane of
actual-vs.-predicted [DI] (check the left part of Figure 6). As described, the relation between the [DI]
and [µmax] values is linear. Linear regression is broadly applicable only if the solution is linear, which
might not be the case in many other real-life scenarios. In learning [DI] from µmax (with or without
other parameters), one obtains a 100% accuracy whether or not the data is normalized, and whether
or not the whole dataset is used. This overfitting is always obtained, as a result of including [µmax]
among the learning features. Normalization of data features is a process that is sometimes involved
to ensure similar value ranges for input parameters of the model. In our case, this was not a major
issue (note that although normalization was performed in our tests, it had no impact on the outcomes
that are highlighted).
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Although there is a nearly one-to-one correspondence between the maximum ductility
µmax values and those of [DI], there is no one-to-one correspondence between the many
µmax values and the four [Damage] values. When the [Damage] levels are represented as
continuous values, the supervised learning of [Damage] (as regression) has no inherent tie
in this case between the inputs to our program ([µmax] in particular) and [Damage]. The
obtained accuracy is still 100% as long as [µmax] is among the parameters to learn from.
The left chart of Figure 7 shows that the accuracy of learning is 100% using a decision
tree regression model and one-fourth of the data as training samples. A linear regression
model performs worse here, of course, because the relation between µmax and [Damage] is
many-to-one.
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Unless explicitly specified otherwise, the ‘default assumptions’ from now on are to
use a decision tree regressor or classifier (which always achieves the maximum achievable
performance metrics) and 50% of the data for training, and 10-fold cross-validation.

To summarize, Equation (5) is crucial to reliably compute and learn [DI] (or, for what
matters, and classify the level of structure [Damage] label). However, using available
inputs, one should avoid using µmax among the supervised learning parameters from
which damage is computationally estimated. Many regression and classification algorithms
will give a 100% accuracy because of overfitting. Therefore, the next ideas to learn [Damage]
should take µmax out of the equation and ask: what parameters could be important in
learning the damage level?

5.2. Dropping the Role of µmax

What about directly learning [Damage] from the inputs without relying on either µmax
or [DI] values? Afterall, this is the ultimate goal: to estimate the needed output based on
the available inputs. An answer is outlined in Tables 4 and 5 and described in the following.
It can be seen that the [Damage] level is learned well from specific parameters. This learning
accuracy is even comparable to that of learning with µmax or [DI].
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Table 4. Highest accuracies achieved in the supervised learning of the most-important parameters
that efficiently estimate the outputs: the case when all six direct inputs are used.

Test Size→
Parameter↓ 20% 30% (Default) 50%

µmax 93% 90≤ acc. ≤92% 89≤ acc. ≤92%
[DI] 93% 91≤ acc. ≤92% 89≤ acc. ≤92%

[Damage] 87≤ acc. ≤90% 87≤ acc. ≤91% 87≤ acc. ≤89%

Table 5. Highest accuracies achieved in the supervised learning of the most-important parameters
that efficiently estimate the outputs: the case when four direct inputs are used with [Ki].

Test Size→
Parameter↓ 20% 30% (Default) 50%

µmax 98% 94% 89≤ acc. ≤92%
[DI] 98% 91≤ acc. ≤92% 89≤ acc. ≤92%

[Damage] 91≤ acc. ≤92% 87≤ acc. ≤91% 87≤ acc. ≤89%

Broadly speaking, it is more effective in reality when one anticipates the damage level
based only on the purely given inputs. This avoids overfitting and unnecessary effects
of the calculated parameters that are usually not readily available. This is the one side of
the coin whose flip side is the closed forms and equations that were presented in earlier
sections. This (i) proves that the earlier equations are applicable and (ii) increases the level
of reliability of our implementations. The inherent relationships among the non-input
parameters are encoded anyway in the calculated [µmax], which is already in a near one-to-
one relation with the [DI] values. The dataset is relatively small, which makes it sensitive
to tiny changes.

Different supervised learning algorithms were applied to learn [DI] from all the
parameters on which µmax depends. An accuracy that ranged from 89% to 92% was
achieved, depending on the type of algorithm used, the training-to-test ratios, and whether
or not the data was normalized. A similar method was performed in order to learn [Damage]
(where relatively better results were obtained).

Using only those six input parameters, it is possible to learn [DI] values as ‘features’,
and we achieved a maximum accuracy of 92% using our default assumptions (i.e., using
a decision tree model and 50% training). Various regressor algorithms and training/test
percentages were also tested but found negligible differences. The range of obtained
accuracies (for different combinations) is overall similar, with maximally ±2% difference,
except in extreme cases, of course. For example, with a training set that is approximately
less than 20%, the accuracy of learning [DI] values drops below 82%. With a testing set
that is as low as 1%, the accuracy could reach 98%. The input combination Inputs[1] was
found to always give the best accuracy, particularly when combined with [Ki], which itself
encodes the two inputs of Inputs[2].

When the four [Damage] levels were learned from [µmax] alone, a 99% accuracy was
achieved. This is very close to the 100% achieved in the cases of the previous subsection.
Unlike the previous subsection, where we included other parameters and [µmax] in the
learning, we learned [Damage] here only from [µmax]. This further supports our earlier
arguments.

With the graph dependency of Figure 5 in mind, we know that [µmax] directly depends
on both [u] and [uy]. However, such dependency is not explicitly visible in the values
of the small dataset (at least not directly visible to a machine learning-based program).
Thus, when we dropped [µmax] and learned [Damage] levels using only [µmax]’s substitutes
(namely: [u] and [uy]), we did not reach 99% accuracy but rather a maximum of 96%
accuracy, which could be improved to 98% with a 10% testing size, but this is not the point
here. The point is that there is now some noise, and the learning model no longer has
enough data samples to link [Damage] with [u] and [uy] in an overfitted way.
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This method of unlinking is continued by replacing one parameter with those it directly
depends on (according to Figure 5) and testing the accuracy of learning the four [Damage]
levels (or the [DI] values) in several ways using several combinations of parameters. In the
following list, we summarize the highest accuracies obtained when some of those possible
combinations were tested. Each item in the following list substitutes a parameter with
those it directly depends on (see also Figure 5):

1. Deciding not to overfit the learning of [DI] or [Damage] from [µmax], we started
learning [Damage] from [µmax] alone: a 99% accuracy was achieved as described.

2. Substituting [µmax] with [u] and [uy] in the previous combination: the maximum
accuracy achieved in learning [Damage] was 96% under our ‘default assumptions’.
Learning the many [DI] values from the same labels achieved a maximum accuracy of
92%. This means (according to our dataset) that it is better to learn [Damage] levels
directly from [u] and [uy] using a decision tree regressor and a test size of 50% than to
learn the nearly one thousand [DI] values (and then use Table 1 to find corresponding
[Damage] levels).

3. Substituting in the previous combination for [uy] (i.e., learning [Damage] from [u],
[Fy], and [Ki]): the maximum accuracy achieved was still 96%. Learning [DI] values
from the same labels achieved a maximum accuracy of 90%. Again, it seems better to
learn [Damage] than to learn [DI] (using the current adjustments and the examined
combination of labels).

4. Substituting [Ki] with [Tn] and [m] in the previous combination: the maximum
accuracy achieved for learning [Damage] from the labels [u], [Fy], [m], and [Tn] was
95%. Learning [DI] values from the same labels achieved a maximum accuracy of 89%

5. Substituting [u] with the remaining four inputs in the previous combination: the
maximum accuracy achieved for learning [Damage] from the labels [w], [R], [Building],
[soil], [Fy], [m], and [Tn] was substantially lowered (from 95% in the previous case)
to 89%. Learning [DI] values from the same labels, on the other hand, increased to a
maximum accuracy of 92%.

6. Maximum accuracy of 89% was maintained even after further reducing [Fy] and
learning [Damage] in terms of only the six direct input parameters.

The existence of [Fy] does not very much affect the accuracy in any of the studied
cases. Remember that [Fy] has exactly two possible different values. One would conjecture
that the ‘decision’ about the damage level is not very much affected by yield force as much
as it is affected by structural stiffness [Ki] in cases of explosion. For this, we tested the cases
where we used neither of the two inputs on which both [Ki] and [u] depend (namely: [Tn]
and [m]), but rather only learned from: (i) Inputs [1], (ii) [Ki], and (iii) [Fy]. The results were
found to be exactly the same whether or not [Fy] was included. In other words, (1) [Damage]
is learned with a maximum accuracy of ≤ 90%; and (2) [DI] is learned with a maximum
accuracy of ≤ 93%. Furthermore, the five labels to learn from (namely Inputs [1] and [Ki])
yield better accuracies than those obtained while using all of six inputs or while using only
‘Inputs [1]’.

To sum up, based on the results in this subsection, it is both normal and advisable to
use only input parameters to estimate a [Damage] level. However, the accuracy of estimation
is empirically at its best when only the five combinations of parameters Inputs [1] and [Ki]
are all included in the learning, while at the same time dropping the parameters [Fy], [Tn],
and [m] (see Tables 4 and 5). Table 4 lists the highest accuracies achieved when learning
µmax, [DI] values, and [Damage] levels when all six input parameters were directly used.
As shown in Table 5, the outcomes were similar when learning was based solely on the
combination of Inputs [1] and [Ki]. It is clear from comparing the results in the two tables
that the latter approach gives better results.

6. Conclusions

The findings of this study shed light on various aspects of the significant problem of
blast-induced structural damage that occurs following explosive events. The aspects are
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investigated in a dual way, coupling ideas from numerical techniques and artificial intelli-
gence. Equations governing the quintessential relations between the problem parameters
are given, along with computer implementations that efficiently estimate damage levels
based on learning of the considered parameters. First, a set of input data that classifies the
state of damage is obtained by deriving closed-form analytical solutions to the nonlinear
equations of motion that govern the responses of the structure under explosive loads. Then,
a quick assessment of the damage state is conducted to identify which items are damaged
and which are not, which helps in developing reconstruction procedures that provide
speedy recovery of damaged structures. The machine learning-based implementations
help in efficiently estimating levels of damage with more than 90% accuracy, and also
provide further insights into relationships between the most important ones of the various
parameters already captured in the given equations.

Explosion tests on structures cannot easily be conducted, yet are literally vital, and
still require more extensive studies that would save time, money, and lives. Although our
approach demonstrates the ability to devise reconstruction strategies based on a relatively
small dataset, we suggest in the future building bigger datasets, enabling this line of
attack to explore properties and learn more of their interrelationships by applying modern
decision-making techniques and hopefully increasing the accuracy level or adopting more-
adequate measures of accuracy.
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