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Abstract: This paper conducts a parametric analysis on the response of geopolymer-based ultra-
high-performance concrete (G-UHPC) slabs reinforced with steel wire mesh (SWM) subjected to
contact explosions using the validated Continuous Surface Cap (CSC) model. Firstly, based on
the available experimental data, the CSC model parameters, which account for the yield surface,
damage formulation, kinematic hardening, and strain rate effect, were comprehensively developed
for G-UHPC. The modified CSC model was initially assessed by comparing the quasi-static test
results of G-UHPC. Then, the numerical modeling was performed on 200 mm thick SWM-reinforced
G-UHPC slabs against 0.4 kg and 1.0 kg TNT contact explosions. The fair agreement between
the numerical and experimental data concerning the local damage of the slabs was reported to
demonstrate the applicability of the material and structural models. With the validated numerical
models, a parametric study was further acted upon to explore the contribution of the variables of
SWM, slab thickness, and TNT equivalence on the local damage and energy evolution of G-UHPC
slabs subjected to contact blasts. Moreover, based on simulation results from the parametric study,
an updated empirical model was derived to evaluate the local damage pattern and internal energy
absorption rate of SWM-reinforced G-UHPC slabs.

Keywords: continuous surface cap (CSC) model; geopolymer based ultra-high-performance concrete
(G-UHPC); contact explosion; steel wire mesh (SWM); parametric study

1. Introduction

In recent years, hazardous loads induced by various blast accidents have been a
serious concern in civil and military constructions [1–5]. Under close-in or contact explo-
sions, normal concrete typically exhibits brittle failure with highly localized damage due
to the low material strength and ductility [6–8]. To strengthen the resistance of concrete
structures against close-in and contact explosions, advanced concrete materials, e.g., en-
gineered cementitious composites (ECC), ultra-high-performance concrete (UHPC), etc.,
have undergone extensive development and investigation over the last few decades [9–11].
Compared to normal concrete, the advanced concrete materials exhibited superior dynamic
material strength, toughness, and energy absorption capacity due to the existence of fiber
reinforcement, which could effectively restrain the propagation of blast stress waves within
the concrete structures [12].

With the global focus on sustainability in civil and military constructions, a geopolymer
binder system is deemed to be an alternative to the conventional Portland cement in the
concrete mixture [13–15] since the manufacture of geopolymer can consume less energy
and produce lower levels of carbon dioxide. After continuous development in these
decades, the raw materials of geopolymer include natural minerals, e.g., kaolin, metakaolin,
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etc., and industrial by-products, e.g., fly ash, granulated blast furnace slag, red mud,
etc. [16,17]. To activate the aluminosilicates in geopolymer and trigger the formation of
the binding structure, alkaline activators, e.g., sodium hydroxide and sodium silicate,
potassium hydroxide and potassium silicate, etc., are essential. Recently, efforts have been
made to the utilization of the geopolymer binder for the mix design of UHPC with steel
fiber reinforcement [18–20]. Existing studies also confirmed that the geopolymer-based
ultra-high performance concrete (G-UHPC) had comparable static performance to the
Portland-cement-based UHPC (PC-UHPC) [19,21] and superior blast resistance to normal
concrete [22], especially when more steel fibers were adopted within a reasonable range.
However, it is worth noting that excessive steel fibers may cause workability and cost
issues for G-UHPC [23]. Moreover, it is of great difficulty to ensure the uniform and
random distribution of excessive steel fibers within G-UHPC due to the fast setting of the
mixture [24].

To solve the workability, cost, and fast-setting issues, SWM can be considered as an
alternative reinforcement scheme in G-UHPC to resist blast loads. Thus far, many studies
have been carried out to prove the effectiveness of SWM-reinforced concrete with less or
no coarse aggregates to tolerate blast loads. Li et al. [25–27] tested the local damage of
concrete slabs reinforced with SWM subjected to blast loads via a series of experiments
and numerical studies. These studies confirmed that SWM could help strengthen the blast
resistance of concrete slabs owing to the local membrane effect. Moreover, SWM with a close
spacing was effective in inhibiting the blast wave propagation, thereby contributing to the
less concrete crater and scabbing damage. Meng et al. [28,29] investigated SWM reinforced
high strength geopolymer concrete plates under medium and far-field blasts, wherein it was
found that SWM could increase the ductility of the concrete slabs and the efficiency of blast
force transmission as compared to the steel rebars. Liu et al. [30] examined the resistance of
SWM-reinforced high-performance geopolymer concrete walls to medium field explosions.
The test results demonstrated that SWM-reinforced performance geopolymer concrete walls
exhibited less brittle injury and latitudinally deflection in comparison with the traditional
reinforced concrete walls. In a later study by Liu et al. [31], SWM was incorporated into the
G-UHPC slab, and its resistance to contact explosions concerning the crater and scabbing
damage was examined. Although SWM was reported to significantly decrease the local
damage area and maintain the structural integrity, the efficiency and effectiveness of SWM
parameters on the resistance of G-UHPC slabs subjected to contact explosion still need a
further comprehensive investigation.

In order to allow for a more detailed analysis of the dynamic behavior of SWM-
reinforced G-UHPC structures against blast loads, numerical simulations can be advanta-
geously performed as a favorable supplement to the physical tests. For the high-fidelity
numerical simulation of the blast response, a suitable material model which can accom-
modate the dynamic behavior of G-UHPC is generally required. In the commercial finite
element software LS-DYNA, a number of constitutive concrete models, e.g., Elastic Plastic
Hydrodynamic model [32], Karagozian and Case Concrete (KCC) model [33], Holmquist–
Johnson–Cook (HJC) model [32], etc., have been widely adopted for UHPC structures
under blast loads [6,10,31,34]. Apart from the aforementioned concrete models, the Contin-
uous Surface Cap (CSC) model [35] can also be used to reproduce the dynamic behavior
of concrete structures when the material is subjected to large strains, high strain rates,
and high pressure [36]. Although the suitability of the CSC model for UHPC structures
under low-velocity impact has been extensively demonstrated in recent studies [37–39], the
relevant study on its applicability for G-UHPC structures under blast loads is still limited.

In the current study, the CSC model parameters, which account for the yield surface,
damage formulation, kinematic hardening, and strain rate effect, were systematically
modified for G-UHPC on the basis of the available material test data and constitutive
theory. Numerical simulations were then conducted on G-UHPC slabs reinforced with
SWM subjected to 0.4 kg and 1.0 kg TNT contact explosions. Through comparing the
numerical and test data concerning the local damage, the applicability of the calibrated
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CSC model and structural model was validated. Using the verified numerical models, a
parametric study on SWM-reinforced G-UHPC slabs was further carried out concerning
the TNT equivalent, slab thickness, and SWM variables (i.e., number of layers, space
between adjacent wires, and steel wire diameter). Furthermore, an updated empirical
model was proposed to evaluate the local damage pattern and internal energy absorption
rate of SWM-reinforced G-UHPC slabs against contact explosions. As mentioned above,
although several experiments on G-UHPC members with SWM reinforcement subjected to
dynamic loads have been reported, the corresponding numerical simulations were urgently
required to further interpret the efficiency and effectiveness of SWM parameters. Moreover,
rare studies were conducted to adopt the CSC model to simulate the G-UHPC in contact
explosions. This paper detailed performed the CSC model calibration, the structural model
validation, and the parametric study of SWM variables.

2. A Brief Overview of CSC Model in LS-DYNA

In LS-DYNA, the CSC model mainly includes the failure surface, damage functions,
and strain rate formulations. The failure surface is combined with the shear failure surface
and cap hardening surface, in which these two surfaces are continuously and smoothly
connected, as presented in Figure 1. The failure surface is characterized by three stress
tensor invariants (J1, J2 and J3) and the cap hardening parameter κ, which is given by:

F(J1, J2, J3, κ) = J2 − <2FcF2
f (1)

where J1 = 3P denotes the first stress tensor invariant; J2 = 1
2 SijSij denotes the second

invariant of the deviatoric stress tensor; J3 = 1
2 SijSjkSki denotes the third stress tensor

invariant; P is the pressure; Sij, Sjk and Ski are the deviatoric stress tensors, the indexes
i, j, k refer to elements of this stress tensor; κ is the value of J1 at the intersection of the
shear damage surface and the cap surface; < is the Rubin three-invariant decay coefficient;
Fc is the abbreviation of hardened cap function; the full formula definition is listed in
Equation (5). Ff is the abbreviation of the shear surface function; the full formula definition
is listed in Equation (2).
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Figure 1. Schematic representation of shear and cap surfaces.

The shear surface consists of a triaxial compression (TXC) surface, a triaxial exten-
sion (TXE) surface, and a triaxial torsion (TOR) surface. Figure 2 presents the triaxial
compression and tension meridians, respectively. The controlling equation for the TXC is
given by:

Ff(J1) = α− λ exp(−βJ1) + θ J1 (2)

where α, β, λ and θ are the material constants as derived through fitting the data from the
triaxial compressive tests.



Buildings 2022, 12, 2010 4 of 23

Buildings 2022, 12, x FOR PEER REVIEW 4 of 24 
 

where α, β, λ and θ are the material constants as derived through fitting the data from the 
triaxial compressive tests. 

  
(a) (b) 

Figure 2. Triaxial meridian lines (a) compression meridian (b) tension meridian. 

The TXC intensity ratio of the Rubin scale function at any stress level defines the 
triaxial torsional and tensile radial functions [40]. The controlling functions for TOR and 
TXE are given by: 

Q1 = α1 - λ1 exp (- β1J1)  + θ1J1 (3)

Q2 = α2 - λ2 exp (- β2J1)  + θ2J1 (4)

where Q1 is the TOR/TXC intensity ratio and Q2 is the TXE/TXC intensity ratio; α1, β1, 
λ1 and θ1 are the TOR input parameters; α2, β2, λ2 and θ2 are the TXE input parame-
ters. 

The cap hardening surface is a two-part function that is either uniform or elliptical. 
When the stress state is in the region of the tension or very low confining pressure, the 
cap hardening surface function is uniform. When the stress state is in the region of the low 
to high confining pressure, the cap hardening function is elliptical. The cap hardening 
surface is defined as: 

Fc(J1, κ) = 
1                                                       , J1 ≤ L(κ)

1 - [J1 - L(κ)][ J1 - L(κ)  + J1 - L(κ)]
2[X(κ) - L(κ)]2 , J1 > L(κ)

 (5)

L κ  = 
κ, κ > κ0
κ0, κ ≤ κ0

 (6)

where κ0 denotes the value of J1 corresponding to the initial intersection between the 
shear failure and cap hardening surface; X(κ) denotes the intersection between the cap 
hardening surface and the axis of J1, which is given by: 

X(κ) = L(κ) + RFf [L(κ)] (7)

where R is the ellipticity ratio of the cap hardening surface. The cap moves to reflect the 
plastic volume change, in which the cap expansion and contraction are in the light of an 
isotropic hardening rule [41], which is given by: 

εν
p = W 1 - exp(- D1[Xκ - X0] - D2[Xκ - X0]2)  (8)

where εν
p denotes the plastic volumetric strain; W denotes the maximum plastic volumet-

ric strain; D1 and D2 are the material constants; X0 is the initial position of the cap if κ = 
κ0. 

The damage formulations define the strain softening and modulus reduction behav-
ior. The damage criterion is on the basis of the damage energy release rate method as 
established by Simo et al. [42], which is defined as: 

Figure 2. Triaxial meridian lines (a) compression meridian (b) tension meridian.

The TXC intensity ratio of the Rubin scale function at any stress level defines the
triaxial torsional and tensile radial functions [40]. The controlling functions for TOR and
TXE are given by:

Q1 = α1 − λ1 exp(−β1 J1) + θ1 J1 (3)

Q2 = α2 − λ2 exp(−β2 J1) + θ2 J1 (4)

where Q1 is the TOR/TXC intensity ratio and Q2 is the TXE/TXC intensity ratio; α1, β1, λ1
and θ1 are the TOR input parameters; α2, β2, λ2 and θ2 are the TXE input parameters.

The cap hardening surface is a two-part function that is either uniform or elliptical.
When the stress state is in the region of the tension or very low confining pressure, the cap
hardening surface function is uniform. When the stress state is in the region of the low to
high confining pressure, the cap hardening function is elliptical. The cap hardening surface
is defined as:

Fc(J1, κ) =

1 , J1 ≤ L(κ)

1 − [J1 − L(κ)][|J1 − L(κ)|+J1 − L(κ)]

2[X(κ) − L(κ)]
2 , J1 > L(κ)

(5)

L(κ) =

{
κ, κ > κ0

κ0, κ ≤ κ0
(6)

where κ0 denotes the value of J1 corresponding to the initial intersection between the shear
failure and cap hardening surface; X(κ) denotes the intersection between the cap hardening
surface and the axis of J1, which is given by:

X(κ) = L(κ) + RFf [L(κ)] (7)

where R is the ellipticity ratio of the cap hardening surface. The cap moves to reflect the
plastic volume change, in which the cap expansion and contraction are in the light of an
isotropic hardening rule [41], which is given by:

ε
p
ν = W

{
1 − exp(−D1[Xκ − X0] − D2[Xκ − X0]

2)
}

(8)

where ε
p
ν denotes the plastic volumetric strain; W denotes the maximum plastic volumetric

strain; D1 and D2 are the material constants; X0 is the initial position of the cap if κ = κ0.
The damage formulations define the strain softening and modulus reduction behavior.

The damage criterion is on the basis of the damage energy release rate method as established
by Simo et al. [42], which is defined as:

σij = (1 − d)σij (9)
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where d denotes a scalar damage parameter that can be converted to a stress tensor σij in
the absence of damage or a stress tensor σij in the presence of damage.

The strain rate is accommodated by applying the viscoplastic algorithm, which was
extended by Simo et al. [43] on the basis of the Duvaut–Lions formulation. The strength
calculation for the strain rate effect is based on the dynamic increase factor (DIF), in which
the DIF value equals the ratio of the dynamic strength of the concrete material to quasi-static
strength. The relevant strain rate effect equation is defined as:

σ
vp
ij = (1 − γ)σT

ij + γσP
ij (10)

where σ
vp
ij is viscoplastic stress; σT

ij is elastic stress; σP
ij is plastic stress; γ = ∆t/η

1+∆t/η , η is
fluidity coefficient parameter; ∆t is the time step. The DIF for the compressive and tensile
strengths is expressed as:

DIFc =
fc,d

fc
= 1 +

E
.
εηc

fc
(11)

DIFt =
ft,d

ft
= 1 +

E
.
εηt

ft
(12)

where fc is uniaxial compressive strength; ft is direct tensile strength; fc,d is dynamic
compressive strength; ft,d is dynamic tensile strength;

.
ε is strain rate; ηc and ηt respec-

tively denote the fluidity coefficient for compressive and tensile strengths, and are defined
as follows:

ηc =
ηoc
.
ε

Nc
(13)

ηt =
ηot
.
ε

Nt
(14)

where ηoc and Nc are strain rate parameters for compression; ηot and Nt are strain rate
parameters for tension.

3. Calibration of the CSC Model

In this study, 38 active input parameters were required for the CSC model modification,
including modulus parameters (i.e., G, K), triaxial compression surface parameters (i.e.,
α, θ, λ, β), triaxial extension and torsion surface parameters (i.e., α1, θ1, λ1, β1, α2, θ2, λ2,
β2), cap hardening parameters (i.e., X0, R, W, D1, D2, NH, CH), damage parameters (i.e.,
B, D, GFC, GFT, GFS, pwrt, pwrc, pmod) and strain rate parameters (i.e., ηoc, ηot, Nc, Nt,
overc, overt, srate, repow). The calibration of some key input model parameters to reflect the
material behavior of G-UHPC is introduced in the following contents.

3.1. Bulk and Shear Moduli

The bulk modulus K represents the response of material under hydrostatic pressure.
The shear modulus G represents the response of material under shear stress. In this study,
these two moduli are not independent, and for isotropic materials, they related to Young’s
modulus Ec through the equations:

K = Ec/3(1 − 2ν) (15)

G = Ec/2(1 + ν) (16)

where Ec denotes the elastic modulus of G-UHPC, which was determined to be 33 GPa
as obtained from the elastic stage in the uniaxial compressive stress–strain curve [31]; ν is
the Poisson’s ratio of G-UHPC, which was determined to be 0.2 according to the previous
review study by Ranjbar and Zhang [44].
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3.2. Triaxial Compression Surface

The TXC parameters were determined by fitting four types of stress states obtained
from the triaxial compression tests. As shown in Figure 2a, the four stress states included
A1: triaxial tensile state, B1: biaxial tensile state, C1: uniaxial compression state and D1: tri-
axial compressive state. The triaxial and biaxial tensile strengths of G-UHPC were set
approximately equal to the uniaxial tensile strength [45]. To gain the triaxial compressive
strength of G-UHPC at different confining pressure, Khan et al. [46] and Haider et al. [47]
carried out the triaxial compression tests on geopolymer concrete with the uniaxial com-
pressive strength up to 90 MPa. Through selecting the triaxial compression test data, as
presented in Figure 3, the fitting formula is expressed as:

√
J2

fc
= 1.41 − 1.3 exp

(
−0.36

J1

fc

)
+ 0.072

J1

fc
(17)

where
√

J2 =

√
3τ2

0
2 ; J1 = 3P = 3σ0; τ0 =

√
(σ1−σ2)

2+(σ1−σ3)
2+(σ2−σ3)

2

3 ; σ0 = (σ1+σ2+σ3)
3 ; σ1,

σ2 and σ3 are the principal stress.
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In order to obtain the parameters in the compression meridian, a minimum of five
stress states was suggested [48]. Apart from points C1 and D1 in Figure 2a, the other three
stress states at various pressure levels (i.e., J1 = 1.5 fc, 3 fc and 5 fc) were selected for the
triaxial compression states, which could be determined by Equation (17). Based on the
aforementioned stress states, the parameters were determined via fitting to the compression
failure surface at various strength levels using the least-square method [39]. Figure 4 shows
the fitting results, wherein the corresponding parameters of α, β, λ and θ with respect to fc
were determined by the following equations:

α = 44 exp(0.0101 fc) (18)

β = 0.0112 exp(0.01 fc) (19)

λ = 40.041 exp(0.0101 fc) (20)

θ = −9 × 10−6 f 2
c + 0.0018 fc + 0.0062 (21)
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3.3. TOR and TXE

The strength ratios for TOR and TXE were determined via Equations (3) and (4). The
triaxial extensile surface includes four stress states [35], which are triaxial tensile (A1),
uniaxial tensile (B2), biaxial compression (C2), and triaxial extension (D2), as shown in
Figure 2b. The eight strength parameters (α1, β1, λ1, θ1, α2, β2, λ2, θ2) were adopted to fit
the equation in light of the triaxial tension and triaxial torsion tests. As limited triaxial
tension and triaxial torsion tests for G-UHPC can be found in the open literature, the
constitutive theory for concrete was adopted to determine the eight key parameters. First,
the function Q1(J1) was formed by Rubin’s proportional function, so Q1(J1) ≤ 1.0, i.e.,
(α1 − λ1 exp(−β1 J1) + θ1 J1) ≤ 1.0. If θ1 > 0 and J1→∞, Q1(J1) can be infinite. Therefore,
θ1 was set to 0. Second, when concrete was subjected to high confining compressive stress
(i.e., when J1→∞, α1 + θ1 J1 ≈ 1), α1 was set to be 1.0. Then, according to the original
CSC model [35], Q1(J1 = 0) was taken as 0.5774 in order to produce a smooth transition
between the tensile and compressive pressure regions of the concrete material, so the
parameter λ1 = 1 − 0.5774 = 0.4226. β1 was calculated to be 1.76 × 10−3 MPa−1 by
Equation (3), according to the previous study by Guo et al. [37]. Adopting the same
approach, the four key parameters (α2, β2, λ2 and θ2) for TXE in Equation (4) can be
determined as follows: α2 = 1.0, β2 = 1.76 × 10−3 MPa−1, λ2 = 0.5 and θ2 = 0.

3.4. Cap Hardening Surface

The cap hardening surface parameters consist of initial cap position (X0), cap aspect
ratio (R), maximum effective plastic volume strain (W), linear shape parameter (D1), and
quadratic shape parameter (D2). The cap parameters could be determined based on the
hydrostatic pressure-volumetric strain curve obtained from the hydrostatic compression
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tests. Since limited hydrostatic tests were conducted on G-UHPC, this study adopted the
available test data on PC-UHPC to assume the cap parameters of the CSC model. This
assumption was in view of the similarity between these two types of UHPC materials in
terms of density, Poisson’s ratio, and porosity [49,50]. Based on hydrostatic compression
data by Williams et al. [51] and Xu et al. [52], the relationship between X0 and fc was fitted,
which is shown in Figure 5a. The cap ellipticity R can be derived based on the previous
study by Jiang et al. [41], the expressions of X0 and R are as follows:

X0 = 3.762 fc + 25.05 (22)

R = 43.40/ fc + 4.784 (23)
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The maximum effective plastic volume strain W was assumed to be the porosity of
G-UHPC [38]. In the current study, the value of W was determined to be 0.0445 for G-UHPC
in accordance with the proposed value by Williams et al. [51]. After fitting with the test data
using Equation (8), as presented in Figure 5b, the values of D1 and D2 were determined to
be 3.368 × 10−3 MPa−1 and 1.134 × 10−6 MPa−2, respectively. The default values of 1.0
and 0 were respectively taken for NH and CH as suggested in the original CSC model [35].

3.5. Damage

The model parameters governing the damage evolution mainly include the compres-
sive fracture energy (GFC), tension fracture energy (GFT), shear fracture energy (GFS),
ductile shape softening (B), brittle shape softening (D), shear-to-compression transition
parameter (pwrc), shear-to-tension transition parameter (pwrt) and pressure softening pa-
rameter (pmod). As recommended in the original CSC model [35], the default values of
0, 1.0 and 5.0 were respectively set for pmod, pwrt and pwrc, and GFS was assumed to be
equal to GFT. The damage parameters GFT and D govern the strain-softening behavior
under tension. The damage parameters GFC and B govern the strain-softening behavior
under compression. The fracture energy (GFT and GFC) in the CSC model is sensitive to
the element size [38]. To determine GFC, B, GFS, and D, the single-element model under
uniaxial compression and the full-scale model under four-point bending were built, as
presented in Figures 6a and 7a, respectively. The details about the single-element simulation
setup could be found in the study by Guo et al. [37], and the four-point bending simulation
setup, as well as the loading scheme, could be found in the study by Wei et al. [39]. The
element size adopted in the models was 10 mm, which was consistent with that in the
contact explosion simulations for the slabs. Figure 6b presents the influence of GFC and B
on the uniaxial compressive stress–strain curve. The compressive strain hardening behavior
of the CSC model increases with the increase in parameters GFC and B. After fitting with
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the test results as reported in Ref. [31], GFC and B were determined to be 700 Pa·m and 10,
respectively. Figure 7b presents the effect of GFT and D on the force-displacement curve,
and the tensile strain hardening behavior of the CSC model also increases with the increase
in parameters GFT and D. After fitting with the test result as reported in Ref. [24], GFT and
D were taken as 40 Pa·m and 5000, respectively.
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3.6. Strain Rate Effect

Figure 8 shows a collection of DIF values for the compressive strength [53–59] and
tensile strength [60–63] of geopolymer concrete under an extensive range of strain rates
from open literature. Based on the existing test data, a series of empirical equations were
derived to evaluate the DIF values of geopolymer concrete, which are given by:
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For the compressive strength:

DIFc =

{
1.0 for

.
ε <

.
εsc

1.0 + 0.01
.
ε

0.88 for
.
ε ≥ .

εsc
(24)

where
.
εsc = 1.2× 10−5 s−1.

For the tensile strength:

DIFt =

{
1.0 for

.
ε <

.
εst

1.0 + 0.64
.
ε

0.55 for
.
ε ≥ .

εst
(25)

where
.
εst = 1.0× 10−6 s−1.

To prevent overprediction of the DIF values at high strain rates, the LS-DYNA user
manual [32] suggests interposing a cut-off value for the DIF-strain rate curves. In the
current study, referring to the recommendation from the LS-DYNA user manual [32], the
cut-off values were set at a strain rate of 300 s−1 in both compression and tension. Then, the
active input key parameters, including ηoc, ηot, Nc, Nt, overc and overt (Equations (11)–(14)),
were derived by fitting data on the proposed curve made based on Equations (24) and (25),
which are given by:

ηoc = 0.01
fc

Ec
(26)

ηot = 0.64
ft

Ec
(27)

Nc = 0.12 (28)

Nt = 0.55 (29)

In compression:
overc = 0.01 fc

.
ε

0.88 (30)

In tension:
overt = 0.64 ft

.
ε

0.55 (31)

srate and repow were taken as the default value of 1.0, as recommended in the original CSC
model [35].
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4. Validation of Numerical Models

To validate the numerical models, contact explosion tests were numerically simulated
on the multi-layered SWM-reinforced G-UHPC slabs with the utilization of the calibrated
CSC model. The following contents briefly introduce the contact explosion tests, finite
element modeling, material models excluding concrete, and the comparison between the
numerical and experimental results.

4.1. Contact Explosion Tests

In the contact explosion tests, as reported in Refs [31,64], two 200 mm × 1500 mm
× 1500 mm G-UHPC slabs reinforced with multi-layered SWM were tested. The first
slab was reinforced by 10-layer SWM reinforcement (labeled as G-UHPC-10SWM) and
subjected to 0.4 kg of TNT explosive. The second slab was reinforced by 20-layer SWM
reinforcement (labeled as G-UHPC-20SWM) and subjected to 1.0 kg of TNT explosive.
Further, 1 mm diameter 304 stainless steel wires with a 10 mm interval for SWM. The SWM
layers were designed to be evenly distributed, and the SWM layers next to each other were
spaced the same. The concrete cover depth was 10 mm. The yield strength and elastic
modulus of the reinforcement were 500 MPa and 200 GPa, respectively. The 28-day uniaxial
compressive strength of G-UHPC without steel fibers was 90 MPa. Figure 9 presents the
schematic diagram of the slab, TNT explosive, and SWM reinforcement. In the tests, the
SWM-reinforced G-UHPC slabs were simply supported by the square steel frame with a
side length of 1500 mm located upon four trapezoidal concrete piers [64]. The setup of the
contact explosion tests can be seen in Figure 10.
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4.2. Finite Element Modelling

Figure 11 shows the 3D finite element models of G-UHPC-10SWM and G-UHPC-
20SWM subjected to TNT contact explosions through the multi-material ALE algorithm.
The G-UHPC slab and steel frame were modeled utilizing a single-point integration algo-
rithm and the eight-node hexahedron Lagrangian elements, wherein a 10 mm mesh size
was chosen for the slab after a convergence test. The SWM was modeled by the Hughes-Liu
beam elements with a mesh size of 10 mm and the cross-sectional integration algorithm. The
TNT explosive and air were modeled by the Euler elements with a mesh size of 10 mm after
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a convergence test. CONTACT_AUTOMATIC_SURFACE_TO_SURFACE was adopted to
define the contact between the concrete slab and steel frame, in which the static and dy-
namic frictional coefficients were both set to 0.5. The blast wave propagation, the interaction
between the blast wave and the G-UHPC slab, as well as the full constraint between the slab
and SWM reinforcement, were defined through CONSTRAINED_LAGRANGE_IN_SOLID.
Non-reflecting boundary conditions were set on the surrounding sides of the air domain to
avoid reflected stress waves.
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4.3. Material Models
4.3.1. G-UHPC

In accordance with the calibration procedures as introduced in Section 3, the CSC
model parameters were determined for G-UHPC, which are listed in Table 1. It was
generally accepted that a key problem with Lagrangian elements under high-rate loading
is the large distortion that causes computational overflow [65]. To solve this problem,
an erosion algorithm activated by MAT_ADD_EROSION was adopted to remove large
distortion elements once the erosion criterion was reached. In the current study, the
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maximum principal strain of 0.1 was ultimately used as the erosion criterion for G-UHPC
via several trial simulations.

Table 1. The CSC model parameters for G-UHPC.

Parameter Value Parameter Value Parameter Value Parameter Value

RO (kg/m3) 2350 NPLOT 1 INCRE 0 IRATE 1
ERODE 0 RECOV 1 ITRETRC 0 G (MPa) 1.47 × 104

K (MPa) 1.96 × 104 α (MPa) 109.2 θ 0.0953 λ (MPa) 99.38
β (MPa−1) 4.55 × 10−3 NH 1 CH 0 α1 1
θ1 (MPa−1) 0 λ1 0.4226 β1 (MPa−1) 1.76 × 10−3 α2 1
θ2 (MPa−1) 0 λ2 0.5 β2 (MPa−1) 1.76 × 10−3 R 5.266
X0 (MPa) 363.7 W 0.0445 D1 (MPa−1) 3.37 × 10−3 D2 (MPa−2) 1.13 × 10−6

B 10 GFC (Pa·m) 700 D 5000 GFT (Pa·m) 40
GFS (Pa·m) 40 pwrc 5 pwrt 1 pmod 0
ηoc 2.78 × 10−5 Nc 0.12 ηot 1.17 × 10−4 Nt 0.55
overc (Pa) 4.00 × 108 overt (Pa) 1.22 × 108 srate 1 repow 1

4.3.2. TNT Explosive and Air

The TNT explosive was modeled using MAT_HIGH_EXPLOSIVE_BURN. EOS_JWL
was employed for the TNT explosive to simulate the detonation procedure. The pressure
in EOS is defined as:

P = A(1− ω

R1V
)

e−R1V

+ B0(1−
ω

R2V
)

e−R2V

+
ωE′

V
(32)

where V denotes the relative volume; E′ denotes the specific internal energy; ω, A, B0, R1
and R2 are the active input parameters. Table 2 lists the model and EOS parameters for the
TNT explosive.

Table 2. Model and EOS parameters for TNT explosive and air.

Material Material Model Parameter Value

Air

MAT_NULL RO (kg/m3) 1.29

EOS_LINEAR_POLYNOMIAL

C4 0.4

C5 0.4

E0 (Pa) 2.5 × 105

V0 1

TNT explosive

MAT_HIGH_EXPLOSIVE_BURN

RO (kg/m3) 1600

D0 6900

PCJ 2.1 × 1010

EOS_JWL

A 3.71 × 1011

B0 3.29 × 109

R1 4.15

R2 0.95

ω 0.3

E′ 7.0 × 109

The air was modeled by MAT_NULL, along with EOS_LINEAR_POLYNOMIAL. The
pressure P in EOS was defined by:

P = C0 + C1µ + C2µ2 + C3µ3 + E0(C4 + C5µ + C6µ2) (33)
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where C0, C1, C2, C3, C4, C5 and C6 are user-defined constants; µ = 1/V − 1, in which V is
the relative volume; E0 is the internal energy per initial volume. Table 2 lists the model and
EOS parameters for the air.

4.3.3. SWM and Square Steel Frame

MAT_PIECEWISE_LINEAR_PLASTICITY was employed for SWM. The strain rate
effect on SWM was considered via the incorporation of the curve of DIF and strain rate. The
DIF values could be calculated via the equation as proposed by Malvar et al. [66], which is
given by:

DIF = (

.
ε

10−4 )
α

(34)

where
.
ε is the strain rate; α = 0.074 − 0.04 fy/60, in which fy is the yield strength of SWM.

Due to the negligible deformation after the explosion, the square steel frame was treated as
a rigid body. Thus MAT_RIGID was adopted to model the square steel frame. Table 3 lists
the model parameters for SWM and square steel frame.

Table 3. Material model parameters for square steel frame and SWM.

Material Material Model Parameter Value

SWM MAT_PIECEWISE_LINEAR_PLASTICITY

RO (kg/m3) 7800

Ec (GPa) 200

PR 0.3

SIGY (MPa) 500

ETAN (GPa) 0.77

FAIL 0.12

square steel frame MAT_RIGID

RO (kg/m3) 7850

Ec (GPa) 210

PR 0.3

4.4. Comparison of Numerical and Test Results

Figures 12 and 13 show the numerical results of the local damage for G-UHPC-10SWM
subjected to 0.4 kg TNT contact explosion and G-UHPC-20SWM subjected to 1.0 kg TNT
contact explosion, respectively, wherein the effective plastic strain ranging from 0.3 (no
damage) to 1 (complete damage) represents the local damage to the slab. As observed
from the results of physical tests, the front, rear, and side faces of the slab suffered evident
damage along with cracks induced by the stress waves. The steel frame to support the
slab also exacerbated the damage close to the edges, especially on the rear face of the slab,
as shown in Figure 13. The numerical results were then compared with the test results
concerning the crack distribution, crater, and scabbing damage, from which fair agreement
between the numerical and test results was exhibited. Therefore, the material and numerical
model used in this study are suitable for reproducing the local damage of G-UHPC slabs
with SWM reinforcement under contact explosions.
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Additionally, the energy evolutions of SWM under two blast scenarios, i.e., 0.4 kg
and 1.0 kg, were obtained from the numerical simulations, which are shown in Figure 14.
Achieved from the numerical results, the total energies induced by 0.4 kg and 1.0 kg TNT
explosives were 1750 kJ and 4380 kJ, respectively. To quantitatively evaluate the effect of
the SWM volumetric content on the energy absorption capacity under contact explosions,
the internal energy absorption rate of SWM (E∗r ) was defined, which is given by:

E∗r =
Es

Em
(35)

where Es and Em denote the internal energies absorbed by the SWM reinforcement and
G-UHPC slab, respectively. As shown in Figure 15, the internal energy absorption rates
of 10-layer SWM (0.8 vol-% reinforcement ratio) under 0.4 kg TNT contact explosion
and 20-layer SWM (1.6 vol-% reinforcement ratio) under 1.0 kg TNT contact explosion
reached 1.6% and 2.7%, respectively, which demonstrated that an increase in the volumetric
content of the SWM reinforcement helped improve the energy absorption capacity of the
G-UHPC slabs.
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5. Parametric Study

To comprehensively understand the contribution of the SWM reinforcement on the
contact explosion resistance of G-UHPC slabs, a parametric study was further performed
by using the validated finite element models. Table 4 lists the parametric study matrix
for SWM-reinforced G-UHPC slabs subjected to contact explosions, in which the SWM
layer number (N), space between adjacent wires per layer (L), steel wire diameter (d), TNT
equivalent (W) and slab thickness (T) were included for investigation. The yield strength of
SWM and the uniaxial compressive strength of G-UHPC were kept as 500 MPa, and 90 MPa,
respectively, and 125 test cases were performed for each case (W-T-N1-10-1.0, W-T-N2-L-1.0,
and W-T-N2-10-d) listed in Table 4.

Table 4. Parametric study matrix for SWM reinforced G-UHPC slabs under contact explosions.

Case W (kg) T (m) N L (mm) d (mm)

W-T-N1-10-1.0 W (0.2, 0.4, 1.0, 1.6, 2.4) T (0.1, 0.15, 0.2, 0.25, 0.3) N1 (5, 10, 20, 30, 40) 10 1.0

W-T-N2-L-1.0 W (0.2, 0.4, 1.0, 1.6, 2.4) T (0.1, 0.15, 0.2, 0.25, 0.3) N2 (10, 15, 20, 25, 30) L (5, 7, 10, 20, 40) 1.0

W-T-N2-10-d W (0.2, 0.4, 1.0, 1.6, 2.4) T (0.1, 0.15, 0.2, 0.25, 0.3) N2 (10, 15, 20, 25, 30) 10 d (0.5, 0.7, 1, 1.2, 1.4)

Table 5 lists the classifications of the local damage for the G-UHPC slabs after contact
explosions [67], wherein three damage levels were included concerning the spall depth.
Based on the damage classifications, the result on the local damage of SWM reinforced
G-UHPC slabs obtained from the parametric study was normalized, which is defined as:

d∗ =
H1 + H2 + H3

T
(36)

where H1 is the crater depth on the front face; H2 is the scabbing depth on the rear face; H3
is the tunnel depth.

Table 5. Local damage classifications of concrete slabs after contact explosions [67].

Damage Level Damage Description Damage Scheme

Mild
A very shallow spalling to a third of the
slab thickness and no change in the slab
thickness to a few noticeable fissures
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D∗ = 10 × T
W1/3 ×

N0.2 × d0.295

L0.18 (37)

For the mild damage level : D∗ ≥ 1.70 (38a)

For the moderate damage level : 1.08 ≤ D∗ < 1.70 (38b)

For the severe damage level : D∗ < 1.08 (38c)

where the unit system is ‘m-kg’. What is also noted is that the empirical equations were
valid for 0.10 m ≤ T ≤ 0.30 m and 0.2 kg ≤W ≤ 2.4 kg.

The increase in N, L, and d can improve the volumetric content of SWM (Vs) in the
G-UHPC slab. Based on the numerical results from the parametric study, the relationship
among E∗r , Vs and T/W1/3 was obtained, which is shown in Figure 18. An empirical
equation concerning Vs and T/W1/3 was then proposed to predict E∗r under various contact
explosion scenarios, which is given by:

E∗r = 0.393V0.561
s exp[−4(T/W1/3)

2
] (39)
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6. Conclusions

In this study, the dynamic response of G-UHPC slabs with SWM reinforcement against
contact explosions was numerically performed. To reproduce the existing tests, the Contin-
uous Surface Cap (CSC) model for G-UHPC and the structural model for contact explosion
tests in nonlinear finite element software LS-DYNA have been validated. The results
noted that structural models based on the developed CSC model reasonably capture the
local damage of experimental specimens, which highlighted that the CSC model could be
adopted to simulate G-UHPC with SWM reinforcement in contact explosion tests. With
the validated finite element models, a parametric study was further carried out to explore
the influence of SWM layer number, space between adjacent wires, wire diameter, TNT
equivalent, and slab thickness on the local damage levels of G-UHPC slabs with SWM
reinforcement under contact explosions. Parametric analysis results show the influence of
SWM variables on local damage; based on the results from the parametric study, a series
of empirical equations concerning the aforementioned variables were established. These
empirical equations can be used to identify the damage mode of G-UHPC slabs with SWM
reinforcement under contact explosion and predict the internal energy absorption rate of
SWM. The proposed empirical equations could provide a general guideline for designing
G-UHPC with SWM reinforcement against contact explosions.
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