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Abstract: This paper presents experimental and numerical investigations of the seismic failure of
the reinforced and unreinforced monoliths of the Huangdeng concrete gravity dam. To verify the
scale factors, we use suitable materials (emulation concrete material and fine alloy wire) to simulate
the dam concrete and the steel reinforcement (SR) in a scaled experiment model that includes the
water-retaining monolith and overflow monolith of the dam. We design shaking table model tests
based on the similarity laws and perform nonlinear numerical simulations of damage to the dam. By
comparing the numerical simulation with the experimental results, the intervals for peak acceleration,
in which microcracks appear and macrocracks rapidly expand, are obtained. The modal and damage
distribution results verify the proposed design method for the scaled experimental model with SR.
By analyzing the results, we reveal the crack resistance mechanism of SR. This research provides a
rational foundation for further study of the similarity laws for reinforced dams.

Keywords: gravity dam; reinforced steel; shaking table model test; similarity laws; numerical simulation

1. Introduction

Many high concrete gravity dams are under construction or will soon be built in
southwestern China, where high-intensity earthquakes frequently occur. Some of these
dams are 200-m high, making them the highest concrete gravity dams in the world. The
aseismic design of high concrete dams is important. Embedding steel reinforcement (SR)
in dam concrete is a common reinforcement measure for concrete dams. At present, the
shaking table test and numerical simulation are mainly used to predict the seismic response
of reinforced concrete dams.

In the research of model tests of concrete gravity dams, many investigators have studied
small-scale experimental models on shaking tables to simulate kinematic failure [1–3] and
explored the seismic crack propagation pattern of the dams [4–6]. Zhao simulated the
reinforced concrete part of the dam by increasing the elastic modulus of the model material,
and the seismic experiment of concrete gravity dams is carried out; however, this study
could not obtain a similar scale between the dam prototype and the experimental model [7].
To simulate the influence of SR, Wang et al. [8] proposed a model test design method that
enables concrete gravity dams to be tested on a shaking table with water. The results show
that the reinforcement has a certain restriction on the development of the main crack.

In addition, the use of numerical simulations to analyze the damage of structures under
strong seismic effects is also very common [9–11]. To numerically simulate the damage
to concrete gravity dams under ground motion, many investigators have used discrete
crack models [12,13] or smeared crack models [14,15] in the framework of continuum
mechanics [16–18]. In addition to those models, the extended finite element method, the
crack-embedded element method [19], the discrete element method [20], discontinuous
deformation analysis [21], and the failure process model for rock [22] are typical models of
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crack propagation that are applicable to concrete dams. To simulate the influence of SR and
tension on the structural stiffness of the dam concrete, Long et al. [23] analyzed stiffening
reinforced steel [24] with a zoning method [25] and presented a modified embedded-
steel model.

Other studies have compared the results of scaled experimental models and numerical
prototype models of concrete gravity dams. Hariri [26] compared the seismic cracks of
a gravity dam based on numerical simulation and shaking table test. Zhong et al. [27]
and Philippe et al. [28] compared the damage results for a gravity dam based on a seismic
numerical method and the responsive shaking table test. At present, experimental and
numerical studies of shaking tables for gravity dams in concrete are relatively mature.
However, there are relatively few studies on the damage mechanism of the reinforced
concrete gravity dams under strong seismic effects. In order to effectively conduct shaking
table experimental studies on reinforced concrete gravity dams, it is necessary to investigate
the similarity relationship of steel reinforcement in the prototype and scale models.

In order to further study the dynamic failure mechanism of reinforced concrete grav-
ity dams under the action of strong earthquakes, we respectively push the similar scales
between the dam prototype and structural model, and use suitable materials (emulation
concrete material and fine alloy wire) to simulate the dam concrete and the steel reinforce-
ment (SR) in a scaled experiment model that includes the water-retaining monolith and
overflow monolith of the dam. The similarity relation of steel frame is derived based on
the similarity relation of concrete. Then, numerical simulations were carried out on the
reinforced and unreinforced dam prototypes. The results of the numerical simulation of the
dam prototype and the structural scale model test show that: the SR similarity requirements
and other similarity laws proposed in this paper can obtain accurate natural frequencies,
and the prototype numerical results are similar to the results of the scale test in terms of
damage, which prove the feasibility of the scheme proposed in this study. In addition, the
frequency, acceleration, strain and damage form of the dam model are also analyzed to
evaluate the reinforcement effect.

2. The Shaking Table Test
2.1. Experimental Materials

We used simulated concrete material (ECM) as the material of the test model to
simulate the dam concrete. ECM has the characteristics of high early strength. Table 1 gives
the mixing ratio of various materials of ECM.

Table 1. The mixing ratio of various material.

Water (%) Cement (%) Ore Powder (%) Barite Powder (%) Barite Sand (%)

9.00 1.50 10.00 30.00 49.50

The compressive strength of ECM is 0.7 MPa~0.8 MPa, and the tensile strength is
30 kPa~60 kPa. The dynamic elastic modulus of ECM is 350 MPa~980 MPa. Furthermore,
ECM has a stress-strain curve similar to that of common concrete, as shown in Figure 1.
More test details are found in the literature [29,30]. The material damping ratio of ECM is
less than 5%. Furthermore, the dynamic elastic modulus of the ECM can be obtained by
Equation (1).

w1 = (1.875)2

√
EE IE

ρE AELE
4 (1)

where the subscript E represents the ECM cantilever beam specimens. Furthermore, L, ρ,
and E are the lengths, mass density, and dynamic elastic modulus of the ECM cantilever
beam specimens, respectively. A is the cross-sectional area. I is the moment of inertia of the
cross section. w1 is the 1st natural circular frequency of the cantilever beam.
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Figure 1. Experimental materials.

2.2. Similitude Requirements
2.2.1. Dynamic Experiment Involving a Small-Scale Dam Model

In this study, the similarity relationship between the prototype structure and the scale
model is derived based on the similarity transformation, as follows.

For the structural damage dynamic test of small dam models, the following similar
scales must be satisfied.

T2
r = L2

r ρr/Er (2)

Tr =
√

εrLr (3)

Lr = εrEr/ρr (4)

where Tr is the time scale, Lr is the length scale, ρr is the density scale, Er is the elastic modu-
lus scale, and εr is the strain scale. If two of Equations (2) and (3) and Equations (3) and (4)
are satisfied, the third equation is automatically satisfied.

Based on the similarity laws,
εr = 1 (5)

and Equation (3) can be rewritten as follows.

Tr =
√

Lr (6)

Additionally, we can obtain the following relations:

σr = Er = Lrρr (7)

ar = 1 (8)

fr = 1/Tr (9)

where σr is the stress scale, ar is the acceleration scale, and fr is the frequency scale.

2.2.2. Dam Concrete Similitude Requirements

Because concrete is mainly damaged by tension, when the εr = 1, we can obtain the
following relation:

( ft)r = (EC)r = Lr(ρC)r (10)

where (ft)r is the tensile strength scale. The subscript C represents the dam material. As
shown in Figure 2, the age of the experimental material (the ECM) can be obtained by
Equation (10).



Buildings 2022, 12, 1955 4 of 16

Buildings 2022, 12, x FOR PEER REVIEW 4 of 17 
 

2.2.2. Dam Concrete Similitude Requirements 
Because concrete is mainly damaged by tension, when the εr = 1, we can obtain the 

following relation: 

( ) ( ) ( )t C r Cr rr
f E L ρ= =

 (10)

where (ft)r is the tensile strength scale. The subscript C represents the dam material. As 
shown in Figure 2, the age of the experimental material (the ECM) can be obtained by 
Equation (10). 

 
Figure 2. Method for determining the age of the experimental material(s). 

Additionally, Equation (10) can be rewritten: 

( ) ( ) ( ) ( )= / /r t C C Cr r rr
L f Eρ ρ=

 (11)

Based on Equation (11), the length scale Lr can be determined. Furthermore, other 
scales can be obtained with Equations (6)–(9). 

2.2.3. SR Similitude Requirements 
Due to the low SR ratio of most concrete gravity dams, the inertia of the SR can be 

ignored. It is assumed that the ratios of the loads on the dam concrete and SR between the 
prototype structure and scaled model are the same. 

( )
( )

( )
( )

=S Sp s

C Cp s

F F
F F

 
(12)

where F represents the external forces. The subscript p represents the dam prototype. The 
subscript s represents the test model. The subscripts C and S represent the dam concrete 
material and SR, respectively. Equation (12) can be rewritten as follows. 

( ) ( )
( )

( )
( ) ( )=C Ss s

C Sr r
C Sp p

F F
F F

F F
= =

 
(13)

Because the peak tensile strain of the SR is more than 10 times that of concrete, the 
SR is always in the linear elastic stage when the dam concrete undergoes tensile damage. 
Futhermore, in the linear elastic stage, the external force scales of the concrete material 
and SR satisfy the following equations: 

( ) ( ) ( ) ( )S S S Sr r r rF E Aε= × ×  (14)

( ) ( ) ( ) ( ) ( ) ( ) 2
C C C C C C rr r r r r rF E A E Lε ε= × × = × ×  (15)

Figure 2. Method for determining the age of the experimental material(s).

Additionally, Equation (10) can be rewritten:

Lr = ( ft)r/(ρC)r = (EC)r/(ρC)r (11)

Based on Equation (11), the length scale Lr can be determined. Furthermore, other
scales can be obtained with Equations (6)–(9).

2.2.3. SR Similitude Requirements

Due to the low SR ratio of most concrete gravity dams, the inertia of the SR can be
ignored. It is assumed that the ratios of the loads on the dam concrete and SR between the
prototype structure and scaled model are the same.

(FS)p

(FC)p
=

(FS)s
(FC)s

(12)

where F represents the external forces. The subscript p represents the dam prototype. The
subscript s represents the test model. The subscripts C and S represent the dam concrete
material and SR, respectively. Equation (12) can be rewritten as follows.

(FC)r =
(FC)s
(FC)p

=
(FS)s
(FS)p

= (FS)r (13)

Because the peak tensile strain of the SR is more than 10 times that of concrete, the
SR is always in the linear elastic stage when the dam concrete undergoes tensile damage.
Futhermore, in the linear elastic stage, the external force scales of the concrete material and
SR satisfy the following equations:

(FS)r = (ES)r × (εS)r × (AS)r (14)

(FC)r = (EC)r × (εC)r × (AC)r = (EC)r × (εC)r × L2
r (15)

where A represents the area. It is assumed that there is no slip between the SR and dam
concrete. Thus, when (εs)r = (εc)r = 1, we can obtain the cross-sectional area scale (AS)r of
the SR of the dam, as follows.

(AS)r = (EC)r × L2
r /(ES)r (16)

Based on Equation (12), the cross-sectional area of the experimental materials used for
the SR in the dam can be determined.
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2.3. Test Model of Huangdeng Gravity Dam

The Huangdeng Gravity Dam, situated in the upstream area of the Lancang River
in China, has a dam length of 203 m and a width of 464 m. There are 20 monoliths for
the dam. The water-retaining monolith (WRM) and the overflow monolith (OM) of the
Huangdeng gravity dam are analyzed in this paper. The material for the scale model of the
dam was ECM, of which the geometric scale was Lr = 1:100. The thickness of the scaled
dam model was 20 cm. The scaled dam model and reinforcement diagram are shown in
Figure 3. Measuring points are marked in Figure 3b. The dynamic dam model experiment
was conducted by using the shaking table facility at the State Key Laboratory of Coastal
and Offshore Engineering at Dalian University of Technology, China. The shaking table
(digitally controlled) can input three-dimensional (horizontal + vertical + pitch) excitation.
The working area of the shaking table measured 4 m× 3 m, and the maximum load capacity
was 10 t, while the maximum horizontal and vertical acceleration were 1.0 g and 0.7 g,
respectively. The operating frequency range was 0–50 Hz. The control mode was digital
control. The shaking direction was “horizontal + vertical + pitch”. More details are given
in [31]. The scale factors included in the seismic response analysis are shown in Table 2.
The material parameters of ordinary concrete and ECM are shown in Table 3. The use time
of ECM was 40 h, so as to calculate its elastic modulus. The damping ratio of the ECM was
0.051 and the damping ratio of the concrete was 0.026. The dynamic Young’s modulus of the
SR was 200 GPa. The dynamic Young’s modulus of the fine alloy wire (FAW) was 24 GPa.
The Poisson’s ratio of the SR was 0.3, and the Poisson’s ratio λ of the FAW was 0.28. A video
of the dam model can be downloaded through the following link: https://www.dropbox.
com/s/yviug8z9qefgl7i/Video%20of%20shaker%20experiment.MPG?dl=0 (Accessed date:
27 October 2022).

Table 2. The scale factors included in the seismic response analysis.

Lr Tr (dT)r ωr ar εr (Es)r (As)r (σc)r (σs)r

1:100 0.1 0.1 10 1 1 0.1205 1:95000 0.012 0.1205

Table 3. The material parameters.

Material Scaler (ρc)r (ft)r (Ec)r (λc)r

1.188 0.012 0.012 0.9

Concrete Density ρ (kg/m3)
Dynamic tensile
strength ft (MPa)

Dynamic Young’s
modulus E (GPa) Poisson’s ratio λ

2400 3.040 30 0.2

ECM Density ρ (kg/m3)
Dynamic tensile
strength ft (MPa)

Dynamic Young’s
modulus E (GPa) Poisson’s ratio λ

2850 0.0365 0.36 0.18

The design response spectrum of the prototype of the Huangdeng concrete gravity
dam structure was adopted as the standard spectrum based on the Chinese code for seismic
design of hydraulic structures in hydropower projects (NB 35047-2015,2015), which was
converted into that of the scale dam model by the time scale Tr [32]. Then, the input artificial
dynamic history of the scaled dam model was generated by the design response spectrum
of the scaled dam model. In addition, the input vibration signal of model is shown in
Figure 3c. The progressive loading method was used to input the vibration signal until the
model structure was damaged. The peak of acceleration values of the shaking table are
shown in Figure 3. The peak acceleration in the vertical direction was 2/3 of that in the
horizontal direction. The experimental instruments were a “DSPS” data signal acquisition
and processing system, a “PXI-1044” acquisition system, a “SI-425” demodulator, a “AR-5F”
acceleration sensor, a laser position measuring instrument, and a fiber grating sensor. The
time course of the strain response of the dam in some experiments is shown in Figure 3b.

https://www.dropbox.com/s/yviug8z9qefgl7i/Video%20of%20shaker%20experiment.MPG?dl=0
https://www.dropbox.com/s/yviug8z9qefgl7i/Video%20of%20shaker%20experiment.MPG?dl=0
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2.4. Results

Figure 4 shows that the natural frequencies of the WRM- and OM-scaled models
start to change when the peak acceleration reaches approximately 0.25 and 0.30 g. The
results indicate that the peak accelerations associated with microcrack appearance in the
WRM and the OM models on the shaking table are approximately 0.25 and 0.30 g. In
the literature [8], the results of shaking table experimental studies on reinforced concrete
gravity dams showed that the model stiffness decreased rapidly when the PGA reaches
0.285 g. In [31], the results of shaking table experiments on the overflow section of a high
gravity dam showed that the model was significantly damaged when the PGA was greater
than 0.316. The results of this study are similar to those in the literature [8,31]. In addition,
the results also suggest that the aseismic stability of the OM is higher than that of the WRM.
The role of SR is mainly to prevent macrocracks from extending, and the SR has little effect
on the formation of microcracks. This role of SR in preventing macrocrack extension is
more obvious in the OM.
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As can be seen from Figure 5, when the peak acceleration is between 0.31 and 0.36 g,
the acceleration magnification obviously changes with the distribution of WRM and OM
model height. The distributions of amplification based on the heights of the WRM- and OM-
scaled models display a very dramatic change before the peak acceleration of the shaking
table reaches 0.51 g and 0.53 g, respectively. The results indicate that crack propagation
will lead to changes in the distribution of amplification with height for the WRM and OM
models. Furthermore, the results illustrate that the peak accelerations for macrocracks to
appear in the WRM and OM models on the shaking table are 0.31 g and 0.36 g, respectively.
The macrocracks in the WRM and OM models rapidly expand in the peak acceleration
interval of 0.3 to 0.5 g. Notably, the earthquake duration also has a significant effect on the
extent of damage to concrete gravity dams under seismic action. When the ground-shaking
PGA is large, the prolonged input ground shaking will lead to the deepening of cracks in
the dam [33,34].

Figure 6 shows that the maximum tensile strains dramatically change on the down-
stream slope of the WRM-scaled model (points C and D) and the downstream slope of
the guide wall of the OM-scaled model (point D) as the peak acceleration increases. The
maximum tensile strains at point D of the WRM- and OM-scaled models exceed the peak
strain of the ECM (0.0001) when the peak acceleration reaches approximately 0.25 g and
0.30 g, respectively. These peak accelerations are almost the same as those observed when
the natural frequencies of the WRM- and OM-scaled models begin to change. For the
reinforced and unreinforced monolith, the trends of the maximum tensile strain are similar.
The maximum tensile strain of the reinforced monolith is reduced by approximately 8%
more than that for the unreinforced monolith.

Figure 7 shows that macrocracks mainly form at the downstream slope of the WRM-
scaled model and the downstream slope of the guide wall of the OM-scaled model. The
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damage distributions of WRM and OM were similar to those of WRM in the literature [8]
and OM in the literature [31]. In the OM-scaled model, the expansion of the macrocracks
in the reinforced monolith is less notable than that in the unreinforced monolith. In the
WRM-scaled model, the number of macrocracks in the reinforced monolith is higher than
that for the unreinforced monolith, which is the same as the results of the study in the
literature [8]. The results indicate that the SR will reduce the depth of macrocracks, but
increase the number of macrocracks. In addition, the SR makes the fracture region of the
dam diffuse. Due to the low reinforcement ratio, whether the reinforcement is used in the
dam structure has little impact on the test results of natural frequency and displacement,
but has a great impact on the crack propagation [30,31].
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3. The Numerical Simulation
3.1. Nonlinear Damage Constitutive Model for Concrete

The concrete damage model proposed by Lee and Fenves [11] is adopted, which is
verified in reference [32]. Figure 8 shows the stress-strain relationship of concrete under
uniaxial cyclic loading. For reinforced concrete materials, the constitutive relationship is
described by Equation (17).

σS =


Esε, 0 < ε < εt

κ
2

[√
(Esε)2 + 4α2 f 2

scr − Esε

]
, εt ≤ ε < εy

κ( fy − Esε), εy ≤ ε < εsy
0, εsy ≤ ε

(17)

where σs is the stress of reinforced concrete, ε and εt are the strain and the strain correspond-
ing to tensile strength of concrete, respectively. E is the elastic modulus. The subscript
s represents steel, and the subscript c represents concrete. κ = ρ/(1 − ρ), ρ is the ratio of
reinforcement. εsy is the yield strain of steel.
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The calculation of fscr is shown in Equation (18).

fscr = (1/ρ−1 + Es/Ec)ft (18)

where f is the strength of concrete, the subscript y represents steel, and the subscript t
represents concrete.

Figure 9 is the stress-strain curve of reinforced concrete. The shadow part contributes
to the stiffness of the tensile stiffener effect. Equation (19) is the stress-strain curve of
reinforcement.

σS =

{
Esεs 0 ≤ εs < εy

fy εs ≥ εy
(19)

where σs, εs, εy, and Es are the stress, strain, yield strain, and elastic modulus of steel,
respectively, fy is the yield strength of the steel.
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3.2. Numerical Model of the Huangdeng Gravity Dam

The WRM and OM numerical models of the Huangdeng gravity dam were analyzed
using the commercial finite element software ABAQUS. The element types and element
numbers of the finite element model are shown in Figure 10. Some parameters of concrete
and SR are given in the previous section. The damage parameters of the Huangdeng
gravity dam model are as follows. The dilatancy angle is ψ = 36.31◦. The fracture energy is
Gf = 150 N/m. The density is ρ = 2400 kg/m3. Additionally, the parameters of the SR of
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the gravity dam are as follows. The dynamic tensile strength of the SR is fy = 300 MPa.
The peak tensile strain is εt = 0.101 × 10−3. The whole reinforcement ratio of the dam is
0.04%, meeting the reinforcement requirements [35]. The limit strain of the concrete is
εf = 0.6 × 10−3. The nominal strain is εy = 1.3 × 10−3. By using the Huangdeng gravity
dam design response spectrum, artificial seismic acceleration loads were generated as the
input to the numerical model, as shown in Figure 10. According to the results of Section 2,
the peak horizontal acceleration required for rapid crack propagation in the dam is 0.5 g
(ar = 1). The peak input seismic acceleration is 0.5 g; the load input direction is horizontal
and vertical. Since the shake table experiments do not consider the interaction between
soil and foundation, the numerical model load input method is a rigid foundation inertia
input. Furthermore, the equivalent Ghaemian radius of the cross-sectional area of beam
elements is 0.05 m. Calculations were made for the dam with and without SR. Detailed
material properties are given in reference [35]. The horizontal acceleration and frequency
response of the top of the dam for the concrete gravity dam model are shown in Figure 11.
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Figure 10. The element model of the Huangdeng gravity dam.
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3.3. Comparison Result of Numerical Model and Experimental Model

To verify the accuracy of the mechanical parameters of the experimental scale model,
and according to the scaling rules of the mechanical parameters, the corresponding nu-
merical model of the proportional model was established. Table 4 shows the results of the
comparison between the natural frequencies of the numerical model of the scaled model
and those of the experimental model. It can be found that fse and fsn are almost the same,
which proves the correctness of the mechanical parameters of the experimental model.

In order to verify the accuracy of the numerical model, it is necessary to compare the
experimental results with the numerical results. The natural frequencies of Huangdeng
concrete gravity dam are given in Table 4 and are compared with the results of the shaking
table test. It can be seen from Table 4 that the errors of fsc and fpn are within 5.5%, which
basically meets the similarity constraint. The results show that the numerical model can
accurately obtain the natural frequency of the structure, thus verifying the accuracy of the
numerical model. Table 4 also shows that the natural frequencies of the reinforced WRM
and OM models are 2.5% and 3.4% higher, respectively, than those of the unreinforced
WRM and OM models. The results illustrate that the SR can improve the stiffness of
the dam and reduce deformation. Figure 12 shows the vibration mode of the numerical
simulation of the prototype structure of Huangdeng gravity dam. It can be seen that the SR
has little influence on the dam’s vibration mode.

Table 4. Comparison results of natural frequencies.

Monolith of
the Dam

Natural
Frequency fse of

the Scaled
Experimental
Model (Hz)

Conversion to
the Natural

Frequency fsc of
the Prototype by

ωr = 10 (Hz)

Natural
Frequency fsn of

the Scaled
Model

Numerical
Model (Hz)

Natural
Frequency fpn of

the Dam
Prototype
Numerical
Model (Hz)

Relative Error
|fsc − fpn|/fpn

(%)

WRM with SR 21.34 2.134 21.34 2.086 2.30
WRM without SR 20.80 2.080 20.48 2.047 1.61

OM with SR 16.87 1.687 16.88 1.782 5.33
OM without SR 16.31 1.631 16.34 1.602 1.81
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3.4. The Damage and Stress Results

Figure 13 shows the damage distribution of the dam numerical model. It can be
seen that the structure is mainly damaged on the downstream slope of the WRM and the
downstream slope of the guide wall of the OM. For the OM, the damage depth and damage
magnitude of the reinforced monolith are obviously smaller than those for the unreinforced
monolith. For the WRM, the damage to the reinforced monolith tends to diffuse. These
prototype numerical results are similar to the scaled experimental results.
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Figure 14 shows that the maximum tensile stresses of WRM and OM at the dam heel,
upstream slope, and downstream slope are larger. In addition, the maximum tensile stress
near the damage region is relatively small compared to that in other areas. These results
illustrate that the tensile stress in the dam concrete near the damage region is released
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as the damage region expands. According to the above results, the tensile stress of dam
concrete near the damage area is released with the expansion of the damage area.
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Figure 15 shows that the maximum tensile stress on the SR increases as the damage
region expands. The trends of the maximum tensile stress for the SR and dam concrete are
opposed, mainly due to the relationship between the tensile stress of the SR and the crack
opening process in the dam concrete. The extensive damage leads to the development of
large cracks in the dam concrete. Thus, the maximum tensile stress of the SR will increase.
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4. Conclusions

Through shaking table model tests and numerical simulations of reinforced and
unreinforced WRMs and OMs of the Huangdeng concrete gravity dam, the following
conclusions were obtained.

(1) The similarity relation of SR was derived based on the similarity relation of the pro-
totype and scale model of the dam, which neglected the inertia scale of the steel
reinforcement. Accurate intrinsic frequencies could be obtained using the proposed
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SR similarity requirement and other similarity laws. In addition, the results of the pro-
totype numerical calculations were similar to the results of the scalar experiments in
terms of damage. It indicated that the SR similarity relationship derived in this paper
could accurately reflect the true reinforcement morphology of the structure and could
be used in shaking table experimental studies of reinforced concrete gravity dams.

(2) The peak accelerations associated with the appearance of microcracks in the WRM
and OM were approximately 0.25 g and 0.30 g, respectively. Additionally, the peak
accelerations associated with the appearance of macrocracks in the WRM and OM
were 0.31 g and 0.36 g, respectively. The macrocracks in the WRM and OM rapidly
expanded in the peak acceleration interval of 0.3 to 0.5 g. The aseismic stability of the
OM was higher than that of the WRM.

(3) The role of SR was mainly in preventing macrocracks from extending, and the SR had
little effect on microcrack formation. The SR reduced the depth of macrocracks, the
damage depth, and the damage magnitude, but increased the number of macrocracks.
In addition, the SR caused the fracture and damage regions of the dam to diffuse. The
SR could improve the stiffness of the dam and reduce deformation. However, the SR
had little effect on the dam’s vibration mode.

(4) Crack propagation in the dam led to changes in the natural frequencies and distri-
bution of amplification with height. The tensile stress in the dam concrete near the
damage region was relatively small compared to that in other areas of the dam. The
tensile stress on the SR increased as the damage region expanded. Tensile stress trends
for the SR and dam concrete were opposed.

In conclusion, this research provides a rational foundation for further study of the
similarity laws for reinforced dams.
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