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Abstract: Shear walls are commonly adopted as main structural members to resist vertical and lateral
forces, thanks to their high load capacity and high lateral stiffness. However, their lateral capacity can
be impaired in the presence of openings, which can reduce their lateral load capacity and stiffness. A
possible solution is to cast shear walls using steel-fiber-reinforced concrete (SFRC), which effectively
improves the deformation capacity of shear walls. However, few studies deal with the performance
of such SFRC shear walls in the presence of openings. Moreover, the effect of different axial load
ratios (ALR) is still not fully known. To study these essential parameters, a detailed Finite Element
model has been implemented in ABAQUS. Having validated its accuracy against experimental tests
on four SFRC shear walls, with and without openings, it has been subsequently used in a parametric
study to analyze the effects of different ALRs, of different opening configurations, and of different
reinforcement ratios. It is shown that door openings have a more detrimental effect on the lateral load
capacity than window openings and that higher ALR values switch the prevailing failure mechanism
from flexural to shear, thus reducing both ductility and deformation capacity.

Keywords: steel-fiber-reinforced concrete; shear wall; lateral capacity; openings; axial load ratio;
numerical analysis

1. Introduction

Shear walls are the main structural members to resist vertical and lateral forces in
high-rise buildings in seismic zones, thanks to their high vertical load capacity and high
lateral stiffness and resistance. An important parameter affecting the lateral load and
deformation capacity of shear walls is the axial load ratio (ALR) [1–4]. Shear walls at the
lower stories of high-rise buildings have relatively high axial load ratio (ALR), which may
induce significant damage when combined with horizontal earthquake forces. Particularly,
concrete at the bottom corners can be easily crushed under seismic conditions [5]. Typically,
shear walls are endowed with doors and windows, which often cause stress concentration
around the openings [6]. Moreover, shear walls show a brittle behavior, mainly due to the
low tensile strength of concrete. In this respect, several studies [4,7–10] demonstrate that
the addition of steel fibers can improve the tensile strength of concrete, and show that shear
walls cast using steel-fiber-reinforced concrete (SFRC) exhibit a better deformation capacity.
While, in general terms, the adoption of SFRC may be beneficial for the overall behavior of
shear walls, it is still unclear how this can be affected, both by the presence of openings
and by high ALR.

Useful insight on these issues can be gained from the literature studies referring to
different opening configurations. For example, Zhang et al. [11] conducted experimental
and numerical studies on shear walls, proving that openings have significant influence
on their performance under lateral loads. Popescu et al. [12] reported three experimental
programs on RC shear walls with different opening configurations, which indicate that the
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presence of 25–50% openings produces 36–50% degradation on lateral bearing capacity,
respectively. Experimental tests on four slender shear walls by Massone et al. [13] indicate
that openings with 15–30% of the wall length and with 11–22% of the wall height do not
significantly affect the lateral load capacity of slender walls (in those tests, the overall walls
size was 2650 mm high, 900 mm wide, and 150 mm thick). Other studies investigated the
influence, under cyclic loading, of openings size and position and shear wall height-to-
width ratio. For example, an experimental study by Wang et al. [14] shows that, in case of
eccentric opening locations, the load capacity depends on the loading direction. Hosseini
et al. [6] investigated the structural performance of RC shear walls with different eccentric
openings, showing that differences in the load capacity occurred under both push and
pull loading directions, these differences at peak load being about 2%, 6.2%, and 12.5%,
respectively. However, they did not identify possible reasons for these differences, such as
the influence of steel fiber and reinforcement ratios. Another parameter having a critical
role in the lateral capacity of RC shear walls is ALR. Su et al. [3] investigated the effect of
ALR on shear walls and concluded that ALR not only affects failure mode but also rotation
ductility, strength degradation, and energy dissipation. Alarcon et al. [2] also found that
high ALR has a significant effect on the lateral capacity and failure mode of RC walls. An
experimental study on cantilever wall specimens and corresponding numerical analysis by
Dashti et al. [15] revealed that the effects of ALR on RC structures are complex because it
can easily change the failure mode, e.g., from flexure to shear or flexure–out-of-plane to
flexure–concrete crushing, and it highly depends on other parameters such as the shear–
span ratio. A wide range of investigations has been carried out concerning the effect of
ALR on RC shear walls, but there are few studies on SFRC shear walls with ALR, in view
of the improvement of concrete tensile strength by steel fiber, the effect of ALRs on SFRC
walls is still not clear.

An overview of these studies is given in Table 1, where it can be observed that there
exist a wide range of investigations concerning the effect of both openings and ALR on
RC walls, but also that there are relatively few studies dealing with the role of openings in
SFRC shear walls under variable ALR. Since SFRC can improve the overall response with
respect to traditional concrete, it is essential to perform some studies aimed at clarifying
such aspects. This study brings a contribution in filling this research gap. The methodology
adopted foresees to set up four finite element (FE) models representing the four SFRC shear
walls tested by Huang [16]. Subsequently, after having calibrated these FE models against
those experimental results and having assessed their accuracy, the models were modified
by changing the openings configuration, the ALR, and the reinforcement ratio, so to explore
other situations not considered in the original experimental study.

The main outcomes of this study can be summarized as follows: (1) a practical SFRC
constitutive law has been compiled from a series of studies, which can capture the stress–
strain relationship of SFRC in compression and in tension, (2) a detailed and accurate
FE model has been implemented in ABAQUS, which can be used as a basis for further
parametric studies, (3) the main parameters affecting the lateral capacity of SFRC shear
walls have been identified, e.g., openings, ALR, and reinforcement ratio, (4) a matrix is
proposed to classify failure modes in SFRC shear walls, and (5) a design scheme is proposed,
accounting for the presence of window and door openings.
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Table 1. Overview of the literature studies on shear walls.

Ref
Concrete

Type
Exp Num Equ

ALR
Computed

According to
Openings

Equation (20) Equation (21) No Win Door

[17] RC
√ √ √

[18] RC
√ √

−0.1, 0.3, 0.5 -
√

[19] RC
√ √

0.03 0.06
√

[20] RC
√ √

0.013, 0.016, 0.013 0.039, 0.049, 0.029
√

[21] RC
√ √

0.1, 0.2, 0.3 -
√

[22] RC
√ √

0.0
√ √ √

[23] RC
√

0.15 -
√

[6] RC
√

0.0
√ √

[24] RC
√ √

0.1 -
√ √

[25] RC
√

0.08, 0.13 -
√

[26] RC
√

0.0
√

[11] RC
√ √

0.090, 0.092 -
√ √

[13] RC
√ √

0.07 -
√

[12] RC
√

-
√ √

[2] RC
√

0.15, 0.25, 0.35 -
√

[4] RC, SFRC
√ √

- 0.4, 0.6
√

[27] RC, SFRC
√ √

0.0
√

[28] RC, SFRC
√ √

- 0.3
√

[29] SFRC
√ √

0.1 -
√

[16] SFRC
√ √

0.0
√ √ √

[30] SFRHSC
√ √

- 0.2, 0.6, 0.8
√

[31] UHPFRC
√

0.0
√

[32] UHPFRC
√ √

0.1 -
√

[33] UHPFRC
√ √

0.0
√

[34] RC
√ √ √

[35] RC
√ √ √

[36] RC
√ √ √

RC: Reinforced Concrete, SFRC: Steel-Fiber-Reinforced Concrete, UHPFRC: Ultra-High-Performance-Fiber Re-
inforced Concrete, SFRHSC: Steel-Fiber-Reinforced High Strength Concrete. Exp: Experimental study, Num:
Numerical analysis, Equ: Capacity equations, ALR: Axial Load Ratio, Win: Window, (-) denotes that the corre-
sponding ALR was not considered in the reference.

2. Finite Element Models Used in the Parametric Study

The parametric study presented in the following section has been performed by means
of a set of finite element (FE) models, developed in ABAQUS. These models have been
chosen to have the same geometry, detailing, and material properties as the specimens of a
series of tests conducted by Huang [16]. After some sensitivity analyses, they have been
calibrated so to accurately reproduce those experimental results. Once their accuracy has
been ascertained, these models have been used in the parametric study to assess the effects
of eccentric openings and different ALR values, including a case with eccentric opening
and low reinforcement ratio. In this section, details regarding the FE model are given, while
the parametric study is presented in the following chapter.

2.1. Tests Conducted by Huang [16]

Huang [16] conducted a series of tests on four different SFRC shear walls, all under
ALR = 0. Each specimen consisted of a base beam, a wall, with or without opening, and a
top beam. The detailed geometry and reinforcement of the reference specimens are shown
in Figure 1, while the material constitutive laws are presented in the following section.
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Figure 1. Geometry and reinforcement of the specimens tested by [16]: (a) SFW, (b) SFW60, (c) SFWO,
(d) SFWCD. These specimens were used to calibrate the FE models.

2.2. SFRC Constitutive Law
2.2.1. Uniaxial Compression Stress-Strain Relationship

Cylindrical compressive strength fc,cyl of SFRC with hooked-end steel fibers can be
obtained either directly from 150 × 300 mm cylinder tests or, if 150 × 150 × 150 mm cubic
compressive strength fcu is available, from:

fc,cyl =

{
0.83 fcu
fcu − 10

30 MPa ≤ fcu ≤ 50 MPa
50 MPa < fcu ≤ 90 MPa

(1)

Some parameters describing the SFRC used in this study are listed in Table 2.
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Table 2. Parameters of the SFRC used in this study.

Cylindrical compressive strength, fc,cyl 65.7 MPa
Volume fraction of the fiber, Vf 1.5%

Length of the fiber, l f 30 mm
Diameter of the fiber, d f 0.38 mm

Tensile strength of the fiber 2300 MPa

From these parameters, the fiber reinforcement index is defined as:

RI = Vf
l f

d f
(2)

Extensive experimental and analytical studies on SFRC have been carried out [8,9,37–43].
In [9] a comparison study is reported of different stress-strain equations proposed in the
literature, validated versus experimental stress-strain curves. It was found that the one
proposed in [38] shows a good agreement and is therefore adopted here, with a slight
modification of the elastic stage, as follows:

ε0 = (0.0003RI + 0.0018) f 0.12
c,cyl (3)

Ec = (−367RI + 5520) f 0.41
c,cyl (4)

σc =

{
εcEc εc/ε0 < 1/3

fc,cyl
A(εc/ε0)

A−1+(εc/ε0)
B εc/ε0 ≥ 1/3 (5)

A =

{
B = ε0Ec

ε0Ec− fc,cyl
εc/ε0 ≤ 1

1 + 0.723 RI−0.957 εc/ε0 > 1
(6)

B = max

{( fc,cyl

50

)0.064(
1 + 0.882RI−0.882

)
, A

}
εc/ε0 > 1 (7)

where ε0 is the strain at compressive strength, and Ec is the undamaged elastic modulus.

2.2.2. Uniaxial Tension Stress-Strain Relationship

The tensile strength of concrete is estimated as:

ft = 0.56 f 0.5
c,cyl (8)

The tensile stress-strain relationship of steel-fiber-reinforced concrete developed
by [37] is adopted here:

σt = (1− d)Ec(εt − εpl) (9)

d =

{
0

a + be−cεt×106
εt ≤ εtu
εt > εtu

(10)

a = 1− 0.226RI (11)

b = −1 + 0.238RI (12)

c = 0.001 + 0.242e−10RI (13)

εpl =

{
0

0.987εt − 78.291 · 10−6
εt ≤ εtu
εt > εtu

(14)

εtu =
ft

Ec
(15)
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where εpl and εtu are the plastic strain and the strain corresponding to the tensile strength,
respectively.

2.3. Reinforcing Bars Constitutive Law

The reinforcing bars are described by a typical elastic-plastic stress-strain law, whose
parameters are listed in Table 3.

Table 3. Mechanical properties of reinforcing bars.

ID Diameter
(mm) Area (mm2)

Yield
Strength fy

(MPa)

Yield Strain
εy

Elastic
Modulus

(GPa)

Ultimate Tensile
Strength fu

(Mpa)

Ultimate
Tensile

Strain εu

4 12.7 126.7 858 0.0039 220 1034 0.04
5 15.9 198.5 826 0.0038 217 1016 0.04
6 19.1 286.5 471 0.0024 196 696 0.04

2.4. Finite Element Type and Mesh

The SFRC is modeled with solid elements (C3D8R), along with a Concrete Damage
Plasticity (CDP) Model. A variety of damage parameters proposed in [44–50] were exam-
ined and, after comparing their relative accuracy, those used in [46] were selected. The
adopted damage variables, Dc and Dt, vary between 0 (undamaged) and 1 (fully damaged),
as follows:

Dc = 1− σc

0.2εin
c Ec + σc

(16)

Dt = 1− σt

ft
(17)

εin
c = εc −

σc

Ec
(18)

εck
t = εt −

σt

Ec
(19)

where εin
c is the inelastic strain, εck

c is the cracking strain, and Ec is the undamaged elastic
modulus. Additional parameters of the CDP model are in Table 4.

Table 4. Plasticity parameters used in the CDP model.

Dilation angle, ψ(◦) 30
Eccentricity, ε 0.1

Stress ratio, fb0/ fc0 1.16
Shape of the yielding surface, Kc 0.6667

Viscosity coefficient, µ 0.001

The optimal mesh was selected after a comparison among three different concrete
grids (Table 5) in terms of crack pattern (Figure 2) and load-displacement curve (Figure 3).
The selected mesh (concrete grid = 50), shown in Figure 4 and Table 6, is a reasonable
compromise between accuracy and computational time. These conclusions also apply to
the models of the other three walls, whose comparisons in terms of load–displacement
curves are not shown in this section for the sake of space. However, they can be found in
the next section, within the parametric analyses.
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Table 5. Comparison of computational time among different concrete grids.

Concrete Grid (mm) Computational Time (min)

40 104
50 85
70 67
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Table 6. Parameters of finite element type and mesh.

ID Concrete FE
Type

Reinforcing
Bars FE Type

Concrete Grid
(mm)

Steel Bars Grid
(mm)

Top Beam C3D8R T3D2 200 100
Wall C3D8R T3D2 50 50

Base beam C3D8R T3D2 200 100

2.5. Boundary Conditions and Load Application

The schematic illustration of the test setup geometry is shown in Figure 5, and the
corresponding boundary condition and loading position and direction is shown in Fig-
ure 6. For the application of horizontal loading, in order to simulate the actual boundary
conditions and avoid stress concentration, a point (the height of the point from the base
top surface is 2030 mm) located on the side surface of the top beam is coupled with the
four vertical planes of the top beam (Figure 7a). The steel reinforcement (T3D2 truss el-
ements) is embedded within the concrete elements and fully bonded to them, as shown
in Figure 7b. The analyses are carried out in three steps: (1) the bottom beam is fixed at
the base (Figure 8), (2) a constant vertical load is applied (Figure 8a), (3) the horizontal
load is applied (Figure 8b). The loading history of reference experimental study is shown
in Table 7. It is worth noticing that, while in the reference tests each level was cycled
three times, in the numerical analyses the load was applied monotonically to reduce the
computational time. This implies that the accumulated damage in each cyclic sequence
was neglected. However, because the comparisons carried out in the following section are
based on monotonic quantities, the ensuing considerations can be maintained.
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Figure 8. Application of loads (a) vertical load of FE model; (b) horizontal load of FE model.

Table 7. Loading history of experimental tests [16] in terms of top displacements and drifts.

Disp (mm) Drift (%) (=Disp/2030 mm)

2.54 0.125
5.08 0.25
7.61 0.375
10.15 0.5
15.23 0.75
20.30 1
30.45 1.5
40.60 2
60.90 3
81.20 4

3. Validation of the Finite Element Models and Numerical Analysis

In this section, numerical analyses are presented to explore the effects on the lateral
response of SFRC shear walls of different ALRs, of different openings configurations, and
of different reinforcement ratios. In these analyses, the FE models presented in the previous
section were used, after being calibrated against the experimental tests by Huang [16].
Having obtained accurate predictions for all four tests considered, the FE models were then
used to model the response of SFRC walls under different combinations, not considered in
previous experimental tests, of ALR, openings, and reinforcement ratio (Table 8).
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Table 8. Cases considered in the parametric study.

ID
ALR

Opening Reinforcement
Ratio0.00 0.15 0.35 0.55

SFW V, P P P P No Normal
SFW60 V, P P P P No Low

SFWO V, P P P P Center
window Normal

SFWCD V, P P P P Center
door Normal

SFWEO P P P P Eccentric
window Normal

SFWED P P P P Eccentric
door Normal

SFWEO60 P - - - Eccentric
window Low

SFWED60 P - - - Eccentric
door Low

V = experimental validation, P = parametric study.

3.1. Specimens for the Parametric Study

The specimens considered in the parametric study are shown in Figure 9 and ALRs of
SFRC shear walls are list in Table 9.
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Figure 9. Geometry and reinforcement of the specimens for the parametric study: (a) SFWEO,
(b) SFWED, (c) SFWEO60, (d) SFWED60, in addition to those shown in Figure 1.

Table 9. ALRs of SFRC shear walls.

ALR
fc,cyl

(MPa)
Acb

(mm2)
N

(kN)

0.0 65.7 120,000 0
0.15 65.7 120,000 1183
0.35 65.7 120,000 2759
0.55 65.7 120,000 4336

Axial Load Ratio (ALR)

The ALR is one of the main parameters considered in the parametric analyses. Two
definitions (Figure 10) can be adopted for ALR: (1) considering the whole cross-section,
Equations (20) and (2) considering only the boundary elements, Equation (21). In this study,
the latter is adopted and four values, 0.0, 0.15, 0.35, and 0.55, are considered.

ALR =
N

fc,cyl Ac
(20)

ALR =
N

fc,cyl Acb
(21)
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3.2. Classification of Failure Modes

Starting from the classification of failure modes in RC shear walls by Paulay et al. [51]
and by Zhang et al. [52], some further elaborations are presented hereafter. Failure modes
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occurring in RC walls depend on size, reinforcement arrangement, and material prop-
erties [51]. Lateral loading in SFRC shear walls generates bending moment and shear,
which cause flexural failure and shear failure. Thus, the actual failure mode results from a
combination of these two modes. A matrix is hereafter proposed to classify the shear wall
failure modes, as shown in Table 10, where it can be noticed that:

(1) Flexural failure modes can be divided into four damage levels:

a. Undamaged (F0);
b. With sub-horizontal flexural cracks (F1);
c. With sub-horizontal flexural cracks and corner concrete crushing (F2);
d. With sub-horizontal flexural cracks and base concrete crushing (F3).

(2) Shear failure modes can be divided into four damage levels:

a. Undamaged (S0);
b. With diffused diagonal shear cracks (S1);
c. With wide diagonal shear cracks (S2);
d. With significant diagonal compression crushing (S3).

Table 10. Matrix of shear wall failure modes and corresponding damage levels (N.B. To the author’s
knowledge, F3 and S2 and F3 and S3 failure modes rarely occur).

Flexure-Induced Damage Levels
F0 F1 F2 F3
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3.2.1. Specimen SFW (No Opening, Normal Reinforcement Ratio)

Figure 11 shows the failure mode of the reference specimen SFW, which is a com-
bination of F3 and S1. The test terminates at drift ratio of 4%, with a displacement of
81.2 mm.
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Figure 11. Specimen SFW: failure mode. (a) Failure mode photo [16]. (b) Failure mode schematic.

Figure 12 shows the comparison of the skeleton curves between test and numerical
results. With ALR = 0.0, a good agreement is achieved. As ALR increases, the lateral load
capacity and stiffness increase and show a positive correlation with ALR while its post-peak
stage, higher ALRs result in decrease in lateral load capacity. In the end of post-peak stage,
the relationship between lateral load capacity and ALRs is reversed, showing a negative
correlation.
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Figure 12. Specimen SFW: comparison of skeleton curves between test and numerical results. (*)
denotes that the data were obtained from the experimental tests by Huang [16].

Table 11 presents the comparison of the strain distributions and crack patterns of
specimen SFW between the numerical results with ALR = 0.0 and with ALR = 0.55. It
is found that the flexural damage level decreases (the flexural cracks widths and the
flexure-induced strains decrease), while the shear damage level increases (the shear cracks
widths and the flexure-induced strains increase), indicating that higher ALR values shift
the prevailing failure mechanism from flexural to shear.
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Table 11. Specimen SFW: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0
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3.2.2. Specimen SFW60 (No Opening, Low Reinforcement Ratio)

Figure 13 shows the failure mode of the reference specimen SFW60, which is a combi-
nation of F1 and S2 (also known as diagonal compression failure). The test ends at drift
ratio of 2%, with a displacement of 40.6 mm. Compared to specimen SFW, it is found that
low reinforcement ratio results in two significant diagonal cracks across the wall, which
indicate an increase in shear damage level.
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shear and low reinforcement ratio reduces the resistance to shear damage. 

  

(a) (b) 

Figure 13. Specimen SFW60: failure mode. (a) Failure mode photo [16]. (b) Failure mode schematic.

Figure 14 shows the comparison of the skeleton curves between test and numerical
results. As ALR increases, significant increase in load capacity and stiffness is observed;
however, the skeleton curve of SFW60 shows a steeper post-peak degradation than SFW.
This is because higher ALRs switch the prevailing failure mechanism from flexural to shear
and low reinforcement ratio reduces the resistance to shear damage.
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3.2.3. Specimen SFWO (Center Window Opening, Normal Reinforcement Ratio) 

Figure 15 shows the failure mode of the reference specimen SFWO, which is a com-

bination of F1 and S2. The test ends at drift ratio of 2%, with a displacement of 40.6 mm. 

Figure 14. Specimen SFW60: comparison of skeleton curves between test and numerical results. (*)
denotes that the data were obtained from the experimental tests by Huang [16].

Table 12 presents the comparison of the strain distributions and crack patterns of
specimen SFW60 between the numerical results with ALR = 0.0 and ALR = 0.55. It is found
that the flexural damage level decreases (the flexural cracks widths and the flexure-induced
strains decrease), while the shear damage level increases (the shear cracks widths and the
flexure-induced strains increase).

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

ALR =
0.55

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

Buildings 2022, 12, x FOR PEER REVIEW 3 of 6 
 

Table 12. Specimen SFW60: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

21 

 

22 

 

23 

 

ALR = 0.55 

24 

 

25 

 

26 

 

 

  

3.2.3. Specimen SFWO (Center Window Opening, Normal Reinforcement Ratio)

Figure 15 shows the failure mode of the reference specimen SFWO, which is a combi-
nation of F1 and S2. The test ends at drift ratio of 2%, with a displacement of 40.6 mm.
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Figure 15. Specimen SFWO: failure mode. (a) Failure mode photo [16]. (b) Failure mode schematic.

Figure 16 shows the comparison of the skeleton curves between test and numerical
results. Compared to SFW, specimen with door opening does not show significant decrease
in lateral load capacity. As ALR increases, the lateral load capacity and stiffness of the shear
wall increase while the deformation capacity decreases.
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Figure 16. Specimen SFWO: comparison of skeleton curves between test and numerical results. (*)
denotes that the data were obtained from the experimental tests by Huang [16].

Table 13 presents the comparison of the strain distributions and crack patterns of
specimen SFWO between the numerical results with ALR = 0.0 and ALR = 0.55. In this
latter case, the high strain and damage index concentrates within the diagonal area around
the opening of the shear wall. Moreover, the highest strain occurs at the upper corner and
bottom corner of the center window opening. The results show that the shear damage
domains the failure pattern for the shear wall with ALR = 0.55.
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Table 13. Specimen SFWO: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0
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3.2.4. Specimen SFWCD (Center Door Opening, Normal Reinforcement Ratio)

Figure 17 shows the failure mode of the reference specimen SFWCD, which is a
combination of F2 and S2. The test ends at drift ratio of 3%, with a displacement of
60.9 mm.
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men with door opening does not show significant decrease with ALR increases. Therefore, 
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Figure 17. Specimen SFWCD: failure mode. (a) Failure mode photo [16]. (b) Failure mode schematic.

Figure 18 shows the comparison of the skeleton curves between test and numerical
results. As ALR increases, the shear wall lateral load capacity and stiffness increase, but
the deformation capacity does not decrease significantly. This is because two slender wall-
branches on both sides of the door opening form flexural bearing system, thus contributing
to the overall deformation capacity. Compared to SFWO, the ductility of this specimen with
door opening does not show significant decrease with ALR increases. Therefore, window
openings can be replaced by door openings with flexible materials fill the bottom space of
door openings, which not only satisfies the needs of architectural functions of windows but
also benefits the lateral ductility and deformation capacity of the shear wall.
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Table 14 presents the comparison of the strain distributions and crack patterns of
specimen SFWCD between the numerical results with ALR = 0.0 and ALR = 0.55. It is
found that the flexural damage level decreases (the flexural cracks widths and the strain
caused by flexural failure decrease), while the shear damage level increases (the shear
cracks widths and the strain caused by flexural failure increase).

Table 14. Specimen SFWCD: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0
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3.2.5. Specimen SFWEO (Eccentric Window Opening, Normal Reinforcement Ratio) and
SFWEO60 (Eccentric Window Opening, Low Reinforcement Ratio)

Table 15 shows the failure mode of the numerical specimen SFWEO, which is a
combination of F1 and S2. The numerical test ends at a drift ratio of 2%, with a displacement
of 40.6 mm. Table 15 presents the comparison of the strain distributions and crack patterns
of specimen SFWEO between the numerical results with ALR = 0.0 and ALR = 0.55. In this
latter case, it is found that the flexural damage level is decreased (the flexural cracks widths
and the strain caused by flexural failure decrease), while the shear damage level increases
(the shear cracks widths and the strain caused by flexural failure increase).
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Table 15. Specimen SFWEO: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0
Force (+)
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Figure 19 shows the comparison of the skeleton curves between numerical results of
SFWEO and experimental results of SFW and SFWO. It is found that in case of eccentric
window opening, the load capacity does not significantly depend on the loading direction,
which could be explained by the improvement of concrete tensile strength by steel fiber. To
further discover the reasons, this paper study the effect of reinforcement ratio. Figure 20
shows the comparison of the skeleton curves between numerical results of SFWEO and
SFWEO60. It is found that as reinforcement ratio decreases, the differences in the lateral
load capacity under push and pull loading directions increases.



Buildings 2022, 12, 2032 20 of 27

Buildings 2022, 12, x FOR PEER REVIEW 19 of 26 
 

ALR = 0.0 

Force (−) 

   

ALR = 0.55 

Force (−) 

   

Figure 19 shows the comparison of the skeleton curves between numerical results of 

SFWEO and experimental results of SFW and SFWO. It is found that in case of eccentric 

window opening, the load capacity does not significantly depend on the loading direc-

tion, which could be explained by the improvement of concrete tensile strength by steel 

fiber. To further discover the reasons, this paper study the effect of reinforcement ratio. 

Figure 20 shows the comparison of the skeleton curves between numerical results of 

SFWEO and SFWEO60. It is found that as reinforcement ratio decreases, the differences 

in the lateral load capacity under push and pull loading directions increases. 

 

Figure 19. Specimen SFWEO: comparison of skeleton curves between numerical results of SFWO 

and SFWEO. (*) denotes that the data were obtained from the experimental tests by Huang [16]. 

 

Figure 19. Specimen SFWEO: comparison of skeleton curves between numerical results of SFWO
and SFWEO. (*) denotes that the data were obtained from the experimental tests by Huang [16].

Buildings 2022, 12, x FOR PEER REVIEW 19 of 26 
 

ALR = 0.0 

Force (−) 

   

ALR = 0.55 

Force (−) 

   

Figure 19 shows the comparison of the skeleton curves between numerical results of 

SFWEO and experimental results of SFW and SFWO. It is found that in case of eccentric 

window opening, the load capacity does not significantly depend on the loading direc-

tion, which could be explained by the improvement of concrete tensile strength by steel 

fiber. To further discover the reasons, this paper study the effect of reinforcement ratio. 

Figure 20 shows the comparison of the skeleton curves between numerical results of 

SFWEO and SFWEO60. It is found that as reinforcement ratio decreases, the differences 

in the lateral load capacity under push and pull loading directions increases. 

 

Figure 19. Specimen SFWEO: comparison of skeleton curves between numerical results of SFWO 

and SFWEO. (*) denotes that the data were obtained from the experimental tests by Huang [16]. 

 

Figure 20. Specimen SFWEO60: comparison of skeleton curves between numerical results of SFWEO
and SFWEO60. (*) denotes that the data were obtained from the experimental tests by Huang [16].

3.2.6. Specimen SFWED (Eccentric Door Opening, Normal Reinforcement Ratio) and
SFWED60 (Eccentric Door Opening, Low Reinforcement Ratio)

Table 16 shows the failure mode of the numerical specimen SFWED, which is a
combination of F2 and S2. The numerical test ends at a drift ratio of 3%, with a displacement
of 60.9 mm. Table 16 presents the comparison of the strain distributions and crack patterns
of specimen SFWED between the numerical results with ALR = 0.0 and ALR = 0.55. It is
found that the flexural damage level decreases (the flexural cracks widths and the strain
caused by flexural failure decrease), while the shear damage level increases (the shear
cracks widths and the strain caused by flexural failure increase). The largest compressive
damage moves from the shear wall bottom to mid-height.
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Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage
indices.

Strain Distribution Damage Index Dt Damage Index Dc

ALR = 0.0
Force (+)

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

ALR =
0.55

Force (+)

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

ALR = 0.0
Force (−)

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

ALR =
0.55

Force (−)

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 

Buildings 2022, 12, x FOR PEER REVIEW 6 of 6 
 

Table 16. Specimen SFWED: strain distributions and crack patterns as represented by the damage 

indices. 

 Strain Distribution Damage Index tD  Damage Index cD  

ALR = 0.0 

Force (+) 

51 

 

52 

 

53 

 

ALR = 0.55 

Force (+) 

54 

 

55 

 

56 

 

ALR = 0.0 

Force (−) 

57 

 

58 

 

59 

 

ALR = 0.55 

Force (−) 

60 

 

61 

 

62 

 

 
Figure 21 shows the comparison of the skeleton curves between numerical results of

SFWED and experimental results of SFW and SFWCD. As ALR increases, the lateral load
capacity and stiffness of the shear wall increase, while the deformation capacity does not
decrease significantly. This is because two slender walls-branches form on both sides of the
door opening, thus contributing to the overall deformation capacity. Figure 22 shows the
comparison of the skeleton curves between numerical results of SFWED and SFWED60. It
is found that as reinforcement ratio decreases, the differences in the lateral load capacity
under push and pull loading directions increases, compared to window openings, these
differences of door openings are more significant.
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3.3. Estimate of Ductility

Ductility expresses the deformation capacity of structures in the plastic range. The
ductility index µd is defined as:

µd = Du/Dy (22)

where Du is the ultimate displacement, here defined at 0.85 of post-yield peak load, Dy is
the displacement at yield load, defined as the point where tension reinforcement yields,
while the post-yield peak load is defined as the maximum load in the post-yield branch
(Figure 23).

Table 17 presents the comparison of the ductility indices calculated from the numerical
results.

Figure 24 presents the comparison of the ductility capacity of specimens among the
numerical results with ALR = 0.0, 0.15, 0.35, and 0.55. It is found that as ALR increases, the
ductility capacity of the walls decreases. The decrease in the entire transverse reinforcement
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in specimen SFW60, both in the end portions and in the center wall, gives a decrease in
ductility compared with SFW. In cases of eccentric openings, the ductility capacity is
affected by the loading direction. The ductility capacity in the presence of center opening
lies between the two ductility capacities (+ and −) of the cases with eccentric openings.

Table 17. Ductility index of SFRC shear walls specimens.

ID Force
Direction ALR

Yield Point Post-Yield Peak Point Ultimate Point Ductility
Index

Drift
Ratio at

Yield
(%)

Yield
Force
(MN)

Drift Ratio
at

Post-Yield
Peak (%)

Post-Yield
Peak Force

(MN)

Drift
Ratio at
Ultimate

(%)

85% of
Post-Yield
Peak Force

(MN)

µd (=Du/Dy)

SFW (+), (−)

0 0.50 1.70 1.90 1.80 3.10 1.53 6.2
0.15 0.48 2.00 1.55 2.05 2.40 1.74 5.0
0.35 0.42 2.30 1.00 2.20 2.05 1.87 4.9
0.55 0.39 2.70 0.90 2.30 1.70 1.96 4.4

SFW60 (+), (−)

0 0.53 1.70 1.70 1.60 3.70 1.36 7.0
0.15 0.48 2.00 1.40 1.70 2.40 1.45 5.0
0.35 0.43 2.30 1.00 1.90 2.00 1.62 4.7
0.55 0.40 2.70 0.80 2.00 1.60 1.70 4.0

SFWO (+), (−)

0 0.40 1.20 1.40 1.50 4.00 1.28 10.0
0.15 0.35 1.40 1.10 1.60 1.90 1.36 5.4
0.35 0.30 1.60 0.80 1.70 1.45 1.45 4.8
0.55 0.30 1.80 0.60 1.80 1.40 1.53 4.7

SFWEO

(+)

0 0.30 1.00 0.80 1.35 3.40 1.15 11.3
0.15 0.23 1.25 0.75 1.50 2.50 1.28 10.9
0.35 0.25 1.55 0.73 1.70 1.50 1.45 6.0
0.55 0.30 1.80 0.70 1.80 1.50 1.53 5.0

(−)

0 −0.40 −1.20 −0.90 −1.40 −3.20 −1.19 8.0
0.15 −0.35 −1.40 −0.80 −1.60 −1.90 −1.36 5.4
0.35 −0.33 −1.70 −0.75 −1.70 −1.45 −1.45 4.4
0.55 −0.35 −1.95 −0.70 −1.80 −1.15 −1.53 3.3

SFWCD (+), (−)

0 0.35 0.90 1.30 1.20 3.00 1.02 8.6
0.15 0.30 1.20 0.90 1.35 2.20 1.15 7.3
0.35 0.30 1.45 0.80 1.55 1.60 1.32 5.3
0.55 0.35 1.70 0.60 1.70 1.55 1.45 4.4

SFWED

(+)

0 0.45 0.90 2.00 1.30 4.00 1.11 8.9
0.15 0.40 1.20 1.70 1.40 3.80 1.19 9.5
0.35 0.38 1.40 1.00 1.50 2.60 1.28 6.8
0.55 0.35 1.60 0.70 1.60 2.30 1.36 6.6

(−)

0 −0.60 −1.20 −1.20 −1.25 −2.80 −1.06 4.7
0.15 −0.40 −1.44 −0.80 −1.44 −1.80 −1.22 4.5
0.35 −0.35 −1.60 −0.80 −1.60 −1.55 −1.36 4.4
0.55 −0.35 −1.80 −0.95 −1.70 −1.35 −1.45 3.9
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Figure 23. Example of determination of displacements at yield, post-yield peak load, and ultimate.
(*) denotes that the data were obtained from the experimental tests by Huang [16].
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4. Conclusions

A numerical investigation of the lateral capacity of shear walls made of steel-fiber-
reinforced concrete (SFRC) was carried out, with the purpose of studying the effects,
both of door and window openings, and of the axial load ratio (ALR). For the numerical
investigation, finite element models were implemented based on the SFRC walls tested
by Huang [16], which served as benchmark to calibrate their accuracy. After assessing
the numerical model accuracy, a set of parametric analyses was carried out to study the
effects of the ALR, of different opening configurations, and of the reinforcement ratio.
Load–displacement curves, failure modes, crack patterns, and strain distributions were
used as terms of comparison. The main conclusions of this study can be summarized as
follows:

1. A classification of the shear wall failure modes is proposed, where it is observed that,
as ALR increases, the flexural-induced damage decreases, while the shear-induced
damage increases, thus reducing both ductility and deformation capacity, as shown in
the last section.
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2. As ALR increases, both lateral load capacity and stiffness increase and show a positive
correlation with ALR while in the final post-peak stage, the relationship between
lateral load capacity and ALRs is reversed, showing a negative correlation.

3. Even in the presence of window or door openings, and with ALR up to 0.55, the
specimens still show relatively good lateral load and deformation capacity, thanks to
the improvement introduced by the SFRC.

4. In general, window openings tend to reduce the lateral deformation capacity, while
door openings tend to reduce the lateral load capacity. Therefore, if the lateral de-
formation capacity is of concern, window openings can be preferably obtained from
door openings with a flexible infill at the bottom.

5. In the case of eccentric openings, as the reinforcement ratio decreases, the difference
in the lateral load capacity in opposite directions increases. This phenomenon is more
significant with door than with window openings.

Having ascertained the role of the parameters considered in this paper, further studies
are currently under way to explore the role of other parameters, for example, the ratio
between the openings size and the shear wall size.
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