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Abstract: Quality problems are crucial in construction projects since poor quality might lead to delays,
low productivity, and cost overruns. In case preventive actions are absent, a lack of quality results in
a chain of problems. As a solution, this study deals with non-conformities proactively by adopting
an AI-based predictive model approach. The main objective of this study is to provide an automated
solution structured on the data recording system for the adverse impacts of construction quality
failures. For this purpose, we collected 2527 non-conformance reports from 59 diverse construction
projects to develop a predictive model regarding the cost impact of the quality problems. The first
of three stages forming the backbone of the study determines crucial attributes linked to quality
problems through a literature survey and the Delphi method. Secondly, the Analytical Hierarchy
Process (AHP) and a Genetic Algorithm (GA) were used to determine the attribute weights. In
the final stage, we developed models to predict the cost impacts of non-conformities, using Case-
based Reasoning (CBR). We made a comparison between the developed models to select the most
precise one. The results show that the performance of CBR-GA using an automated weighting model
is slightly better than CBR-AHP based on a subjective weighting system, whereas the case is the
opposite in standard deviation in forecasting the cost outcome of the quality failures. Using both
automated and expert systems, the study forecasts the cost impact of failures and reveals the factors
linked to poor record-keeping. Ultimately, we concluded that the outcome of non-conformities can
be predicted and prevented using past events via the developed AI-based predictive model.

Keywords: predictive model; case-based reasoning; analytic hierarchy process; genetic algorithm;
quality problems

1. Introduction

Every construction is unique in scope, contract type, relevant specifications, con-
struction environment, and methods applied. These variations between projects make
performed actions non-repetitive. Each construction project thus carries uncertainty and
risk, fostered by the project’s complexity. As a result, defects and quality issues become
inevitable, leading to rework. Such issues also stimulate variances in construction budgets
and schedules. All these factors in construction interact with each other and bring new
management complexities to construction projects. One of the most important leading
factors is quality failures among these management processes. High quality is directly
linked to project success in that it eliminates potential delays [1] and excessive costs [1–6].
Love [1] recorded rework-related increases in mean cost (12.6%) and scheduling time
(20.7%) in Australia’s building projects. In addition, rework cost is directly proportional
to the contract value, in that high contract values come with high rework costs. Hence,
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the occurrence of rework decreases profit and productivity. For example, Love et al. [4]
revealed a 28% rework-related loss in annual profit on average. It is obvious that when
defects are detected before they happen, related costs can be averted. Furthermore, one
failure in the construction factor tends to stimulate other failures, which is called a “domino
effect” in construction [7]. Accordingly, managing and controlling unwanted events in
construction could be more difficult if any of the control or data management systems do
not exist [8]. As a result, a proactive quality control system is needed so that construction
practitioners can be instantly informed about possible outcomes of defects. For this pur-
pose, AI-based solutions should remedy such complex quality issues in construction [9].
However, a predictive model developed to estimate the cost impacts of quality failures in
construction projects based on past NCRs does not exist. Thus, it is highly necessary to
introduce a model to forecast the cost effects of quality failures.

Non-conformance reports (NCRs) record quality issues in construction sites. After
recording them by NCRs, root cause analysis helps manage quality problems by addressing
the source problem. This is crucial as learning from mistakes is at the center of organiza-
tional learning and improvement [10,11]. The possibility of malpractice, however, may
cause overlooked failures or biased recording [12]. Therefore, the records on quality issues
should be effectively used and widened on construction sites. At this point, a new NCR
recording system and predictive models should be integrated to mitigate quality issues and
their domino effects on construction cost overruns, time delays, and productivity [7,13].
Thus, the purpose of this research is to mitigate the negative cost influences of quality prob-
lems in construction projects and thus increase cost performance based on the NCRs. Thus,
a prediction model-based early-warning system for quality management that estimates
the cost impacts of upcoming cases using past data instead of the preset rules is highly
essential. The by-product of the model is that inexperienced quality-control practitioners
can be informed on the quality issues so that they record what is problematic through
NCRs. Adopting an AI-based predictive model by using the CBR method is another unique
part of this study to forecast the cost impact of quality issues based on past events.

NCRs occur during a period of the construction timeline, and we believe that the
occurrences of these problems are interrelated with each other. Experiencing a failure is an
early warning that a subsequent and, most likely, more severe failure will occur [7]. The
data collected considering the order of occurrence can be viable to forecast an expected
cost impact problem from the NCRs [14]. Therefore, the study aims to develop an artificial
intelligence-based early-warning system to predict the outcome of the most likely non-
conformances occurring in the project. The model utilizes the past data obtained from
different construction projects so that the upcoming failures and their cost consequences
are anticipated considering the present condition of the specific project. The collected
data are in order according to their occurrence in the project, so the data and model
collaboratively work to retrieve the most similar cases and summarize the information for
the upcoming events. The model can adopt the recorded NCRs from an ongoing project as
input. Then, it retrieves the most similar cases from its database using CBR and summarizes
the significance of upcoming NCRs in terms of their types and cost impacts.

2. Literature Review
2.1. Quality Issues

Rework has a major cost impact on projects. To moderate this impact, the resultant
costs of defects were studied using various methods [3,4,6,15,16]. Love [1] conducted a
case study showing the rework cost of various project types in Australian construction.
The results revealed that although cost reduction was needed with the help of less re-
work, the project type or procurement technique did not influence the rework amount.
Hwang et al. [17] observed the project characteristics regarding their cost performance
and suggested remedies addressing the root causes of rework. In another study with a
similar goal, Forcada et al. [2] identified the cost impact factors for rework, including project
characteristics and managerial issues. In addition, the literature studied the cost impact
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of rework in terms of direct [4] and indirect [1] costs, stating that the overall cost can be
determined from the probabilities of its components [5]. Recently, Oleah et al. [13] revealed
the causes that lead to reduced profits in building projects. Faulty work was among these
factors.

Abu Aisheh [10] focused on mega-building construction and reviewed the literature in
terms of lessons learned from these projects, obstacles lowering project performance, and
ways to improve processes. The research also stated that these lessons help stakeholders
while reducing the cost and frequency of unexpected events. To reduce defect costs,
knowledge management and proper quality program were found to be effective in reaching
the goal [14,18,19]. Josephson and Hammarlund [20] investigated the effectiveness of the
early detection of defects in reducing rework costs. According to their study, this solution
can help avoid rework and resultant costs, which informs the literature of the need for
systems warning users about poor quality. Elbashbishy et al. [7] assessed construction-
related risks to study cost overruns. In the research, they performed a risk simulation and
used a genetic algorithm and an artificial neural network for output cost overruns. They
addressed the chain of failure events and cost outcomes in their methodology. As there is
a dynamic and triggering relationship between quality issues, real-time monitoring can
enable taking immediate actions in quality programs. Zhong et al. [21] developed a system
to monitor earth-rockfill dam constructions, and Kazemian et al. [22] were able to detect
the defects in additive manufacturing. Finally, the quality of gravel piles was controlled
using a monitoring system and the Internet of Things [23].

As safety is also an essential quality component, the authors have contributed to
the literature. They have employed an artificial neural network (ANN) to forecast the
outcome of incidents that occur on a construction site [24], and they used a hybrid model
of CBR, AHP, ANN, and latent class clustering analysis to solve the heterogeneity problem
in the dataset [25]. Moreover, a system applying an ANN was proposed to predict inci-
dent severity levels [26]. Finally, association rule mining was used to reveal the hidden
relationships of attributes leading to construction accidents [27]. The ultimate aim was to
create compact and predictive systems that emphasize safety and quality for construction
practitioners. Regardless of the amount of effort in assessing the rework cost, the literature
lacks proactive early warning systems informing the cost impacts of NCRs. The developed
systems can only identify defects after an occurrence rather than detect them proactively.
Hence, implementing a system that can detect the drawbacks of a quality system and
inform practitioners of them is required.

2.2. Case-Based Reasoning (CBR)

CBR takes advantage of the similarity of issues alike; therefore, it is fed by the knowl-
edge cumulated heretofore for effective handling of project complexity. CBR works similarly
to the human reasoning approach and attempts to solve and identify problems by relying
upon experience. In this sense, the machine learning technique CBR can predict outcomes
based on previous cases, which are called databases. CBR utilizes a support decision mech-
anism and follows similar past cases to provide a new solution for existing problems [28].
Studies utilized the technique alongside ANN. Some authors [29–31] stated that CBR has
better performance, whereas Kim et al. [32] claimed to achieve more accurate results with
ANN. In terms of processing duration, ANN was proved to be longer than CBR [30], which
means CBR prevails over ANN as quality systems must detect issues quickly. Due to a lack
of information in the early project phases, constructing high-performance models is hard
to achieve, regardless of the intelligence these models have. CBR plays an important role
in working with little data, such as construction cost estimation, and was used in various
studies [32–41]. In addition, cost estimation for different project types was at the center
of the research. These types include railroad bridges [42], military facilities [43], housing
projects [40,44,45], and pump stations [46]. However, quality was not a concern in these
projects.
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As construction projects require the participation of various parties with each having
different interests and perspectives, these interests might end up conflicting with each
other, leading to disputes. Therefore, research utilized CBR in dispute cases, as well. A
CBR-based negotiation model, MEDIATOR, was developed by Li [47], providing impartial
judgment for dispute cases. Furthermore, CBR models were developed in the literature
to predict the outcome of litigation [48–50], attempting to reduce the excessive costs of
litigation. Other areas using CBR include planning [51–53], risk response [54,55] hazard
identification [56], and international market selection [30].

2.3. Research Statement

Diverse studies have explored the reasons for quality issues and the effect of such
problems on construction cost performance [3,4,15,16]. A few of them utilized NCRs to
understand the root causes of the quality issues and cost overruns due to defects [2,4,18].
However, these studies mainly focused on the records of quality defects to provide lesson
learning from past data rather than predicting new possible cases related to poor quality. To
the knowledge of the authors, there has been no predictive model developed to forecast the
cost impacts of quality failures in construction projects based on past NCRs. In this sense,
it is highly essential to achieve a model to predict the cost influences of quality failures and
severe upcoming events regarding failures. Therefore, the main objective of this study is
to develop a predictive model based on the NCRs recorded in diverse construction sites
to forecast how and to what degree quality failures influence the cost performance of
construction projects. Introducing an AI-based predictive model developed via the CBR
method is another unique part of this study to predict the cost impacts of quality issues
based on past events.

Since CBR models are affected by the attribute weights, the aforementioned research
used different techniques to select the correct and accurate ones. Feature counting [33],
gradient descent [33,57], multi-regression analysis [36], and decision trees [58] were among
these methods. Yet, GA was found to be the most common in these studies [35,38,43,45,57].
However, in addition to the computer-based tools, expert opinion was considered valuable
regarding the complexity factor [34]. It is necessary to consider both automated and
subjective systems to develop a more accurate predictive CBR model. Therefore, it is
available to make a comparison between two developed models and determine which one
is better a predicting the cost effects of quality failures. As a result, this study was built on
the foundation of GA and AHP to develop a predictive model using CBR, taking both a
computerized approach and expert opinion into account, respectively.

3. Research Methodology and Results

This study pursues the development of a probabilistic model for detecting quality
issues in advance for construction projects. For this reason, 2527 NCRs mostly causing
reworks were collected from 59 diverse construction projects constructed by international
construction companies. After that, these NCRs were analyzed based on the quality failure
factors called “attributes” across the entire manuscript by using the Delphi technique. This
means that each case was coded according to the involved factors. To move forward, the
NCRs were preprocessed for machine learning, which necessitated one-hot encoding of the
dataset. The result was a binary dataset. The technique used for machine learning was CBR,
which relies heavily on the weights of the selected attributes, and the model was coded
in a MATLAB environment. To assign proper weights to these attributes, two techniques
were used, namely AHP and GA. Using two separate methods for weight assignment also
helped compare the automated systems and expert opinion in CBR applications used in
construction quality problems. As the main mechanism behind the CBR model is retrieving
the most similar case to a given situation, the model was set to retrieve ten similar cases,
which were used to calculate cost impact probability. Finally, the results were compared to
the actual data to assess the accuracy of the CBR model (Figure 1).
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3.1. Attribute Selection

The literature consisting of quality studies provided the initial list of attributes causing
rework. Some of the studies revealed a limited number of causes, whereas some delved
into these problem sources. Table 1 provides the initial list of the reasons for rework
in construction projects. Before initiating the Delphi process, rework cases were sent to
panelists (Table 2) so that they could give feedback on the relevant attributes, which were
added to the primary attribute list. Some of the collected attributes had similar meanings
(e.g., ‘incorrect or defective material usage’ and ‘damaged material usage’); therefore, these
attributes were cleaned. The attributes shown in Table 1 were categorized under four
main groups according to activity type and rework consequences. These were materials,
design, construction, and operation. As the collected NCRs belong to construction phases,
the categorization process was formed accordingly. The majority of client-related and
subcontractor-related factors were eliminated, except for a small number of them explaining
their impact on rework [59]. Similarly, pre-construction-related attributes were also removed
from the list. All of these eliminations were mainly related to collected NCRs and their
contents. Furthermore, the predictive model was developed on the quality failures related
to construction phases rather than managerial aspects in this study.

Table 1. Bulk information for rework attributes [59].

ID Rework Attributes Study

a1 Poor ground condition
[60]a2 Difficulty in building

a3 Design/Information problems
a4 Materials

b1 Construction-related problems

[20]
b2 Design problems
b3 Poor site management
b4 Poor workmanship
b5 Subcontractors’ problems

c1 Change on design/construction phases

[1,61,62]

c2 Error on design/construction phases
c3 Omission on design/construction phases
c7 Damage on construction
c8 Value management
c9 Ineffective use of IT by a design team

c10 Design Scope freezing
c11 Client change
c12 Poor morale
c13 Conflict
c14 Delusion of Supervision
c15 Contractual claims
c16 Cost overruns
c17 Time overruns
c18 Cost/schedule growth
c19 Safety
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Table 1. Cont.

ID Rework Attributes Study

d1 Design changes

[63]

d2 Construction changes
d3 Client
d4 Design team
d5 Site management
d6 Subcontractor
d7 Project scope
d8 Contract documentation
d9 Project communication

d10 Procurement strategy
d11 Design management

e1 Poor site condition

[64]

e2 Insufficient time for design stage
e3 Poor coordination between client and design team
e4 Client-related factor
e5 Poor site supervision and inspection
e6 Improper construction technology
e7 Improper handling of material and delivery
e8 Improper handling of machines and equipment
e9 Poor contract documentation

e10 Poor client and end-user coordination
e11 Poor sub-contractor management
e12 Poor site management
e13 Construction error due to misunderstanding of design
e14 Poor coordination among design team
e15 Unclear project management process
e16 Poor quality management by design team
e17 Poor quality management by contractor

f1 Improper handling, delivery, or providing proper materials

[65]

f2 Unclear project management process
f3 Poor sub-contractor management
f4 Poor design constructability
f5 Poor site supervision and inspection
f6 Need to combine hard and delicate operations
f7 Failure to define standard executive procedures

g1 Lack of coordination and poor communication

[66]

g2 Design change initiated by owner
g3 Lack of experience and knowledge of design and construction process
g4 Lack of funding allocated for site investigations
g5 Lack of client involvement in project
g6 Insufficient time and money spent on briefing process
g7 Expenditure on low fees to prepare contract documentation
g8 Incomplete design at the time of tender
g9 Poor coordination of design
g10 Design change initiated due to financial and economic changes
g11 Omissions of items from contract documentation
g12 Errors made in contract documentation
g13 Insufficient time to prepare contract documentation
g14 Inadequate client brief to prepare detailed contract documentation
g15 Insufficient skill levels to complete required task
g16 Ineffective use of information technologies

The Delphi method ranked these attributes through an iterative process based on
the responses of experts so the most relevant factors can be determined. Initially, as
studies have recommended the number of panelists to be between 10 and 20 [25,67], this
study identified 11 panelists for the Delphi process. These panelists with experience in
construction quality management were selected from a list of civil engineers, mechanical
engineers, and architects working for international construction companies and universities
(Tables 2 and 3). Along with the quality managers, two construction managers who have
experience in both quality and project management processes were included in this study.
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Table 2. Criteria for panelists [59].

Requirement Educational Degree

Ed1

B.Sc. department:
- (Ed1-1) Mechanical Engineering

- (Ed1-2) Civil Engineering
- (Ed1-3) Architecture

Ed2
At least one of these certificates:

- (Ed2-1) Auditor Certificate
- (Ed2-2) Lead Auditor Certificate

Ed3 Graduate-level background in construction or quality management

Experience level

Ex1 At least ten years of experience in the construction industry

Ex2 At least five years of experience in quality control and management

Table 3. Details of panelists [59].

Title Academic Title Experience Certificate

Academic Staff/Civil Engineer Prof. 20–25 -
Mech. Eng./Quality Cont. Man. M.Sc. 20–25 (Ed2-1,2)
Mech. Eng./Quality Cont. Man. B.Sc. 15–20 (Ed2-1,2)
Mech. Eng./Quality Cont. Man. B.Sc. 15–20 (Ed2-1,2)
Architect/Quality Cont. Man. B.Sc. 10–15 (Ed2-1,2)
Academic Staff/Architect Assoc. Prof. 10–15 -
Civil Eng./Project Manager B.Sc. 25–30 -
Architect/Project Manager B.Sc. 20–25 -
Architect/Quality Cont. Sup. M.Sc. 15–20 (Ed2-1)
Civil Eng./Quality Cont. Sup. Ph.D. 15–20 (Ed2-1,2)
Architect/Site Eng. B.Sc. 10–15 (Ed2-1)

Then, a questionnaire aiming at ranking the attributes was prepared. Panelists anony-
mously responded to each item with a score between 1 (strong disagreement) and 7 (strong
agreement) to provide a ranking of these attributes. Sample means and sample standard
deviation of each set of responses were calculated [25,68,69] using Equations (1) and (2),
where n indicates the number of responses (Xi) for each question.

x =
1
n

n

∑
i=1

Xi (1)

s =

√
1
n

n

∑
i=1

(Xi − x) (2)

According to these calculations, three cases were considered:

1. Attributes with a low mean score: These attributes were eliminated from the model.
2. Attributes with a high mean score and standard deviation: There was no consensus.

A second iteration was needed to ensure agreement.
3. Attributes with high mean values and low standard deviation: These attributes were

the most desired ones; therefore, they were kept in the model.

The attributes belonging to the first category were directly eliminated in the first round.
However, the attributes falling into the second group, which needs another iteration, were
sent back to the respondents. These attributes are marked with an asterisk (*). For example,
the ‘Damaging material during transportation/loading’ attribute had a high standard
deviation, thus making a second-round necessary. Finally, the third category was accepted
without any change. It should be noted that design-related causes were not accepted as
rework cases did not include the design phase. Therefore, there is only one item in the



Buildings 2022, 12, 1946 8 of 24

‘Design’ category in the final attribute list (Table 4). Furthermore, panelists, specifically
Panelists 1 and 9, commented on the given questionnaire. According to their suggestions,
“Inadequate training”, “Inadequate staff”, and “Insufficient/improper workmanship” were
similar terms and should be merged into one attribute. Their comment was accepted,
and the three attributes were represented by a new attribute, called ‘Inadequate staff and
insufficient/improper workmanship’. On the other hand, panelists recommended that
‘Problem with warehouse (Labeling, etc.)’ and ‘Problems with documentation’ should be
combined; however, this comment was rejected since the latter constitutes more than the
former. At the end of the process, a final list emerged consisting of the 25 diverse attributes
categorized into five different groups (Table 4). It should be emphasized here that the
primary purpose of this process was not only to extract the final attribute list but also to
assign a weight to each attribute observed in quality failures. This enabled the generation
of a binary form (1 or 0) for each case, indicating whether or not a related sub-attribute
exists in an NCR. The final list of attributes can be seen in Table 4. The overall process of
the Delphi technique is given in Figure 2.
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Table 4. List of final rework attributes used in the study [59].

Group Attributes ID

Materials

Improper handling of material and delivery M1
Incorrect or defective material usage M2
Procurement of incorrect material M3
Damaging material during transportation/loading M4

Design Design problem/changes on construction D1

Construction

Damaging the completed work C1
Work in confined space C2
Construction errors due to misunderstanding of design C3
Inadequate preparation before starting the work C4
Inadequate site cleaning after completing the work C5
Incompliance with technical specification C6
Insufficient/improper workmanship C7
Lack of documents on site C8
Inadequate tools/equipment C9
Inadequate application procedure C10
Insufficient review of drawings C11
Lack of drawings on site C12
Delays in construction timeline C13
Insufficient number of site supervisors C14
Not following work sequence C15

Operation

Problems with purchasing department O1
Problems with warehouse (labeling, etc.) O2
Sending wrong material from warehouse O3
Lack of supervision O4
Problems with documentation O5

3.2. Determining Attribute Weights

For CBR models to make an accurate assessment, assigning a proper weight to each
attribute is essential. This study used two different techniques for that purpose. The
first method was AHP, which employs an expert system for decision making, and the
second was GA, a computerized automated algorithm. Each method has its strengths
and weaknesses. Doğan et al. [57] stated that automated methods could remove the need
for finding qualified experts and overcome subjective opinions. In contrast, An et al. [34]
advocated the importance of expert opinions because computerized algorithms are not
able to comprehend the overall process. Therefore, this study utilized both approaches to
observe and compare the outcomes.

3.3. Analytic Hierarchy Process (AHP)

AHP is commonly used as a decision-making tool [70,71]. Through pairwise com-
parison, the method ranks various alternatives. Although these alternatives can be sorted
manually, such a method would lead to a bias in selection, affecting the overall decision.
Inconsistency in the expert opinion is overcome by AHP [72] with the help of inherent in-
dices such as the consistency index (CI) and the random consistency index (CR). According
to the definition of Saaty [73], AHP steps are as follows:

• Problem identification and decision hierarchy generation.
• Comparison matrix, C, formation using Table 5.
• Normalizing matrix C by the sum of each column, si, to obtain weights, where the

new matrix is called B.
• Calculating the average of each row to generate the weight matrix, w.

To calculate CI and CR, the dot product of matrices w and C were calculated and
normalized with the weight. This calculation yielded a new matrix, R. The maximum value,
λmax, of R represents the divergence among the attributes. Equation (3) shows the formula
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for CI and CR. Saaty [73] proposed a random consistency index table (RC) (Table 6); the RC
values were determined for the number of alternatives to be compared:

R′ =

b11 · · · b1n
...

. . .
...

bn1 · · · bnn

 .

wi
...

wn

 =

 ri
...

rn


R′normalized =

 r′i
...

r′n

, where ri =
n
∑

i=1

ri
wi

, ∀ i = 1, 2, 3 . . . n

λmax = max
(
R′normalized

)
CI (Consistency Index) = λmax−1

n−1

CR (Consistency Ratio) = CI
RI ≤ 10%

(3)

Table 5. AHP Scale [59].

Scale Definition Reciprocals

1 Equal importance of two elements 1
3 Low importance of one element over another 1/3
5 Strong importance of one element over another 1/5
7 Very strong importance of one element over another 1/7
9 Absolute importance of one element over another 1/9
2,4,6,8 Intermediate values 1/2, 1/4, 1/6, 1/8

Table 6. RI values proposed by Alonso and Lamata [59,74].

Element Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RI 0 0 0.52 0.88 1.11 1.25 1.34 1.41 1.45 1.49 1.51 1.54 1.55 1.57 1.58

Figure 3 shows the overall AHP process that was applied to this study. Rework cases
were binary coded, i.e., the attribute was assigned a one (1) if it was observed in the non-
conformance case and a zero (0) if this was not the situation. The weighted sum (fwi) of all
attributes was calculated by aggregating the observation frequency of each item (fij) for
the cost impact (ci). The weighted summations were normalized (fwi-norm) in each group
and multiplied with the frequency (fi) to calculate the comparison criteria (cci) before AHP.
Table 7 shows the process information of this study (the design attribute was not included
since it had only one attribute).

The results of AHP are shown in Table 7. According to these results, specific attributes
with a high observation frequency have minor cost impacts (such as M2 and O4). In
contrast, some of the least observed attributes explain most of the cost impact on the project
budget. The pairwise comparison in Figure 4 shows both layers of AHP. Construction-
related causes became the most prevalent after the first iteration of the method. As expected,
design-related attributes were given the lowest score.

Table 8 summarizes the obtained weights for each attribute to be fed to the CBR unit.
The CR value assessed the consistency in the results. As the CR of each attribute should be
less than 10%, no issue was encountered in this situation.



Buildings 2022, 12, 1946 11 of 24Buildings 2022, 12, x FOR PEER REVIEW 12 of 27 
 

 

Figure 3. Weight calculation by AHP [59]. 

The results of AHP are shown in Table 7. According to these results, specific attrib-

utes with a high observation frequency have minor cost impacts (such as M2 and O4). In 

contrast, some of the least observed attributes explain most of the cost impact on the pro-

ject budget. The pairwise comparison in Figure 4 shows both layers of AHP. Construction-

related causes became the most prevalent after the first iteration of the method. As ex-

pected, design-related attributes were given the lowest score. 

Table 8 summarizes the obtained weights for each attribute to be fed to the CBR unit. 

The CR value assessed the consistency in the results. As the CR of each attribute should 

be less than 10%, no issue was encountered in this situation. 

Figure 3. Weight calculation by AHP [59].



Buildings 2022, 12, 1946 12 of 24
Buildings 2022, 12, x FOR PEER REVIEW 13 of 27 
 

 

Figure 4. Pairwise comparison of rework attributes [59]. 

  

Figure 4. Pairwise comparison of rework attributes [59].



Buildings 2022, 12, 1946 13 of 24

Table 7. Details of rework attributes before AHP [59].

Attributes ID Number

Attribute Groups Cost
Impact (ci)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Causes related to inventory 1 0.516 0.571 0.565 0.395
Group name: M 2 0.320 0.298 0.391 0.395

3 0.118 0.090 0.022 0.158
4 0.039 0.036 0.022 0.053
5 0.007 0.006 0.000 0.000

fwi 1.699 1.607 1.500 1.868
fwi-norm 0.255 0.241 0.225 0.280

fi 0.198 0.693 0.060 0.049
Causes related to procurement 1 0.714 0.250 0.000 0.603 0.711

Group name: O 2 0.214 0.500 0.000 0.268 0.111
3 0.071 0.167 1.000 0.087 0.141
4 0.000 0.083 0.000 0.036 0.037
5 0.000 0.000 0.000 0.005 0.000

fwi 1.357 2.083 3.000 1.571 1.504
fwi-norm 0.143 0.219 0.315 0.165 0.158

fi 0.010 0.009 0.001 0.880 0.100
Causes related to construction 1 0.529 0.000 0.637 0.649 0.623 0.590 0.617 0.767 0.500 0.670 0.582 0.615 0.250 0.182 0.563

Group name: C 2 0.303 0.667 0.254 0.286 0.264 0.268 0.277 0.167 0.225 0.247 0.286 0.269 0.450 0.545 0.291
3 0.108 0.000 0.066 0.039 0.057 0.088 0.072 0.067 0.225 0.049 0.084 0.077 0.200 0.273 0.107
4 0.044 0.333 0.036 0.013 0.057 0.044 0.028 0.000 0.025 0.026 0.041 0.038 0.100 0.000 0.029
5 0.017 0.000 0.008 0.013 0.000 0.010 0.007 0.000 0.025 0.008 0.007 0.000 0.000 0.000 0.010

fwi 1.717 2.667 1.524 1.455 1.547 1.615 1.531 1.300 1.850 1.455 1.605 1.538 2.150 2.091 1.631
fwi-norm 0.067 0.104 0.059 0.057 0.060 0.063 0.060 0.051 0.072 0.057 0.062 0.060 0.084 0.081 0.064

fi 0.056 0.001 0.321 0.014 0.010 0.077 0.200 0.011 0.007 0.192 0.082 0.005 0.004 0.002 0.019

Table 8. Attribute weights after AHP [59].

Attribute ID Number

Attribute Groups Group
ID

Group
Weights

CR for
Groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CR’

Causes related to inventory M 0.134

0.091

0.240 0.620 0.085 0.056 - - - - - - - - - - - 0.078

Causes related to procurement O 0.247 0.069 0.096 0.027 0.549 0.260 - - - - - - - - - - 0.018

Causes related to design D 0.040 0.040 - - - - - - - - - - - - - - 0.000

Causes related to construction C 0.578 0.073 0.021 0.137 0.064 0.054 0.080 0.115 0.050 0.045 0.106 0.088 0.033 0.038 0.030 0.065 0.050
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3.4. Genetic Algorithm (GA)

The GA method is a heuristic AI technique adopting natural selection principles [57].
Doğan et al. [57] developed a CBR model using three different optimization techniques,
namely, gradient descent, feature counting, and GA. The result of this study shows that
the CBR model optimized with GA has a better performance compared to the other two
methods in predicting the cost of structural systems. Moreover, Kim and Kim [38] devel-
oped and validated a GA-based CBR predictive model to estimate preliminary construction
costs. A previous study [45] concluded that the cost estimation of family houses in the
design phase can be precisely performed via the CBR predictive model assisted with GA
for weighting attributes. The solutions are indicated by the chromosomes whose success is
defined by the fitness criteria in the GA. The GA performs four main steps to reach the goal:
Initialization, selection, crossover, and mutation. The GA is initiated by randomly distribut-
ing the chromosomes to the solution space. Then, each chromosome is evaluated regarding
the fitness criteria defined by the user. Then, chromosomes with better performance are
selected to proceed with reproduction because the aim is to preserve reproduction within
the high-score members. This selection results in the domination of the best-performing
chromosomes in the population over time.

In this study, GA took place in dealing with the weighting process of attributes. AHP
requires hands-on calculations, whereas GA promotes automation, which could be a better
solution to provide a complete, adaptable, and fast model setup. Then, the CBR model
advances to predict the cost impact of the quality failures using the calculated weights from
the GA. GA progresses iteratively, and the algorithm crosses over or mutates the attribute
weights. Since tuning the GA parameters is based on a trial-and-error process, there were
two criteria that the authors followed when deciding the best option. These were the cost
of computation (time spent on obtaining the best fit) and obtaining the minimum RMSE.
There is a trade-off between obtaining the best fitness score and the time consumed to reach
the goal. The smaller crossover and mutation rates yield an increase in the resolution of
computational progress so that the speed of iterations decreases dramatically. After several
attempts, the optimum number of chromosomes (population) was determined as 50. The
crossover and mutation rates were 0.5 and 0.1, respectively. The iterations were initialized
by weighting the attributes as 1, and the root mean squared error (RMSE) was selected as a
fitness criterion (Equation (4)). The stop criterion was defined according to RMSE such that
when GA could not produce a lower RMSE value along with 9500 subsequent iterations, it
would be terminated. Then, GA found the solution set with the minimum error. For GA
calculations, Evolver from the Decision Tools Suite [75] was used.

Root Mean Square Error (RMSE) =

√
∑n

1 (yi
′ − yi)

2

n
(4)

Here, yi
′ is the actual cost impact and y′ is the prediction. The 35,872nd iteration gave

the minimum error, and the local minimum was 26,375th (see Figure 5). Table 9 provides
the resultant weights.

Table 9. Attribute weights after GA [59].

Attribute ID Number

Attribute Groups Group
ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Causes related to inventory M 0.958 0.013 0.716 0.883 - - - - - - - - - - -
Causes related to procurement O 0.226 0.966 0.762 0.551 0.894 - - - - - - - - - -

Causes related to design D 0.852 - - - - - - - - - - - - - -
Causes related to construction C 0.592 0.781 0.975 0.301 0.170 0.001 0.072 0.572 0.601 0.019 0.542 0.612 0.880 0.988 0.519
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3.5. Case-Based Reasoning (CBR)

CBR addresses the complexity of the construction industry by using knowledge-based
approaches rather than rule-based techniques. It mimics human memory and its reasoning
ability so that it can assess new problems based on previous experiences. CBR can also
improve itself when new cases are provided due to its inherent four-step cycle: Retrieve,
Reuse, Revise, and Retain. The performance of a CBR model is strongly affected by attribute
weights and matching type, as will be explained in further paragraphs. Figure 6 shows the
overall CBR process. The method initially requires attribute weights. After a new case is
given as input, the model assesses the similarity of the case based on the old cases through a
similarity matrix where similar attributes are assigned one and mismatching ones are given
zero. The most similar cases are retrieved so that they can be observed. If the requirements
are not fulfilled, CBR revises the solution to retrieve more relevant cases. As soon as the
model finds the outcome of the given case, it is retained in the updated case base.

In this study, when the outputs were taken from GA and AHP models, two separate
weight matrices were created. Initially, 150 cases were randomly selected from the dataset.
Then, the similarity score of each case was calculated using Equation (5), where S is the
similarity matrix, W is the weight matrix, and S_W is the total of attribute weights.

Similarity Score =
S ×W
S_W

(5)

For a case to be labeled as similar, the required calculated similarity score was deter-
mined to be at least 0.98. When this score was achieved, the case was added to the similarity
matrix. As the data were binary, an exact match was preferred as a matching type. It was
also necessary to find cases successive to similar cases so that the cost impact probability
could be calculated, which is the ultimate aim of the study. The CBR model captures the
most similar cases from the database and retrieves a certain number of consecutive quality
failures to develop the cost impact probabilities accordingly (Figure 6). The optimum
number of consecutive cases was determined as a range between 1 and 25 so that the
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minimum error and standard deviation were achieved. To observe the error in the CBR
model, the mean absolute error (MAE) was used (Equation (6)).

MAE =
1
n

n

∑
t=1
|yi
′ − yi| (6)

In this equation, yi
′ is the actual cost impact and yi is the predicted one.

As a comparison between expert opinion and computerized algorithms to CBR models,
the study showed that the GA algorithm outperformed AHP in terms of MAE. While the
minimum MAE of GA was 7.20%, that of AHP was 7.76% when three successive cases were
used. Furthermore, it was found that for the standard deviation to be the minimum, the
number of successful cases should be set to 10. The results are provided in Table 10 and
Figure 7. Here, emphasis was given to lowering the uncertainty. Therefore, ten successive
cases were used in the model.
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As shown in Table 10, although the average MAEs of the five cost impacts in the
model using attribute weights obtained via GA were lower than those obtained via AHP,
the standard deviations of the cost impacts in the AHP model were lower than with GA.
Furthermore, while the overall MAE and standard deviation with AHP were 8.12% and
3.93%, respectively, they were 7.55% and 4.09% with GA. It was evident that the two
techniques did not differ significantly (Figure 8).
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Table 10. Overall MAE and standard deviations of successive cases [59].

No. Successive Cases
AHP GA

Overall MAE Standard Deviation Overall MAE Standard Deviation

1 13.54% 7.69% 12.09% 7.77%
2 9.83% 4.94% 8.95% 4.97%
3 7.76% 4.99% 7.20% 5.06%
4 8.39% 5.18% 7.94% 5.27%
5 7.91% 4.94% 7.53% 5.08%
6 7.93% 4.62% 7.55% 4.80%
7 8.03% 4.72% 7.54% 4.91%
8 7.79% 4.19% 7.31% 4.36%
9 8.08% 3.97% 7.53% 4.12%
10 8.12% 3.93% 7.55% 4.09%
11 8.34% 4.05% 7.80% 4.22%
12 8.44% 4.09% 7.88% 4.27%
13 8.59% 4.26% 8.03% 4.43%
14 8.60% 4.26% 8.07% 4.45%
15 8.68% 4.25% 8.11% 4.40%
16 8.78% 4.33% 8.19% 4.49%
17 8.83% 4.44% 8.25% 4.62%
18 8.96% 4.66% 8.38% 4.84%
19 9.18% 4.73% 8.60% 4.90%
20 9.26% 4.77% 8.70% 4.95%
21 9.31% 4.85% 8.75% 5.03%
22 9.26% 4.93% 8.71% 5.12%
23 9.21% 4.97% 8.67% 5.16%
24 9.26% 5.03% 8.72% 5.22%
25 9.24% 5.01% 8.69% 5.20%
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4. Discussion

Several studies have focused on identifying the root causes of quality failures and
the impacts of such problems on cost performance in construction projects. Although
these studies could help to understand the reasons for quality issues, a new approach
should be developed to mitigate the cost impact of quality failures. For this purpose, it
is highly necessary to develop a predictive model to forecast the adverse cost effects of
quality problems. In this study, we introduced a CBR-based predictive model by using
expert (CBR-AHP) and automated weighting methods (CBR-GA). The comparison results
show that even though the performances of the two models are not different significantly,
CBR-GA is slightly better at predicting the cost impacts of the quality failures according
to the CBR-AHP model based on the MAE scores. The result achieved in this study is
also consistent with a previous study [38,45,57]. The main reason behind this finding is
that a computerized system is an objective and automated system that receives output
easily within high-level computations according to the expert system. AHP is a well-
known expert judgment technique and heavily relies on subjective evaluations provided by
participants [34]. Optimization of the predictive models is an important aspect to use such
models for new datasets. New optimization methods should be introduced for diverse
predictive models. Thus, it is necessary to find more precise optimization techniques to
support predictive models. This study shows that an automated system used in weighting
attributes for the CBR model could be more reliable to estimate the cost impacts of quality
failures.
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To deal with cost overruns in construction projects, quality failures should be estimated
before they occur. Particularly, it has become more difficult to manage construction costs
all over the world after COVID-19 and the Russia–Ukraine war. Fluctuations in material
prices, increasing petroleum prices, and a lack of a highly skilled labor force stimulate poor
cost performances in the construction industry. Moreover, controlling each construction
parameter within the estimated time and budget is one of the most challenging factors
during ongoing construction processes. It is a well-known fact that failure in one of the
factors leads to failures in other construction factors. This situation is called a “domino
effect” in the literature [76]. All these problems are the main reasons for the quality issues
observed in construction projects and increased cost overruns. The construction industry
is now behind in technological improvements and there is still a lack of digitalization
in the construction companies. We believe that the introduced predictive model could
help construction experts to prevent quality failures and their cost impacts effectively.
Such an automated system will bring a new approach to integrating digital solutions into
construction projects.

Furthermore, this study recommends an automated data collection system to record
all quality failures. If quality failures are recorded in a web-based system, it is easy to
manage and control quality issues by using a prediction system based on the CBR. There
is still a lack of data collection and management systems to record each event that occurs
in construction projects Therefore, construction process issues such as managing quality
failures or other construction factors could easily be brought under control.

The major contributions of the study can be divided into three factors. Firstly, it
provides insight into the importance of record-keeping in theory and the problems in
reality. Quality teams often fail in keeping high-quality records, and they suffer from
inexperienced staff being responsible for running efficient record-keeping mechanisms.
Therefore, the factors revealed in this study can and should inform the relevant practitioners.
Secondly, it was shown that the magnitude of the cost impact can be predicted following a
CBR approach and the gravity of different attributes in quality problems can be obtained
using AHP and GA. Finally, the study compared expert opinion and automated systems,
revealing that the automation of these practices can be as valuable as expert knowledge in
quality studies.

As a practical contribution, the construction experts can integrate the developed CBR
model into their record-keeping system proposed in a previous study [56]. Accordingly,
an automated predictive system for quality failures that have crucial cost impacts can
be detected. Such systems could prevent cost overruns and improve the quality of con-
struction work. Moreover, disputes between stakeholders due to quality issues can be
significantly eliminated since AI-based approaches have the potential to reduce occupa-
tional safety issues [56]. In summary, expenditures due to quality issues such as legal,
reworks, productivity, and the labor force can be effectively reduced by using such a
predictive model.

The study, however, is limited as it incorporated only the recorded quality issues
rather than every single case observed. However, for a more accurate and applicable model,
the case database should be enlarged. The data preparation method applied in this study
is a considerably long-duration operation; however, it can be shortened by employing
other AI methods such as Natural Language Processing. It can ease the evaluation of
NCRs and data modeling [59]. In the case that the model is used practically, it is advised
that people using the model should be trained appropriately so that the aims can be fully
reached. Furthermore, not implementing the developed CBR model in a construction
project is another limitation of this study, and this subject can be addressed in detail in
future studies. The contributing factors related to quality failures can be also considered
and categorized according to construction type levels such as building, infrastructure, and
industrial projects. Moreover, the final list can be improved by separating some attribute
factors rather than grouping them. For instance, “Inadequate training”, “Inadequate
staff”, and “Insufficient/improper workmanship” attributes can be evaluated and inserted
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separately into the final attribute list. Identifying the most important factors leading to
quality failures and evaluating which attributes play a more crucial role in predicting non-
conformities in construction could be the subject of another future study. Finally, additional
techniques to AHP and GA will assess their fitness to attribute weight determination in
future research. All these aspects are major recommendations for further studies to be
practiced.

Contribution to Body of Knowledge

This research has major benefits for practitioners who are responsible for construction
quality management. The current study will make contributions to the body of knowledge
in three different directions:

1. The theoretical contribution of this study is showing that using a machine learning
approach (CBR) provides opportunities to predict the cost outcome of quality failures
when they occur and prevent the domino effect of one failure on another. This
study also provides results about which system (automated or subjective) is better to
estimate the result of quality failures by using a predictive algorithm.

2. As a practical contribution, the proposed predictive system can aid construction
professionals in better managing cost overruns coming from quality failures in con-
struction projects. If the predictive model is fed with quality failure data recorded at
construction sites, it is available to forecast the cost outcome of the quality failures
and severe upcoming events efficiently.

3. This research also provides directions for future studies by (i) collecting systematic
quality failure data in construction sites and using such data by applying diverse
Machine Learning approaches to predict the outcome of quality failures in a better
way, (ii) considering the interaction effects of quality failures to achieve more precise
predictive algorithms, (iii) changing the structure of attributes and contributing factors
to develop new machine learning models, (iv) opening a new window to predicting
cost overruns due to quality failures, and (v) using a different computerized system
instead of GA and AHP to develop machine learning algorithms.

5. Conclusions

The poor quality of construction processes and products creates further problems in
the project schedule and budget, in addition to harming companies’ prestige. Therefore,
this study aimed to lower the occurrence rate of poor-quality work by implementing an
early warning mechanism. The main objective of the developed predictive models was
to provide preventive strategies for practitioners. Therefore, if there is a systematic data-
recording system within the predictive algorithm, this could be used as an early warning
mechanism to provide protective practices before quality failures occur. For this purpose,
quality data were initially collected and subjected to the Delphi technique to define the
attributes leading to poor quality. As each attribute had a different impact rate on the
problem, weights were assigned to each of them, using both AHP and GA separately. In the
final stage, CBR predicted possible NCR outcomes in terms of the cost impact. The findings
revealed that the MAE of CBR-AHP and CBR-GA was 8.12% and 7.55%, respectively.
CBR-GA is slightly better in predicting the cost impacts of quality failures according to
the CBR-AHP model based on the MAE scores. As a comparison between expert opinion
and computerized algorithms to CBR models, the study showed that the GA algorithm
outperformed AHP in terms of MAE. While the minimum MAE of GA was 7.20%, that of
AHP was 7.76% when three successive cases were used. Furthermore, it was found that
for the standard deviation to reach its minimum, the number of successful cases should be
set to 10. Therefore, we concluded that an automation-based prediction system is better
than a subjective-based system. Moreover, this study proves that it is possible to achieve an
accurate predictive model (CBR) using quality failure reports. The introduced predictive
model can be used to forecast the cost outcome of quality failures observed in ongoing
projects and upcoming events when the algorithm is fed essential and adequate recorded
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data. Accordingly, such machine learning algorithms have major potential to manage and
control cost overruns and time delays coming from quality failures. We also recommend
a holistic data collection system for quality failures to achieve more effective predictive
algorithms.

Since the construction industry is behind in automation systems and digitization, this
study will open a new door to using such a method to manage quality failures efficiently.
Thus, we emphasized that a record-keeping system, which is lacking in construction
projects, is highly essential to manage and control management factors in the construction
industry. The results achieved in this study will encourage construction practitioners to
adopt automated solutions for complex construction issues such as occupational safety,
quality failures, and management processes. In conclusion, integrating automated systems
such as AI-based construction management approaches will bring effective solutions to
mitigate construction delays and cost overruns in the long term.
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