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Abstract: With increasing interest in automatic and intelligent systems to enhance the building
and construction industry, digital twins (DT) are gaining popularity as cost-effective solutions to
meet stakeholder requirements. Comprising real-time multi-asset connectivity, simulation, and
decision support functionalities, many recent studies have utilised Industry 4.0 technologies with
DT systems to fulfil construction-specific applications. However, there is no comprehensive review
to our knowledge, holistically examining the benefits of using DT as a platform from the angles of
Industry 4.0 technologies, project management, and building lifecycle. To bridge this gap, a systematic
literature review of 182 papers on DT-in-construction works over the past 6 years is conducted to
address the three perspectives. In this review, a unified framework is first modelled to incorporate
Industry 4.0 technologies within the DT structure. Next, a Six M methodology (comprising of
Machine, Manpower, Material, Measurement, Milieu, and Method) based on Ishikawa’s Diagram
with building lifecycle considerations is proposed to highlight the advantages of DT in ensuring
successful construction projects. Lastly, through the identification of 11 future directions, this work
aims to serve as a reference for both industry and academia towards the use of DT systems as a
fundamental enabler to realise the Construction 4.0 paradigm.

Keywords: industry 4.0; construction industry; digital twin; cyber-physical system; building information
modelling

1. Introduction

In a bid to enhance productivity and performance through machine-to-machine inter-
connectivity [1], Industry 4.0 leverages recent internet and communication technologies
(ICT) advances to spur breakthroughs in many domains [2]. Digital twins (DT), as a pre-
vailing Industry 4.0 manufacturing technology, is often regarded as a “high fidelity virtual
replica of the physical asset with real-ff time two-way communication for simulation pur-
poses and decision-aiding features for product service enhancement” [3]. Often considered
to be a versatile and scalable solution [4–6], DT offers a cost-effective approach towards
resource tracking, scenario simulation, and solution generation. In recent years, there has
been a growing interest from both academia and industry alike towards the use of DT
systems in construction.

The construction industry is often touted as inefficient and unproductive due to the
lack of cyber-physical interconnectivity [7], with commonly cited improvement areas in
design and engineering processes, logistics management, on-site execution, digital tech-
nology integration, and workforce management. As advanced building and construction
solutions require advanced representation and computational models to provide valuable
insights and wisdom, DT has emerged as a core enabler for Construction 4.0 develop-
ments [8]. While capable of multiple lifecycle considerations, DT in construction differs
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from other industries through its utilisation of building information modelling (BIM) and
other domain-specific protocols to meet unique stakeholder requirements. Hence, there is a
need to explore the role of DT as a platform to integrate other industry 4.0 technologies
holistically to form a foundation for Construction 4.0, defined as “a means of finding a
coherent complementarity between the main emerging technological approaches in the
construction industry” [8].

In our opinion, the establishment and application of DT systems in the building and
construction area are two main concerns. This work tries to address the abovementioned
concerns and challenges with two objectives: (1) providing a practical guide towards in-
corporating Industry 4.0 technologies and deploying feasible DT-enabled solutions in the
building and construction industry; and (2) investigating the role of DT in complex building
and construction projections with the consideration of essential factors and lifecycle per-
spectives. In this review, recent DT studies utilising Industry 4.0 enabling technologies are
analysed systematically and mapped onto a DT-oriented technology stack to realise novel
construction functionalities. Furthermore, these developments are consolidated within a
Six M (Machine, Manpower, Material, Measurement, Milieu, and Method) methodology,
which is essential for any successful building and construction project.

The rest of this article is organised as follows: Section 2 illustrates the article search
process and analyses research trends. Section 3 consolidates the tools and techniques within
a unified technological architecture. Section 4 categorises these studies from a Six M and
lifecycle perspective, whereas Section 5 discusses the future of DT-enabled solutions in
Construction 4.0. Lastly, Section 6 concludes the contributions of the work done.

2. Literature Review

This systematic survey focuses on reviews and articles from the past 6 years featuring
DT-related technologies, frameworks, and industrial applications in the building and
construction domain. This section identifies general trends and patterns for DT applications
in construction.

2.1. Research Compilation Methodology

The literature search is conducted through Scopus, the largest peer-reviewed research
database. Following an approach by [9], a three-step process flow is used to distinguish
relevant articles, as shown in Figure 1. To avoid overlooking relevant studies, keywords
related to DT paradigms and resembling construction terminologies are used. As such,
the search can be repeated via the following pseudo-code: Topic = (“Digital Twin” OR
“Cyber Physical” OR “Cyber Twin” OR “Virtual Twin” AND “Architecture, Engineering,
and Construction” OR “Civil Engineering” OR “Building” OR “Construction”); Time
Span: 2016–2022; Language: English; Type = “Article” OR “Review”; Source = “Journal”
(searched on 5 September 2022). Following that, the abstract of each article is examined
and benchmarked to further filter out studies that are irrelevant to the scope of this review.

The selection criteria consist of (1) Cyber-physical systems (CPS) and DT-related
implementations in construction applications; (2) System framework and architectures
to establish smart systems; (3) Enabling technologies to enhance existing practices; and
(4) Other appropriate references relevant to this study. As a result, the literature search
yielded 182 articles in which discussions in the following sections were based upon. Fur-
thermore, 12 additional articles are referenced to boost the reliability of the survey.

2.2. Trends and Analysis

As DT systems and applications gain popularity throughout industry and academia,
an increasing number of DT-related studies are directed towards the construction sector in
a drive to enhance industry productivity and site efficiency, as showcased in Figure 2. With
two-thirds of the collated studies published under Q1 journals, Automation in Construction
is the most established source, as highlighted in Table 1. Construction is often viewed
as a strategic national interest centered on many government-led research strategies and
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roadmaps [10,11]. Following this, Figure 3 highlights countries with the highest publication
count. Publications in related fields exponentially increased in 2019 before slowing down
in 2020. The predicted count for 2022 is based on the extrapolation of actual journal records
as of September 2022.
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Table 1. Top Journals Presented in the Review.

Journal No. of Publications

Automation in Construction 32
Sustainability Switzerland 12

Applied Sciences Switzerland 8
Energies 7

Journal of Cleaner Production 7
Buildings 5

Energy and Buildings 5
Journal of Management in Engineering 5

Advances in Civil Engineering 4
Journal of Construction Engineering and

Management 4

Sensors Switzerland 4
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3. Enabling Construction 4.0 through DT and Other Emerging Technologies
3.1. State-of-the-Art Technological Developments in Construction 4.0

Whereas DT solutions are increasingly adopted to boost efficiency and competitive-
ness, a diverse mix of Industry 4.0 technologies are used to fulfil applications specific for
construction contexts [12,13]. This sub-section classifies the use of Industry 4.0 technologies
within four fundamental DT aspects, namely data acquisition, data processing, simulation
and modelling, and decision support enablers.

Data acquisition. The data acquisition process starts with raw data extraction and
ends with the information being passed on to a cloud-based server or database. These
technologies are highlighted in Table 2 with their corresponding construction applications
and enabling tools.

Wireless sensor networks (WSN) provide a constant input of raw data for tracking and
monitoring applications, which are fundamental towards the creation of DT systems in con-
struction projects. (1) For SHM applications, Bhuiyan et al. [14] showcased a WSN-to-CPS
design transition approach, highlighting design requirements, deployment hurdles, and net-
working guidelines, whereas Loubert et al. [15] facilitated long-distance communications
within reinforced precast concrete. Yang et al. [16] developed mobile robots detection sys-
tems to perform data collection in dangerous environments. (2) For building performance
applications, Zhang et al. [17] integrated heterogeneous data from different buildings into a
CPS, whereas Lin and Cheung [18] established an environmental monitoring management
system. (3) For building cost efficiency applications, Khajavi et al. [19] established an office
building façade DT based on more than 25,000 sensor reading instances, whereas Grübel
et al. [20] developed an indoor sensor network for building performance analysis. Abrol
et al. [21] showcased an economical and noninvasive energy-efficient approach. (4) For
sustainability applications, González et al. [22] proposed a calibration methodology to
reduce the number of sensors required for building energy monitoring, whereas Keskin
and Mengüç [23] implemented an adaptive vent system to localise and customise building
thermal conditions. Liu et al. [24,25] implemented a CPS for greenhouse gas emission
monitoring to enhance sustainability efforts in prefabricated construction.

As IoT is often utilised to establish cloud-enabled systems, and the critical difference
between IoT and WSN lies in the use of IP-enabled connectivity (aka internet connectivity)
such as IPv6-based low-power wireless personal area network (6LoWPAN) [26]. (1) For
building performance optimisation, Tagliabue et al. [27] and Liu et al. [28] proposed BIM-
IoT-DT integrated frameworks to support building comfort and indoor safety management.
(2) For project management, Niu et al. [29] proposed a deployment framework to improve
the synergies between construction entities based on a knowledge-based taxonomy. (3) For
SHM applications, Zonzini et al. [30] utilised an IoT-based architecture to improve vibration
engineering techniques, emphasising damage detection and task prediction.

Social media technology offers a unique approach towards enhancing data acquisition
and communication techniques while incorporating social science theorems as part of socio-
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technical systems. Turk and Klinc [31] proposed a three-tier information service framework
that encompasses physical structure, DT, and a social network to facilitate construction
activities.

Data processing. With the huge amount of real-time heterogeneous data collected,
there is a need to facilitate raw data conversion and treatment to derive meaningful infor-
mation for modelling and analysis. Table 3 highlights existing enabling technologies and
tools used in existing studies to tackle industry-related challenges.

Semantic modelling allows for intricate relations between construction entities to be
mapped and represented before storage. As such, the collected data can be processed
into useful information essential to aid decision making and transparency for value chain
enhancement [32]. (1) For equipment design and optimisation, Wei and Akinci [33] intro-
duced a novel image-based registration method for panoramic images through minimizing
semantic segmentation errors, whereas Haoyu et al. [34] proposed a linear segmentation
method for the tunnel representation to support asset dynamic updates.

Blockchain is a distributed ledger or decentralised database of transactions recorded
by a network of computers [35], which increases user confidence and trust in information
reliability in construction projects. (1) For project management, Lee et al. [36] utilised DT
to provide secure and reliable data communications between stakeholders, whereas Hun-
hevicz et al. [37] proposed the performance-based smart contract through the integration
of digital building twin and blockchain. Jiang et al. [38] developed a blockchain-enabled
platform to facilitate cross-enterprise information sharing during modular integrated con-
struction. (2) For sustainable practices, Li et al. [39] developed an intelligent service
platform to incorporate ICT to achieve sustainable prefabricated housing construction
through a smart product-service system (Smart PSS) approach.

Data mining serves as an extraction and pattern discovery process within large datasets
and involves ML approaches, statistics, and database systems [40]. (1) For building per-
formance optimisation, Schmidt et al. [41] integrated CPS and cross-industry standard
processes for data mining through a generic model-based design methodology. (2) For
project management applications, Pan and Zhang et al. [42] deployed a data mining-driven
DT system using fuzzy miner and ARIMAX to identify potential bottlenecks and reallocate
resources dynamically.

Modelling and Simulation. DT technologies rely on 3D high fidelity models and sim-
ulations to provide comprehensive visualisation for evaluating specific scenarios and veri-
fying automatically computed solutions while complimenting other construction-related
enabling technologies highlighted in Table 4.

Utilising BIM technology, stakeholders can model building designs with dynamic
optimisation and lifecycle consideration based on the various parameters setting [43]. This
portion maps various BIM-DT solutions to core construction aspects and highlights en-
abling techniques used. (1) For facility management, Desogus et al. [44] and Wernerová
et al. [45] utilised cloud-based BIM to enable building management capabilities. Adibfar
and Costin [46] developed a dynamic DT for bridge through integrating real-time traffic
data. Emphasising as-built models, Nicola Moretti et al. [47] and Rausch and Haas [48]
automated asset management processes to support cognitive buildings throughout various
lifecycle aspects, whereas Huynh and Nguyen-Ky [49] proposed a cross-platform system
to visualise data and manage comfort levels. Wang et al. [50] achieved the interaction
and virtualisation of various processes during building construction. Torrecilla-García
et al. [51] proposed a BIM-enhanced decision support approach for safety management
in the building industry. (2) For structural health monitoring, Lei et al. [52] developed
a disaster prevention platform which identifies the building structural state, whereas
Yuan et al. [53] evaluated the integrity of temporary structures. Taraben and Morgen-
thal [54] used voxel-based methods to discretise acquired 3D geometries for building dam-
age propagation. (3) For asset design and optimisation applications, Al-Saeed et al. [55]
and Schimanski et al. [56] implemented automation solutions within the construction
manufacturing domain based on lean manufacturing paradigms and configure-to-order
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services. Kosse et al. [57] and Huang et al. [58] developed a DT framework to optimize
the modularized construction of precast concrete. (4) For sustainability applications,
Agostinelli et al. [59], Kaewunruen et al. [60], Zhao et al. [61], and Banfi et al. [62] achieved
the visualisation and assessment of Net Zero Energy Building (NZEB) solutions.
Xing et al. [63] applied the product-service relationship to manage stakeholders involved in
the various lifecycle stages to derive higher eco-efficiency with reduced material consump-
tion and waste generation. Kaewunruen and Lian [64] established a 6D BIM for railway
turnout system, which enables assessing schedule, cost, and sustainability, and achieving
a balance.

Simulation provides core functionalities, including but not limited to scenario visu-
alisation and solution verification. (1) For structure design optimisation, Lydon et al. [65]
presented a coupled simulation approach to optimise the thermal design of a lightweight roof,
whereas Kyvelou et al. [66] described the numerical simulation method for the verification and
assessment of a bridge structure. (2) For building performance optimisation, Lilis et al. [67]
proposed a discrete event simulation (DES)-based system to virtualise intelligent buildings
via a scalable architecture.

Following that, the point cloud offers an efficient approach to map these virtual mod-
els via 3D scanning and photogrammetry software. (1) For structural health monitoring,
Omer et al. [68] digitised a typical masonry bridge in VR space as an alternative to traditional
inspection methods, whereas Maroc et al. [69] proposed a novel method to transfer point
cloud into parametric models for historic masonry buildings detection. (2) For asset design
and visualisation, Xue et al. [70] processed urban LiDAR point clouds based on the object
cross-sections, whereas Pantoja-Rosero et al. [71] automatically reconstructed the LOD3 mod-
els for existing buildings through a ML-based segmentation method. To model assets and
structures, Jiang et al. [72] established the DT model of existing highway assets from map
data, whereas Münzinger et al. [73] reconstructed tree models in the 3D city view.

Virtual/Augmented reality (VR/AR) offers an immersive and interactive approach to
engage with new tools and explore high-risk environments. (1) For human-robot collabora-
tive work, Wang et al. [74] established a remote collaborative system with an intuitive VR
interface, which enables real-time bidirectional communication and supervision between
workers and construction robots. (2) For urban planning and design, Kikuchi et al. [75]
integrated AR and drones into a detailed 3D model to achieve city landscape visualization,
which allows non-expert users to understand and participate in the construction project.

Decision support enablers. To enable disruption management capabilities and fa-
cilitate lifecycle transition, construction systems rely on decision support functionalities
such as semantic solution generation, which are established using tools and techniques
highlighted in Table 5. As AI-related techniques for decision support implementation can
cover a broad area, key AI domains are highlighted below.

Computer vision (CV) enables the derivation of meaningful information from visual in-
puts to facilitate solution generation. (1) For the bridge maintenance system, Shim et al. [76]
combined both maintenance information and digital inspection systems to generate reliable
decision-making to enhance the bridge maintenance process. (2) For facility management,
Antonino et al. [77] utilised an image recognition module to detect user’s movements.
Lu et al. [78] proposed an image processing approach to reconstruct 3D models from CAD
drawings, whereas Pang and Biljecki [79] achieved the 3D reconstruction through the
proposed image-to-mesh approach and street view images.

Machine learning (ML) involves the use of algorithms that utilise historical data and
experience input to perform predictions and solution optimisations for decision support
systems [80]. (1) For urban management, Döllner [81] developed an ML/DL Geospatial an-
alytics engine to derive domain or application-specific semantics. (2) For improving energy
efficiency, Alanne and Sierla [82] concluded that ML equipped building-integrated energy
systems with adaptability for unpredicted changes, and Konstantakopoulos et al. [83] en-
couraged energy-efficient behaviour through facilitating the human–building interaction.
Austin et al. [84] proposed the DT-based energy saving architecture for a smart city. (3) For
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safety management, Kamari and Ham [85] and Liu et al. [86] presented risk assessment
frameworks for disaster preparedness and risk control through the DT system, whereas
Gichane et al. [87] developed an elevator security DT system utilising a YOLOV3 algo-
rithm. Pan et al. [88] proposed an AI-based segmentation method to capture and recog-
nise important electrical and fire-safety entities. (4) For construction equipment monitoring,
Zhang et al. [89] developed a construction equipment recognition algorithm to facilitate asset
performance evaluation. (5) For building performance optimisation, Lv et al. [90] designed an
AI-driven CPS to support indoor environment management via temperature response and
control. (6) For on-site construction optimisation, Saini et al. [91] proposed an action planning
system to optimize and automate the operation for well construction, whereas Tariq et al. [92]
optimised the design of solar chimney considering energy efficiency and environmental
factors. (7) For structure design optimisation, Fernández-Cabán et al. [93] utilised a stochastic
optimisation algorithm to support sustainable tall building design based on occupant comfort
and building drift, and Abdelaziz and Hobeck [94] developed an optimal controller to reduce
the vibration caused by wind.

3.2. Integration of Technologies Using a DT-Adapted Framework

The range of core enabling tools and techniques presented earlier varies in technolog-
ical advancement and implementation difficulty. To frame these co-construction entities
within a Construction 4.0 context, a unified DT-adapted architecture is proposed. Through
the five-layered technology stack, as shown in Figure 4, each entity fits into the overall
structure towards enabling smart construction applications. This architecture leverages pre-
viously featured layered DT hierarchies [18,24] to provide an overview of the technological
landscape for enhancing the building and construction environment.
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Table 2. Data acquisition in Construction 4.0.

Technology References Construction Applications Tools/Techniques

Wireless Sensor
Network (WSN)

[14–16] Enhance structural health monitoring (SHM) via
cyber-physical systems.

Connectivity: Zigbee; LoRaWAN; Bluetooth
Controller: Raspberry Pi; Arm; Arduino
Sensors for:
(Structural health monitoring) Acceleration; Piezoelectric; Ultrasonic; Radar; Laser; Strain gages;
Optical fibre; Vision; Corrosion; Linear voltage displacement transducers; Inclinometers; Footprint
accelerometer; Inertial Measurement Unit; Meteorological
(Building performance) Gas concentration; Temperature; Humidity; Hazard detecting;
Cloud-Oriented Radiation; Radiological measurement device; CORSAIR; Occupancy
(Building cost efficiency) Temperature; Passive infrared (PIR)
(Sustainability) Electrical power; Airspeed; Heat flux; Humidity; Wind speed; Wind direction;
Radiation; Temperature; Acceleration; Barometric; GPS; Inductive displacement; Soil moisture;
Asphalt strain; Horizontal inclinometer; RFID

[17,18]
Building performance evaluation. Include evacuation
planning, monitoring energy usage, emissions (CO,
radiological), and temperature.

[19–21] Improve building cost efficiency through lifecycle
management and energy conservation.

[22–25]

Develop sustainability practices. Include applications
in HVAC systems, reduce energy usage, carbon
emission monitoring, equipment, and raw material
tracking.

Internet of Things
(IoT) [27,28]

Building performance optimisation. Include energy
efficiency, sustainability assessment, indoor safety
management, and enhanced FM system in the BLM
process.

Connectivity: Cellular networks (GSM/3G/4G); Wi-Fi; Universal mobile telecommunications
system; Low-power wide-area network (LPWAB)
Controller: Arduino; Programmable logic controller (PLC)
IoT Sensor for:
(Building performance) Temperature; Humidity; Smoke; Oxygen Concentration; Carbon monoxide
concentration; Gate magnetic; Infrared
(Project management) Ultrasonic, RFID tag, Inertial measurement unit (IMU), GPS, Load cells,
Switch, Barometers, Accelerometer
(Structural health monitoring) Accelerometer, Inertial measurement unit (IMU)
Auxiliary tools: NodeJS; TICK stack; Grafana; Blockchain

[29] Project management. Integrate CPS/DT technologies to
enhance efficiency and synergy.

[30]
Enhance structural health monitoring (SHM). Include
predictive maintenance of infrastructure.

Social Media [31] Enhance construction lifecycle management. Include
plan, design, build, usage aspects. Auxiliary milieu: Log files; Emails; Social media messages; Building models

Table 3. Data processing in Construction 4.0.

Technology References Construction Applications Tools/Techniques

Semantic
Modeling [33,34]

Asset design and optimisation. Enable equipment
re-/configurations for disruption management.
Localize a panorama with sub-meter localization error.
Improve asset representation.

Software: Apache Jena, Protégé, Revit, Unreal Engine 4, Datasmith
Language: XML, OWL, SPARQL, C++
Library: OpenCascade, OpenVDB
Algorithm: CNN, ResNet101, PSPNet
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Table 3. Cont.

Technology References Construction Applications Tools/Techniques

Blockchain [36–38]

Project management. Improve efficiency via contract
implementation, stakeholder collaboration with
increased reliability and service. Enhance information
sharing and continuity for Modular Integrated
Construction.

Cloud platform: Microsoft Azure
Database: Distributed ledger
Mechanism: Consensus mechanism, Encryption mechanism
Platform: Ethereum blockchain

[39]
Develop sustainable practices. Develop an intelligent
platform integrating with blockchain to improve the
sustainability of prefabricated housing construction.

Data Mining [41] Building performance optimisation. Improve the
energy efficiency of both legacy and modern buildings.

Algorithm: Inductive miner, fuzzy miner, ARIMAX mode
Modelling languages: Petri net, business process modelling notation (BPMN)
Standard: Cross-industry standard process for data mining (CRISP-DM)
Model: CRISP-DM reference model[42] Project management. Achieve a higher degree of

intelligence and automation.

Table 4. Modelling & simulation in Construction 4.0.

Technology References Construction Applications Tools/Techniques

Building
Information
Modelling (BIM)

[44–51]

Facility management, improve comfort, energy efficiency,
and building lifecycle management (BLM). Include
anomaly detection, maintenance work, and decision
support systems.

BIM authoring tools: Autodesk Revit, ArchiCAD, Allplan, AECOsim, Tekla structures
BIM auxiliary tools: BIMserver, Autodesk Navisworks, Revit DB Link, Dynamo
BEM authoring tools: Green Building Studio,
EnergyPlus, Design Builder, Open Studio, CYPETHERM HE;

[52–54] Enhance structural health monitoring (SHM). Include
disaster planning and damage inspection.

[55–58]

Asset design and optimisation. Incorporate lean
manufacturing and configure-to-order business
approaches to automate construction-related productions.
Optimize precast elements production.

[59–61,63,64]

Develop sustainability practices. To realise net or nearly
zero energy building (NZEB) solutions, circular economy,
carbon cost estimation, and other green initiatives via
product-service paradigms, lifecycle considerations,
building energy models (BEM), and 6D BIM adoption.
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Table 4. Cont.

Technology References Construction Applications Tools/Techniques

Simulation
[65,66]

Structure design optimisation. To reduce prototype
development time and cost through high-resolution
analysis, parametric geometric modelling.

Coupled simulation: ANSYS Fluent, TRNSYS, MATLAB
Numerical simulation: ABAQUS
DES simulation: coroutines, open BMS,
ZeroMQ library

[67] Building performance optimisation. Enable infrastructure
visualisations for power and environment monitoring.

Point cloud

[68,69]
Structure health monitoring. Inspection services for
digitised structures in a VR environment, future damage
validation for historic masonry structures.

Software: Cyclone register 360, Cloud Compare, Civil 3D
Hardware: Stationary/Airborne/terrestrial Laser scanner, Leica ScanStation P40, Leica
ScanStation P20
Library: Point cloud library, ODAS library

[70–73]

Asset design and visualisation. Generates building and
city models using LiDAR, gestalt design principles, and
as-built reconstruction approaches. Include
ML/DL-based interpretation of point clouds to classify
models.

Virtual/Augmented
Reality (VR/AR)

[74]
Human-robot collaboration. Facilitates task planning and
supervision through bidirectional communication and
asset control.

[75]
Urban planning and design. Multiple viewpoints and
usability testing from nonexpert stakeholders involved in
the building project.

Table 5. Decision support enablers in Construction 4.0.

Technology References Construction Applications Tools/Techniques

Computer Vision

[76] Bridge maintenance system. Includes image recognition to enhance
inspection processes. Algorithm: Mask R-CNN, DeepSORT, Self-designed localisation, Fuzzy

Logic, Edge detection, Neuro-fuzzy system, Optical Character
Recognition, DeepLabv3
Software: Self-designed Revit, Blender[77–79]

Facility management. Includes movement recognition for
maintenance operations, 3D structure reconstruction from CAD
drawings and street view images.
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Table 5. Cont.

Technology References Construction Applications Tools/Techniques

Machine Learning

[81]
Urban management. Contribute to building and maintaining
base data for geospatial DT efficiently, including virtual 3D city,
building indoor models, or BIM.

Algorithm: Tree-based classification, Clustering, Association,
Categorizing, YOLOV3, Support vector machine (SVM) models,
genetic algorithms
Network structure: PointNet neural network (PNN),
convolutional neural network (CNN), Deep bi-directional
Recurrent Neural Networks (DBRNN), long short-term memory
(LSTM), Back-propagation neural network (BPNN), Deep
Residual Networks (DRN), Iterative Closest Point (ICP),
Random sample consensus (RANSAC), KPConv, Monte Carlo
tree search (MCTS), Multivariate regression mode,
Non-dominated sorting genetic algorithm

[82–84]
Improve energy efficiency. Include energy management through
interacting with occupants, smart building design, and
integrating semantic model.

[85,87,88]

Safety management. Develop a security system for a three-floor
elevator in a commercial building setting and an indoor safety
management system based on DT. Propose a threat assessment
framework for construction site. Identifying essential entities
from the electrical and fire-safety domain.

[89] Construction equipment monitoring. Evaluate asset
performance in various conditions.

[90]

Building performance optimisation. Integrate with CPS in a
building environment and provide theoretical information and
practical reference for developing the indoor environmental
control system.

[91,92]
On-site construction optimisation. Improve construction
workflow schedule and optimise the structure of building
components.

[93,94] Structure design optimisation. Support structure evaluation
dynamically and minimise wind-induced vibration.
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Starting with the cyber-physical layer, assets and resources are digitalised through
a systematic approach onto a virtual space, emphasising multi-source data acquisition,
real-time two-way connectivity for asset monitoring and control, and cyber-physical infor-
mation exchange. Within the physical component, raw data is acquired from construction
assets and resources (e.g., working site, materials, equipment, and workforce) via a range
of spatially dispersed sensors and communication devices, as shown in the data collection
component. Following industrial communication protocols such as the OSI standard, site
activity monitoring and resource tracking can provide additional value to stakeholders
regarding safety, productivity, and quality assurance. Additionally, instructions can be
passed down to the physical entities using remote controls and actuators to implement
solutions under user supervision. Meanwhile, updated contextual heterogeneous data is
mapped onto respective cyber entities through techniques such as point cloud mapping
and BIM modelling. In the cyber component, common tools to facilitate data representation
include BIM, simulation, point cloud, and high-fidelity 3D models. Depending on stake-
holder/project requirements, the type of simulation technology selected may vary between
dynamic, discrete event, and agent-based to reflect construction activities accurately [95],
whereas the use of point cloud models often requires a LiDAR system setup for real-time
mapping. With mobile robots being increasingly utilised in detection systems, informa-
tion from dangerous environments can be safely collected, whereas structural and health
monitoring activities can be automated through sensor networks and IoT systems [16].

Next, the data processing and computational layer comprise data treatment, storage
and retrieval, and analytical processing modules to convert raw data into useful information
and, subsequently, knowledge based on a systematic approach. Whereas high-frequency
data collection enables accurate analysis e because of lower estimation variance, data
cleaning and filtering processes are crucial towards ensuring quality input due to the
higher probability of data redundancy and inaccurate recordings. Data conversion ensures
format compatibility and standardises information flow into the subsequent computational
modules, whereas data fusion enables multiple data sources to be integrated to generate
consistent, useful, and accurate information. Semantic modelling refers to the method in
which information is organised and allows for reasoning models to infer useful knowledge
based on the networks and relationships established between data nodes [32]. Following
that, the processed data are stored in remote servers which host the databases and data lake.
The selection of database types depends on the intended application and was previously
highlighted in Section 3.1. To derive meaningful knowledge, the computation layer draws
on multimedia processing, data mining, cloud/edge computing, algorithms, and ML
approaches to generate insights and analysis for use in the functional layer.

Subsequently, the functional layer identifies core construction applications featured in
existing studies and contains domain-specific knowledge such as the various ISO protocols
for safety and sustainability, government regulations and guidelines, and stakeholder-
centric preferences and requirements. Relevant knowledge obtained from the computa-
tional layer will be further refined to provide wisdom to end-users, who can view the
recommended solutions and current situation through the visualisation layer. Through the
various interfaces and mixed reality displays, users can interact and control the physical
assets, as well as implement system-generated solutions. The modules showcased within
each layer can be integrated to fulfil specific use cases [81], and as such, potential technology
combinations can be deployed to overcome advanced construction pain points.

4. DT Perspectives on Construction Lifecycle Aspects Based on a Six M Methodology

This section presents a Six M methodology based on Ishikawa’s diagram [96] to rep-
resent the essential factors required for successful construction projects and elaborated
in Table 6. Adapted from established reliability engineering paradigms with lifecycle
consideration [97], this methodology consists of Machine, Manpower, Material, Measure-
ment, Milieu, and Method (Six M) and is closely associated with the building lifecycle
management approach [98]. Based on both the Six M and building lifecycle perspective
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as illustrated in Figure 5, the benefits of DT are categorized accordingly. It is noted that
DT technologies did not prominently support the ‘requirements identification’ and ‘project
planning’ stages.
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4.1. Machine

The Machine aspect represents all physical assets related to equipment and machin-
ery (e.g., Truck, crane) used within the construction industry. DT technologies are often
deployed on high-value assets to enhance efficiency and reduce breakdowns through-
out the usage phase. Within the on-site construction phase, Zhang et al. [99] proposed
a multi-system coupling mechanism to support a CPS-based hierarchical autonomous
control of a tunnel boring machine, whereas Li et al. [100] developed a DT-driven virtual
sensor structure for trailing suction hopper dredger to support pre-warning and safe op-
erations. Zhang et al. [101] proposed a unified robot-oriented framework for building
automation and robotics, whereas Cai et al. [102] developed an automatic path planning
method for Crane lifting in construction environment. Liang et al. [103] established a
robot control policy to handle repetitive tasks, whereas Zhang et al. [104] developed a
dynamic data-driven modelling mechanism to allow robots to handle automatic pavilion
constructions. Furthermorea, Lee et al. [105] proposed a DL approach to enhance the task
allocation performance during robotic construction. In the operations and maintenance
phase, Jiang et al. [106] simulated hoisting behaviours to avoid the potential safety accident
for the tower crane and Liu et al. [107] utilised an SVM approach to predict risk in advance
for prefabricated elements hoisting. Moreover, Kan et al. [108] proposed a layered CPS
approach to plan and monitor mobile crane operations.

4.2. Manpower

The Manpower aspect involves the working force engaged throughout the construction
stage and ranges from designers to equipment operators. Current DT studies in this aspect
only focus on the on-site construction phase. For worker safety, Wu et al. [109] introduced
a real-time visual warning system to proactively avoid dangerous entities for construction
workers based on deep learning and mixed reality. For worker training, Akanmu et al. [110]
showcased a CPS-driven postural training platform for workers to practice construction
operations via a VR environment, whereas Sepasgozar [111] integrated VR/AR and DT
technologies to educate stakeholders in the design, development, and implementation of a
tunnel boring project as part of an education pedagogy.

4.3. Material

The Material aspect includes raw materials and intermediate products such as precast
models, and recent studies mainly focus on material performance and tracking. In the
design and engineering phase, He et al. [112] utilised a BIM-enabled fabrication methodol-
ogy with material configurations to advance 3D printing capabilities in construction. In
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addition, Orozco-Messana et al. [113] presented a novel solution for building envelop regen-
eration through leveraging Phase Change Materials elements. In the on-site construction
phase, Marini et al. [114] presented a CPS-based method to improve the traceability and
radiological detection of construction material. In the operations and maintenance phase,
Meža et al. [115] explored the use of secondary raw materials in terms of feasibility, suit-
ability, and sustainability in the long run. In the decommissioning phase, Züst et al. [116]
enhanced construction sustainability by evaluating excavation and demolition material
flows via economic and circular economy perspectives.

4.4. Measurement

The Measurement aspect refers to the transformation of drawn information into
descriptions and quantities and can be extended to include the value, cost, and price
of construction work. Moving towards a digitalised landscape, data acquisition and
status monitoring of both physical objects and target environments are essential for the
development of infrastructures in a speedy, dependable, and sustainable manner. In the
on-site construction phase, Hao et al. [117] reduced carbon emissions through a BIM-based
approach. In the operations and maintenance phase, Chiachío et al. [118] proposed a DT
framework for structural monitoring tasks within the civil engineering domain, and many
researchers implemented practical health monitoring systems for different structures and
scenarios [119], including beam string structures [120], large-scale structures [121], timber
buildings [122], bridges [123,124], underpasses [125], and roads [126]. For non-destructive
asset evaluations, Angjeliu et al. [127] developed an expedited modelling method for
dynamic reconstruction simulations, whereas Kong et al. [128] presented an ML approach
based on percussive diagnostic techniques to determine conditions of bolted joints. To
assist in failure avoidance, Mahmoodian et al. [129] developed CPS-enabled monitoring
systems to provide early warning capabilities and corrective instructions.

4.5. Milieu

The Milieu aspect represents the physical environment in which work is carried out
and includes ambient information, terrain type, and surrounding layout. In the on-site
construction phase, Zhang et al. [130] integrated DT and the extension of level of details
in BIM into a framework to support construction site monitoring and management. Jiang
et al. [131,132] proposed a DT-enable system to achieve the real-time management of on-site
assembling during modular integrated construction. In the operations and maintenance
phase, both building and city environments are targeted as potential optimisation areas. For
indoor environment management, CPS-enabled systems were deployed to boost thermal
comfort for both homes and offices based on user preferences and energy efficiency [133–
136]. Meanwhile, Zhao et al. [137] visualised indoor conditions and energy consumption
parameters, whereas Shahinmoghadam et al. [138] developed a VR platform to monitor
thermal comfort conditions. Zhang et al. [139] developed an automatic humidity control
system for heritages sites via computational fluid dynamics simulation and Bonci et al. [140]
developed a BIM-based CPS platform to evaluate and optimise building performance. For
building occupancy monitoring, Gomes et al. [141] proposed a context-aware recommen-
dation system for co-working environments, whereas Seghezzi et al. [142] presented an
occupancy-oriented building management system to optimise cleaning operations. For
smart city development, Schrotter, Hürzeler [143], White et al. [144], Cho and Kim [145],
and Wu et al. [146] developed DT cities to enhance transparency, transport efficiency, and
urban planning.

4.6. Method

The Method aspect covers the approaches used to improve building and construc-
tion efficiency throughout the lifecycle. In the design and engineering phase, building
shape optimisation can allow planners and architects to minimise environment influence
when designing buildings. Wei et al. [147] proposed an assessment approach for the
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wood panelised components during off-site construction to progress next construction step.
Böke et al. [148] demonstrated the CPS-enabled automation of adaptive façade functions
ranging from solar shading to sound insulation, whereas Ding and Kareem [149] utilised
building shape morphing and evaluation techniques to reduce wind load significance to
satisfy building drift and comfort requirements. For Building Energy Modelling (BEM),
Porsani et al. [150] and Demianenko et al. [151] proposed workflow and framework for
automating energy analyse based on BIM. For indoor environment design, Jia et al. [152]
developed a platform-based method for rapid prototyping and explored design spaces to
improve design performance. In the on-site construction phase, for safety management,
Jiang et al. [153] established CPS-based risk data synchronisations with warning and scene
reconstruction mechanisms, whereas Liu et al. [154] proposed a hoisting safety risk man-
agement framework for prefabricated buildings with considerations to relations between
risk factors. To improve construction logistics, Greif et al. [155] implemented a decision
support system for silo dispatch and replenishment via fill level monitoring. As for quality
assessment, Tran et al. [156] ensured the 3D geometric quality of as-built prefabricated
façades through comparisons between the as-designed and as-built digital models. To
enhance sustainability, Yang et al. [157] contributed to the long-term city development
through summarising publications considering DT integrated with the intelligent green
building. Çetin et al. [158] explored how to apply circular principles during the construction
lifecycle.

In the operation and maintenance phase, asset management organises resources
through structured and competent means [159]. To enhance the operation and management
flow of buildings, Zhao et al. [160] and Quirk et al. [161] proposed conceptual frameworks
for DT-based FM systems while detailed solutions for specific assets including pumps [162],
tunnel [163], bridge [164], and airport [165,166] have also been explored. To lower en-
ergy consumption, Francisco et al. [167] benchmarked daily electricity usage according
to strategic period while innovative approaches including activity monitoring [168,169]
and resilient buildings achievement [170,171] were proposed. Bass et al. [172] and Huang
et al. [173] achieved the regional energy saving system through urban-scale energy mod-
elling to achieve NZEB [174]. Hosseini Haghighi [175] enhanced the interoperability
between urban building data and energy consumption evaluation. To enhance lifecycle
management, Yitmen et al. [176] analysed the impacts of using cognitive DT systems in
various lifecycle aspects based on applicability, interoperability, and integrability. Fur-
thermore, several studies have illustrated DT-enabled decision support capabilities in
infrastructure projects [177–179] with emphasis on sustainability and vulnerability. Lastly,
Zu and Dai [180] highlighted a distributed path planning strategy to reduce crowd-induced
casualties during building evacuation.

5. Discussion and Future Directions
5.1. Strengths and Limitations of DT in Construction

This section analyses the potential strengths and limitations of DT implementation
in the building and construction industry. For building and construction, by enhancing
an automatic data acquisition and variation system, DT first provides opportunities to
simulate and improve the design and production-related activities, such as the visualisation
of blueprints, prefab units’ production schedules, and materials logistics optimisation.
Secondly, DT realises automatic and intelligence during the operation and maintenance (O
and M) stages in the building industry through the establishment of as-built models for
construction projects and related facilities. Real-time conditions updates from the physical
side can achieve a basic level of O and M functions, such as monitoring and assessing build-
ings, facilities, and inner structures. With the help of data analytics and decision support
techniques, some advanced applications, including energy saving, predictive maintenance,
and maintenance schedule optimisation, are able to be implemented. Therefore, DT contri-
bution can cover the whole life cycle of building and construction in the improvement of
operating and cost efficiency.
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Most DT-related publications are about virtual model generation. Making the virtual
part accurate and efficient is a major issue because of the limitations of real-time information
interaction in the construction industry caused by the harsh data collection environment
and complex equipment types. Moreover, the higher initial investment is another important
consideration during DT implementation, and the cost varies according to the level of
services provided. Furthermore, unlike manufacturing cases, data collection equipment on
construction sites is mostly temporary, and they will be withdrawn after the construction
mission is completed, which also increases the investment. Therefore, developing reused
DT system contributes to a significant improvement in cost efficiency.

5.2. Future Directions for Construction 4.0

This section reviews potential trends highlighted from existing studies and outlines 11
directions to advance DT-enhanced systems in construction. These future directions are
categorised from technical, application, environmental, and management perspectives, as
shown in Table 7.

Starting with system and technology enhancement, the development of diverse and
multi-function sensor systems would facilitate data collection in complex and harsh envi-
ronments through intelligent, miniaturisation, and integrative functionalities to support
cellular networking, GPS, and robotics. AI-enhanced functionalities such as ML, CV, and
optimisation algorithms can significantly improve process efficiency and provide better
analysis and solutions. Multi-function and integrated DT systems aim to incorporate
functionalities with higher operation performance to include additional project considera-
tions within the same platform, such as environment monitoring, safety management, and
building evacuation.

Next, a wider scope of implementation would provide more industrial relevance as DT
systems can take on increased functional roles and alleviate pain points based on a holistic
outlook. Multi-asset servitisation requires multi-source datasets to manage high quantity
assets and leverage resource data to enhance overall building and construction operations.
City-scale DT systems highlight the shift from building-oriented DT systems towards the
mapping and management of virtual cities for mass administration and urban planning
cases. Broad industry implementations will provide a wider sense of realism to enterprises
and industry stakeholders by implementing DT-enabled solutions with an emphasis on
industrial protocols and guidelines to resolve real-life situations feasibly. Encompassing the
entire lifecycle refers to the expansion of DT solutions to include knowledge from design to
demolition stages to better manage bottlenecks economically and efficiently.

The circular economy promotes sustainability and is emerging as a crucial factor in
the modern construction environment. Sustainable construction mainly targets resource
savings, emission reduction, and waste management in the on-site, operation, and de-
commissioning stages. Meanwhile, lean concept integration ensures the efficiency and
environment footprint of prefabricated production operations through reduced material
and energy consumption in the design and manufacturing stages.

Lastly, DT has the potential to improve project management from both a time and
cost perspective. The Time-based analysis utilises DT-enabled solutions to optimise project
timelines, mitigate disruptions, and reduce the risk of delays. Economic considerations
factor in the financial perspectives and ensure that the recommended solutions are feasible
while operating within the preferred business model.

With these directions to enhance DT capabilities, other functional techniques derived
from previous work such as complex environment path planning [181], BIM-enabled
detection methods [43], and other construction enablers can leverage DT systems to enhance
construction robustness and resilience.
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Table 6. Benefits of digital twin applications categorised by Six M aspects based on building and construction lifecycle stages.

Six M Lifecycle Stage Construction Function Reference DT-Enabled Benefits

Machine

On-site
construction

Intelligent equipment control [99,100] Reduce steady-state errors and safety risks.

Automatic robot construction [101–105]
Improve context observation to implement robot control policy, enhance the generative design and
robotic construction through real-time perception-modelling, achieve real-time bidirectional
communication and supervision remote collaboration between workers and robots.

Operations and
maintenance

Safety management [106,107] Improve object detection confidence level in the digital triplet security system.

Asset management [108] Enhance bidirectional coordination between virtual and physical assets and establish context-aware
capabilities for configuration and workflow efficiency.

Manpower On-site
construction

Worker safety [109] Synchronise information in dynamic and complex environments to process hazards.

Worker training [110,111] Decrease training risk by virtual practice platform and improve learning effects of construction
practitioners.

Material

Design and
engineering

Structure design optimisation [112] Provide more accurate models to support the design validation of 3D-printed modules.

Reuse and recycling [113] Reduce material consumption and waste generation through building component reuse.

On-site
construction Material information tracking [114] Improve traceability and radiological detection of construction material.

Operations and
maintenance

Durability and response
monitoring [115] Facilitate material circularity by exploring properties and responses of secondary raw materials

(SRM).

Decommissioning Reuse and recycling [116] Guide material flows towards a sustainable material flow through quantitative assessment.

Measurement

On-site
construction

Greenhouse gas emissions
tracking [117] Improve the potential for establishing energy conservation and emission reduction strategy

through real-time GHG emissions monitoring.

Operations and
maintenance Structural health monitoring [118–129] Provide promising paradigms for real-time and continuous SHM application, including structural

damage detection, safety assessment, failure avoidance, and maintenance operations assistance.

Milieu

On-site
construction Construction site monitoring [130–132] Improve construction digitalisation through automatic detection and monitoring of construction

site and assembly progress.

Operations and
maintenance

Indoor environment
management [133–140]

Benefit visually dynamic common platforms for intelligent indoor management functions,
including real-time monitoring, safety maintenance, thermal comfort, and reducing resource
consumption.
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Table 6. Cont.

Six M Lifecycle Stage Construction Function Reference DT-Enabled Benefits

Building occupancy monitoring [141,142] Improve space utilisation and sensor system efficiency and accuracy through real-time building
occupancy monitoring and intelligent algorithm.

Smart city development [143–146] Easier demonstration and transparency of administration tasks, urban planning, and policy to the
public through visualisation and analysis of digital prototypes.

Method

Design and
engineering

Building shape/profile
optimisation [147–149]

Automate façade functions development, minimise the influence of wind load through dynamic
façade and provide a cost-effective method to satisfy serviceability limits, optimise the shape of the
concrete roof structure with complex geometry for energy saving.

Building energy modelling [150,151] Enhance the interoperability between BIM and Building Energy Model (BEM) in the building
design phase.

Indoor environment design [152] Enable rapid prototyping of applications to improve design performance by reusing hardware and
software on shared infrastructures.

On-site
construction

Safety management [153,154] Enhance safety management in construction sites through risk factors analysis, proactive risk
control, and threat assessment.

Construction logistic [155] Support decision-making during silo dispatch and replenishment activities.

Quality assessment [156] Facilitate the visual quality assessment of as-built prefabricated façades during the construction
process.

Sustainability enhancement [157,158] Support data synchronisation, blockchain integration for traceability, and incorporate the smart
product-service paradigm.

Operations and
maintenance

Asset management [160–166] Better access to siloed data and support the development of asset management applications such as
real-time monitoring and more intelligent decision-making for cognitive buildings.

Energy reduction [167–173,175]
Promote energy-saving construction to achieve energy-reduction goals through accurate energy
simulation analysis, encourage energy-efficient behaviours, and intelligent matching of residents
and activities.

Lifecycle management [176–179] Enable cognitive features in assets to support sustainability, vulnerability assessments, and
maintain quality throughout the construction lifecycle.

Building evacuation [180] Provide guidance information for efficient building evacuation in emergencies.
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Table 7. Future Directions for DT in Construction 4.0.

Category Reference Future Direction Description

Technology
enhancement

[16,19,30,95] Diverse and multi-function
sensor systems

Develop advanced miniature sensors with intelligent
and integrative features to support GPS, 4/5G, and
robotics for performance improvements.

[18,81,84,87,90,182] AI-enhanced functionalities

Automate and accelerate learning, reasoning, and
perceiving from extensive datasets to tackle
higher-order tasks such as detection, prediction,
optimisation, and planning.

[28,39,161,183,184] Multi-function and integrated
DT systems

Enhance computation capabilities to include higher
quality simulation and solution accuracy as well as
faster processing time to support visualisations and
evaluations.

Application
scope

[78,89,185] Multi-asset
servitization

Integrated solutions using assets and resources to
enhance recognition, tracking, and management
operations.

[143,144,186–188] City-scale DT systems

Validate current DT architecture to a broader scale and
expand DT application from building to community
and city level to provide the foundation to optimise
city services.

[29,42,47,52,108] Broad industry
implementations

Incorporate complex multi-asset scenarios based on
real-life practices to suit industrial needs with an
information-rich digital twin model.

[117,189] Encompass full lifecycle

Achieve an efficient DT system that can be used to
plan, design, operate maintenance and demolition
economically and environmentally throughout the
whole lifecycle of the construction project.

Circular
economy

[24,25,167] Sustainable
construction

Improve resource efficiency, tracking, and reduce
emissions, extend asset lifespans, and enhance waste
management through functional component
monitoring and analysis in each lifecycle stage.

[55,56,190] Lean concept
integration

Integrate lean concepts within digital solutions to
enhance resource sustainable infrastructure projects or
implement lean manufacturing approaches for PPVC
production.

Benefits
analysis

[191] Time-based
analysis

Explore the influence of DT solutions on project
timelines with comprehensive dataset analysis.

[192–194] Economic
considerations

Ascertain the financial viability of DT adoption and
the use of DT solutions to achieve cost savings.

6. Conclusions

The versatility and scalability of DT solutions are evident in many industries stretching
from aerospace to healthcare. With growing awareness of DT capabilities in Construction
4.0, there is a need to review this emerging technology and provide an overview of the
various application methodologies and trends. This article is a comprehensive state-of-
the-art review with 182 related studies selected from 61 journals over the past 6 years to
derive an architecture showcasing the integration of Industry 4.0 technologies as functional
modules within DT systems. Ishikawa’s diagram originally proposed for quality control is
extended to a Six M methodology for in-depth analysis with an outlook on the advantages
brought forth by DT-enabled systems for various construction functional roles. Horizontal
technological perspective (scalability of DT applications): most existing studies focus on
enhancing the Method, Milieu, and Measurement aspects. Meanwhile, Machine, Manpower,
and Material aspects are less emphasized because of the environmental and resource
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complexity as well as the lack of data reliability. As DT systems are primarily deployed
for environmental monitoring and resource tracking roles within specific use cases, there
is a need to investigate the role of DT in handling multi-asset integration and complex
scenarios. To overcome this challenge, the Six M methodology is highlighted to ensure the
scalability of construction DT systems. Consisting of essential factors for successful project
outcomes, the Machine, Manpower, Material, Measurement, Milieu, and Method aspects
provide a reference model for academics and industries in the implementation of future
DT models.

Vertical technological perspective (advancement of DT systems): current research
is mostly used for monitoring, management, and functional applications but rarely for
decision support and automatic solution generation systems. To further refine the role of
DT systems in distinct operations, a five-layer DT-oriented architecture consisting of cyber-
physical, data processing, computational, functional, and visualization layers highlights
how Industry 4.0 technologies can be incorporated. Furthermore, the breakdown of specific
tools and techniques previously utilized provides a practical guide towards identifying
research gaps and deploying feasible DT-enabled solutions.

Complex resource relations, fluctuating environmental conditions, and the lack of
high-quality datasets are challenges resulting in fewer automatic decision support and
recommendation systems within the Machine, Manpower, and Material aspects. Thus, 11
future directions are identified, including diverse and multi-function sensors systems, AI-
enhanced functionalities, multi-function and integrated DT systems, multi-asset servitiza-
tion, city-scale DT systems, broad industry implementations, full lifecycle encompassment,
construction sustainability, lean concept integration, time-based analysis, and economic
considerations. Hopefully, this survey can be regarded as a useful resource for more
DT-related research and discussions towards innovative construction applications and
Construction 4.0.
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