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Abstract: This study deploys a hybrid Grey Wolf Optimizer Neural Network Model for predicting
the crack width in reinforced concrete slabs strengthened with carbon fiber-reinforced polymers
(CFRP). Reinforced concrete (RC) one-way slabs (1800 × 400 × 120 mm in size) were strengthened
with CFRP with various lengths (1800, 1100, and 700 mm) and subjected to four-point bending. The
experimental results were compared to corresponding values for conventional RC slabs. The observed
crack width results were recorded, and subsequently examined against the expression recommended
by Eurocode 2. To estimate the crack width of CFRP-reinforced slabs, ANN combined with the
Grey Wolf Optimizer algorithm was employed whereby the applied load, CFRP width/length, X/Y
crack positions, and stress in steel reinforcement and concrete were defined as the input parameters.
Experimental results showed that the larger the length and width of the carbon fiber, the smaller the
maximum crack width in the tensile area of the slab at the final load step. On average, the crack width
in slabs retrofitted with CFRP laminates increased by around 80% compared to a slab without CFRP.
The results confirm that the equation provided by Eurocode 2 provides an unconservative estimation
of crack widths for RC slabs strengthened with CFRP laminates. On the other hand, the results also
confirm that the proposed informational model could be used as a reliable tool for estimating the
crack width in RC slabs. The findings provide valuable insight into the design approaches for RC
slabs and rehabilitation strategies for existing deficient RC slabs using CFRP.

Keywords: crack width; CFRP; artificial intelligence; neural networks; concrete slab

1. Introduction

Reinforced concrete (RC) flat slabs are two-way reinforced horizontal structural ele-
ments that carry relatively light floor loads and transfer them to the structure’s columns
without the use of beams or girders. It is a favorable construction system offering several
benefits, including (i) reducing the building height; (ii) flexibility in the design layout; (iii)
decreasing the construction cost and time; and (iv) ease of installation of the electrical and
mechanical networks.

Cracking of concrete generally occurs when the tensile strength of concrete is exceeded.
This is inevitable in conventional RC flat slabs; once formed, the cracks will be pertinent
to the slab’s service lifetime. Since the cracks influence the serviceability of the slab, the
limit state of excessive crack width needs to be considered in the design. Concrete may
crack early in the load history. Most of the cracks in concrete initiate as a result of the
following conditions:
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i. Volumetric change due to plastic, autogenous, and drying shrinkage, creep under
sustained load, thermal stresses at elevated temperatures, and chemical incompati-
bility of concrete components.

ii. Direct stresses caused by applied loads or reactions, or internal stresses caused by con-
tinuity, reversible fatigue load, long-term deflection, camber in pre-stressed systems,
and environmental effects, including differential movement in structural systems.

iii. Flexural stress caused by bending.

The development of cracking in RC members by flexural or tension actions is a complex
topic. A one-way slab is characterized by bending mainly in one direction, while a two-way
slab is characterized by significant bending in two normally orthogonal directions. Most
common RC floors belong to the two-way slab category, including wide slabs subjected
to dominantly concentrated loads or rectangular slabs supported on all four edges by
beams or walls with an aspect ratio of less than two. Complex behavioral issues, such as
torsional effects, will cause the flexural cracking in certain regions of a two-way RC slab
to be different from that in one-way beams or slabs. Nawy [1] considered reinforcement
spacing as the most important parameter to be considered for controlling cracking in
two-way slabs. He argued that the concrete cover is normally small and not a major
parameter. He recommended that the maximum spacing of the reinforcement in both
orthogonal directions, in the form of either individual steel bars or mesh, should not exceed
300 mm in any slab. Moreover, some controversy exists about using crack width formulas
derived from tests. Nawy [2] recommended using a different equation than the well-known
Gergely–Lutz equation (on which ACI 318 is based) to calculate crack widths in beams and
one-way slabs [3,4]. Park and Gamble [5] explained that the Gergely–Lutz equation [6]
is reliable for two-way slabs where critical cracking takes place mainly in the negative
moment regions above the faces of the beams in slab and beam floors and near the columns
in flat slabs, while the studies of two-way slabs reported by Nawy et al. [1] considered
primarily positive moment regions. The simplified design rules for crack control in major
international standards, including Eurocode 2 [7], concern a minimum reinforcement area
and a limitation on bar diameter or bar spacing, depending on the magnitude of the steel
stress under the service loads.

In recent decades, several studies have examined strengthening concrete flat slabs
with FRP composite laminates. Mosallam and Mosalam [8] developed an experimental
and analytical investigation procedure for evaluating the ultimate response of unreinforced
and reinforced concrete slabs repaired and retrofitted with FRP composite strips. They
concluded that FRP systems effectively increased the strength of the repaired slabs to
approximately five times that of the “as-built” slabs. The potential use of a mechanically
anchored un-bonded fiber-reinforced polymer (MA-UFRP) system to upgrade RC slabs
deficient in flexural strength was examined by El Maaddawy and Soudki [9]. It was
concluded that the MA-UFRP system resulted in up to 43% enhancement in the slab
flexural strength. An innovative strengthening method combining FRP and steel materials
was explored by Zheng et al. [10], in which carbon fiber laminates and thin steel plates
were combined in different ways to determine the most effective hybrid strengthening
configuration. Chen and Chen [11] investigated the structural behavior and punching shear
strength of concrete slab–column connections strengthened with carbon fiber-reinforced
polymer (CFRP) laminates. They concluded that the CFRP laminates effectively increased
the punching shear strength of slab–column connections. Meanwhile, recent advances in
polymer technology permitted the development of new generations of FRP rebars, such as
glass fiber–reinforced polymer (GFRP) bars designated with a high modulus of elasticity.
This innovative material has provided additional opportunities to increase construction
productivity, enhance structural performance, reduce structure maintenance costs, and
extend the RC structure service life [12,13].

Artificial neural networks (ANNs) combined with other metaheuristic algorithms
have been used for universal function approximation and employed in various engineering
problems of different natures [14–16]. ANNs are inspired by and based on the neural
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structure of the biological brain. They can establish a functional relationship between two
datasets over the learning process and replicate that relationship over a recall process. An
ANN comprises an adaptable methodology that can accurately estimate highly non-linear
functions over the entire domain with adequate precision. Mangalathu et al. [17] studied
several machine learning methodologies (support vector regression, ridge regression,
random forest, decision tree, K-nearest neighbors, adaptive boosting, and extreme gradient
boosting) for estimating the punching shear strength of flat slabs and identifying the most
reliable tool. The study concluded that the extreme gradient boosting model provided the
lowest mean square error and the highest coefficient of determination among the examined
machine learning methodologies.

ANN predictive models have been applied to many problems in economics, engineer-
ing and other scientific fields. Particularly in structural engineering [18,19] and concrete
structures, they have been successfully used for predicting the compressive strength of
concrete containing recycled aggregate [20,21], predicting the compressive strength of
cement replacement material (CRM) samples [22], determining the nominal shear capacity
of steel fiber-reinforced concrete beams [23], predicting the capacity of concrete walls [24],
predicting the compressive strength of lightweight foamed concrete [25], predicting the
properties of FRP-confined concrete cylinders [26], designing reinforced concrete foot-
ings [27], analyzing the vulnerability of large concrete dams [28], measuring the mechanical
properties of hybrid concrete through image processing [29], and predicting the creep and
shrinkage deflection of reinforced concrete beams containing GGBFS [30], among other
interesting and innovative applications [31,32].

Even though several design models have been proposed to estimate the crack width
of RC flat slabs, such formulas are still perceived as a work-in-progress, especially for
slabs reinforced with FRP laminates. While FRP laminates can benefit a RC flat slab in
terms of enhanced sectional strength and long-term durability, the uncertainty regarding
their mechanical properties remains a hurdle in guaranteeing the reliability of pertinent
crack width equations. For instance, most available equations are either empirical, based
on fitting the available test data, or are based on the modification of existing design code
estimations for steel-reinforced RC slabs by considering the lower elastic modulus of
FRP laminates. Nevertheless, the accuracy of the above-mentioned approaches is still
questionable due to the differences in the mechanical properties and structural behavior
between FRP and conventional steel reinforcement. As documented by several researchers,
FRP laminates exhibit a fragile linear elastic response and different bond characteristics,
resulting in different cracking behavior than conventional steel reinforcement [33–35].

The present study aims at developing a generalized informational model for deter-
mining the crack width of RC flat slabs reinforced with FRP laminates. Unlike existing
empirical equations developed based on well-established fundamental mechanical theories
using geometric and material properties, the proposed comprehensive informational model
can inherently and effectively capture the underlying mechanisms of cracks in RC flat
slabs. Using an informational model, the information about the underlying mechanisms of
crack behavior is directly extracted from existing experimental datasets and is embedded
in neural networks. This implies that the informational model does not need a pre-defined
mathematical expression, in contrast with existing empirical equations. Considering the
complexity of crack behavior, the proposed model can offer a reliable alternative approach.
Its primary advantage lies in its ability to infer a general rule from the experimental dataset
with greater efficiency than developing closed mathematical equations that, in some cases,
may be impractical. To this end, by retrieving pertinent experimental results reported
in the open literature, an experimental database was developed, which is representative
of a large proportion of RC slabs (either with FRP or conventional steel reinforcement)
under pure bending test conditions. Direct comparisons with existing theoretical models
and international standards were performed using this extensive, custom-made dataset.
Subsequently, an artificial neural network model was developed, coupled with a meta-
heuristic Grey Wolf Optimization algorithm (GWO-ANN) to form a generalized hybrid
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model for estimating the crack width of RC flat slabs reinforced with FRP laminates. This
model considers the key slab parameters and is designed specifically for RC flat slabs
without shear reinforcement. The accuracy of the proposed informational model versus
that of existing empirical equations was further examined using several statistical metrics
to ensure the model’s robustness and reliability.

2. Crack Width Calculation for Concrete Flat Slabs

The control of surface cracking in concrete is particularly important in certain situa-
tions. The most common of these is in cases where the surface will be visible, as excessive
crack widths can give an overall impression of poor quality and limit the types of floor
coverings that can be successfully applied on the slab. Crack control is also essential for
durability, as the cracks will provide pathways for ingressive corrosive substances into the
concrete, such as water or other chemicals.

The Eurocode 2 provides engineers with two methods for controlling cracking in rein-
forced concrete slabs. The overall thickness of the slab can influence the design procedure.
The two methods are described as follows.

i. Calculation of Crack Widths (Clause 4.4.2.4)—formulae are provided for crack width
calculations which apply to both beams and slabs for a range of design situations
and are applicable irrespective of the overall depth of the element;

ii. Control of Cracking without Direct Calculation (Clause 4.4.2.3)—a simplified design
method is allowed, the rules for which have been derived using the crack width
formulae. Minimum reinforcement areas are determined, and limits are placed on
bar diameter and bar spacing. Alternatively, for slabs with an overall depth, Ds, not
exceeding 200 mm subjected to bending without significant axial tension (i.e., in
a state of flexure), cracking is assumed to be satisfactory if the detailing rules in
Clause 5.4.3 of Eurocode 2 are satisfied.

Beeby and Narayanan [36] can be referred to for a more detailed account of the
derivation of the crack width formulae in Eurocode 2.

Wk = βScrmεsm (1)

where Wk is the design crack width; β is a factor that relates the mean crack width in tests
to the design value, e.g., it equals 1.7 for cracking due to direct loading; Scrm is the average
final crack spacing; and εsm is the average difference in strain between the steel and the
concrete, including the effects of bond stress, tension stiffening, concrete shrinkage, etc.

The average final crack spacing Scrm can be estimated using the following equation.

Scrm = 50 +
K1K2db

4ρr
(2)

where K1 is a factor that takes account of the bar bond properties (0.8 is specified in
Eurocode 2); K2 is a factor that takes account of the form of the stress distribution (0.5 for
pure bending); and ρr is the effective reinforcement ratio of the slab.

The average strain, εsm, is calculated at the section being considered, as

εsm =
fs

Es

[
1− β1β2

(
fsr

fs

)2
]

(3)

where fs is the stress in the tension steel under the serviceability condition (calculated
on the basis of a cracked section); fsr is the stress in the tension steel under the relevant
condition that just causes the tensile strength of the concrete to be reached (calculated on
the basis of a cracked section); β1 is a factor that accounts for the bond properties of the
reinforcement (1.0 for deformed bars); and β2 is a factor that accounts for repeated stressing
of the bars (0.5 for repeated stressing as the normal design situation).
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The minimum area of reinforcement placed at the cross-section being designed is given
by Equation (4), as a basic requirement of the design rules of Eurocode 2 for controlling
cracking without requiring a direct calculation.

Ast.min =
K4 ft Act

fs
(4)

where K4 = zt
Actz ; ft is the mean value of the tensile strength of concrete at the critical

time when the cracks might occur (a value of 3.0 MPa is recommended in Eurocode 2
for normal use); and Act is the concrete area in the tensile zone at the section of concern
before cracking.

Considering a simple rectangular slab, ignoring the presence of reinforcement when
calculating zt and Act, i.e., zt = bD2/6 and Act = bD/2, and assuming z = 0.8D gives K4 = 0.42.
This explains the value of 0.4 given in Eurocode 2.

Meanwhile, the simplified design rules in Eurocode 2 are based on choosing an
appropriate bar diameter or bar spacing. Design engineers usually prefer this approach
rather than having to calculate the crack width directly. Limits are placed on bar diameters
and bar spacing to ensure that the crack widths will not generally exceed 0.3 mm for
reinforced concrete elements, as shown in Table 1.

Table 1. Limitations of bar diameters and bar spacing set by Eurocode 2 to limit cracks.

Steel Stress (fs) (MPa) Maximum Bar Diameter (db) (mm) Maximum Spacing—Pure Bending (mm)

360 10 50
320 12 100
280 16 150
240 20 200
200 25 250
160 32 300

3. Material and Methods

This section describes the characteristics of the materials utilized in this research
work as well as the experimental program employed to collect data for developing the
informational model.

3.1. Materials
3.1.1. Cement

ASTM C150 Type I Ordinary Portland Cement (OPC), produced from a single source
with a specific surface of 3310 cm2/g and a relative density of 1.44 g/cm3, was utilized for
all mixed materials. Table 2 shows the chemical properties of used OPC.

Table 2. Ordinary Portland cement chemical composition [37].

Oxide
Composition CaO SiO2 Al2O3 Fe2O3 MgO SO3 K2O Na2O LOI

% 63.4 19.8 5.1 3.1 2.5 2.4 1 0.19 1.8

3.1.2. Water

Potable water, free from chemical contaminants, was used for both mixing and curing.
It satisfies the requirements of BS 8110 (BS, 1997) [38].

3.1.3. Fine and Coarse Aggregates

The mining sand utilized in this study was sieved to a particle size range of 0.15 mm
to 2.36 mm. The fine aggregate specific gravity in the saturated surface dry state was 2.61.
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In addition, crushed granite with a maximum size of 19 mm and a relative density of 2.65
was employed as the coarse material in this study. Figure 1 depicts the sand and coarse
aggregate sieve analyses.
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3.1.4. Carbon Fiber-Reinforced Polymer

CFRP is composed of carbon atoms and is encased in an extremely thin fiber with
a diameter of 0.005–0.010 mm. CFRP has a high strength/weight ratio, good fatigue
performance, and good electrochemical corrosion resistance, making it ideal for concrete
structural applications [39]. It is commonly utilized in applications that require both strong
mechanical characteristics and minimal weight. Sika’s pultruded carbon fiber-reinforced
polymer laminates were utilized in this study to enhance the flexural performance of
flat concrete slabs. Table 3 presents the mechanical characteristics of the CFRP laminate
provided by the manufacturer.

Table 3. CFRP laminate mechanical characteristics.

Laminate Type Elastic Modulus [GPa] Tensile Strength [MPa] Failure Strain [%]

Sika CarboDur
Plates 165 3100 1.7

3.1.5. Adhesive

The Sikadur-30 adhesive from Sika was used to attach the CFRP to the RC slab. It is
made of epoxy resins and a specific filler and is intended for usage at typical temperatures
ranging from 8 ◦C to 35 ◦C. Table 4 shows the mechanical characteristics of the adhesive
Sikadur-30 utilized in this study.
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Table 4. Adhesive mechanical characteristics.

Adhesive Type Service Temperature Elastic Modulus [GPa]

Tensile Strength [MPa]
(7 Days Curing)

Curing at +15 ◦C Curing at +35 ◦C

Sikadur-30 −40 ◦C to +45 ◦C
(when cured at >+23 ◦C)

11.2
(at +23 ◦C) 24–27 26–31

3.2. Concrete Mixture Design and Preparation

Concrete mix design calculates the proportions of the concrete components to obtain
the required characteristics for performance and cost-efficiency. The design of experiments
(DOE technique) provided by the British Department of the Environment [40] was utilized
in the experimental mix design. The calculated concrete materials were combined, and the
concrete specimens were cast and put under appropriate curing conditions. The tensile
strength, compressive strength, and modulus of elasticity of all developed mixes were
calculated based on the standards listed in Table 5. Table 6 summarizes the fresh and
mechanical property test results for all tested slabs. Figure 2 shows the stress–strain curve
of all tested specimens.

Table 5. Pertinent standards for examining the mechanical properties of concrete.

Test and Its Relevant Standards Specimens and Size Age of Testing (Day)

Compressive strength
BS EN 12390-3:2002 Cubes of 100 mm 7 and 28

Splitting tensile strength
BS EN 1390-6:2000 Cylinder of 150 mm diameter × 300 mm height 28

Modules of elasticity
BS EN 1881-121:1983 Cylinder of 150 mm diameter × 300 mm height 28

Table 6. Fresh and hardened properties of concrete samples.

Slab Code Slump
(mm)

Compressive
Strength (MPa)

Tensile
Strength (MPa)

Modulus of
Elasticity (MPa)

S512-700 40 46 6.8 25,842
S512-1100 41 47 5.5 28,101
S512-1500 44 42 6.3 25,963
S812-700 46 41 5.9 26,028

S812-1100 44 47 5.7 24,567
S812-1500 40 49 6.8 26,789
WCFRP 42 46 6.4 23,879

Mean Value 45 6.2 25,880
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3.3. Test Rig
3.3.1. Formwork

Figure 3 shows the wooden formwork constructed for the specimen casting. The
internal dimensions of the formwork were 400 mm wide and 120 mm thick, while the
length varied at 860, 1350, 1800, and 2400 mm. All the formwork was coated with form-
release oil to achieve easier specimen removal after the concrete casting and curing.
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3.3.2. Reinforcing Bar and Concrete Casting

The one-way RC slabs (either strengthened with CFRP or conventional non-strengthened
ones) were reinforced longitudinally with 10 mm-diameter hot-rolled high-tensile strength
deformed steel bars. The steel bars’ modulus of elasticity and yield strength were 215 GPa
and 610 MPa, respectively. Figure 4 depicts the longitudinal reinforcement of an RC slab.
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Before casting the concrete, the formwork’s transparent cover and internal size were
ensured by utilizing a 25 mm mortar block and verifying with a measuring tape, respec-
tively. The slabs were cured in the formwork for three days after the concrete was poured.
Subsequently, as shown in Figure 5, the slabs were wet gunny cured for seven days before
being stored in an unregulated concrete laboratory until the testing day.
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3.3.3. Instrumentation

The following testing equipment and instruments were deployed in the experimental
program:

• Linear variable differential transducers (LVDT)

The deflection at the center of the slab was measured using an LVDT with a 50 mm
maximum deflection. The LVDT was linked to a data logger, which recorded the mid-span
deflection as the load increased.

• Data Logger

The measurement mid-span deflection was recorded with a data logger (TS-TDS-302).

• Handheld microscope

A portable microscope was used to measure the flexural fractures at the level of the
primary steel bar. The crack-measuring microscope had a precision of 0.02 mm and offers a
40×magnification.

Six RC one-way slabs with dimensions of 1800× 400× 120 mm and strengthened with
various lengths and widths of CFRP were evaluated and compared to equivalent samples
without CFRP. All the slabs had two steel bars with a diameter of 10 mm as longitudinal
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reinforcement, and the concrete cover was 25 mm. Table 7 presents the characteristics of
the specimens, i.e., unique slab code, CFRP width, and CFRP length.

Table 7. Tested slabs and properties of CFRP laminates.

Slab Code CFRP Width (mm) CFRP Length (mm)

S512-700 50 700
S512-1100 50 1100
S512-1500 50 1500
S812-700 80 700

S812-1100 80 1100
S812-1500 80 1500
WCFRP * - -

* Without CFRP.

All of the prepared slabs were tested under four-point bending loading conditions.
Figure 6 depicts the instrument used and the loading configuration. As shown in the figure,
mechanical discs (pre-drilled stainless-steel discs) known as Demountable Mechanical
(DEMEC) were glued to the concrete surface. A DEMEC strain gauge was used to measure
the changes in length between the two DEMEC points.
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4. Experimental Results

Six CFRP-reinforced one-way RC slabs were designed, manufactured, and tested in
flexure, as shown in Figure 7. All of the prepared slabs had the same shape, dimensions
(width, length, depth), and internal steel reinforcement, with the width and length of the
CFRP reinforcement serving as the distinguishing characteristic for each one of them. Figure 8
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depicts the fracture patterns of the tested slabs. The results confirm that the steel yielding
occurred prior to the collapse of the concrete in the compression zone in the slab failure mode.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
CFRP reinforcement serving as the distinguishing characteristic for each one of them. Fig-
ure 8 depicts the fracture patterns of the tested slabs. The results confirm that the steel 
yielding occurred prior to the collapse of the concrete in the compression zone in the slab 
failure mode.  

 
Figure 7. RC slabs strengthened with CFRPs of various lengths and widths. 

 
Figure 8. Crack pattern of RC slabs strengthened with CFRP under the four-point bending test. 

As shown in Figure 9, before yielding of the steel reinforcement, the CFRP plate was 
de-bonded at the CFRP–concrete interface. Figure 10 shows the meticulous work of an 

Figure 7. RC slabs strengthened with CFRPs of various lengths and widths.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
CFRP reinforcement serving as the distinguishing characteristic for each one of them. Fig-
ure 8 depicts the fracture patterns of the tested slabs. The results confirm that the steel 
yielding occurred prior to the collapse of the concrete in the compression zone in the slab 
failure mode.  

 
Figure 7. RC slabs strengthened with CFRPs of various lengths and widths. 

 
Figure 8. Crack pattern of RC slabs strengthened with CFRP under the four-point bending test. 

As shown in Figure 9, before yielding of the steel reinforcement, the CFRP plate was 
de-bonded at the CFRP–concrete interface. Figure 10 shows the meticulous work of an 

Figure 8. Crack pattern of RC slabs strengthened with CFRP under the four-point bending test.

As shown in Figure 9, before yielding of the steel reinforcement, the CFRP plate was
de-bonded at the CFRP–concrete interface. Figure 10 shows the meticulous work of an
engineer who used a portable microscope to study and quantify the flexural fractures in the
CFRP-enhanced RC slabs. This was undertaken carefully at each stage of the applied stress.
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The structural behavior of the RC slabs strengthened with CFRP was compared to
similar benchmark slabs (in terms of materials used and dimensions), but without CFRP.
For this purpose, Table 8 summarizes the bending moment at the first crack and the ultimate
stage and crack width at the ultimate stage. The EC2 predicted the crack width at the
service load. The results confirm the test crack width characteristics presented were reached
at the post yielding load level. This behavior can be explained by the fact that attaching the
CFRP laminates to the RC slabs leads to increased stiffness and bending moment capacity
for the section.
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Table 8. Experimental versus analytical results for estimating first crack moment and crack width.

Slab
First Crack Ultimate Stage

Ex-Load
(kN)

Ex-Moment
(kN·m)

Anal-Moment
(kN·m)

Ex-Load
(kN)

Ex-Moment
(kN·m)

Ex-Crack
Width (mm)

EC2-Crack
Width (mm)

S512-700 7.5 4.9 5.26 37 12 0.75 0.27
S512-
1100 10 6.5 5.26 42 13.7 0.80 0.27

S512-
1500 10 6.5 5.26 45.5 14.78 0.78 0.27

S812-700 9.5 6.2 5.45 37 12.07 0.86 0.27
S812-
1100 10.3 6.7 5.45 45 14.62 0.89 0.27

S812-
1500 10.5 6.8 5.45 54 17.87 0.95 0.27

WCFRP 7 4.6 4.93 33.3 10.8 0.45 0.27

The analytical first crack moment is calculated based on the following equation:

Mcr =
fcr It

yt
(5)

where fcr = 0.4
√

f′c (in MPa units); It is the moment of inertia of the transformed reinforced
section (un-cracked); and yt is the distance from the center of the un-cracked transformed
section to the extreme tension fiber. Furthermore, the position and width of the fractures
formed by constant moment were examined and measured over the loading protocol.
Figure 11 shows the measurement reference for recording the cracks, determined using the
left-hand coordinate. Tables 9–11 list the recorded crack widths and locations for RC slabs
retrofitted with CFRP laminates (all six specimens) during the pure bending testing.
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Table 9. Crack widths and their locations for the S512-1100 and S512-700 specimens.

S512-700 S512-1100

Loading
(kN)

Location (mm) Crack
Width (mm)

Loading
(kN)

Location (mm) Crack
Width (mm)X Y X Y

24 580 35 0.20 20 710 35 0.20
24 710 40 0.15 21 1060 45 0.15
24 860 40 0.25 23 870 30 0.25
25 850 63 0.45 23 720 70 0.30
25 1160 35 0.20 23 1060 75 0.25
25 480 75 0.30 39 855 65 0.45
25 550 85 0.40 39 1060 80 0.50
28 700 70 0.30 39 735 85 0.55
28 1060 45 0.25 40 850 70 0.50
28 1140 65 0.40 40 1060 85 0.65
32 1040 60 0.30 42 1060 95 0.80
33 700 85 0.45 - - - -
33 830 80 0.65 - - - -
37 820 95 0.75 - - - -
- - - - - - - -

Table 10. Crack widths and their locations for the S512-1500 and S812-700 specimens.

S512-1500 S812-700

Loading
(kN)

Location (mm) Crack
Width (mm)

Loading
(kN)

Location (mm) Crack
Width (mm)X Y X Y

20 1030 40 0.10 19.5 1220 35 0.25
20 850 30 0.15 25 640 25 0.15
21 700 25 0.25 25 730 20 0.20
21 850 50 0.20 25 1170 30 0.25
21 1050 50 0.15 25 1215 55 0.20
29 700 40 0.30 28 635 60 0.30
29 850 70 0.30 28 730 65 0.25
29 1030 65 0.25 32 640 70 0.32
29 1160 60 0.15 32 1170 45 0.45
32 600 20 0.25 32 1220 80 0.45
36 850 75 0.45 37 950 45 0.35
41 1140 85 0.45 37 1170 85 0.65

45.5 480 55 0.35 19.5 1220 35 0.25
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Table 11. Crack widths and their locations for the S812-1100 and S812-1500 specimens.

S812-1100 S812-1500

Loading
(kN)

Location (mm) Crack
Width (mm)

Loading
(kN)

Location (mm) Crack
Width (mm)X Y X Y

21 760 25 0.10 21 760 20 0.10
24 1040 10 0.15 21 1020 25 0.15
29 680 20 0.20 21.5 755 40 0.20
29 860 30 0.15 22 1035 30 0.25
29 1045 45 0.20 28 760 55 0.30
34 760 35 0.20 28 1045 60 0.30
34 860 40 0.25 29 860 25 0.15
34 1055 75 0.45 32 860 55 0.30
39 300 10 0.20 32 1055 80 0.40
39 630 40 0.25 39 610 35 0.10
39 775 75 0.50 40 1170 40 0.15
39 860 60 0.45 44 625 60 0.50
39 1140 35 0.10 44 860 85 0.55

5. Informational Model for Crack Width Prediction
5.1. ANN and Grey Wolf Optimization Algorithm

ANN is a computational model that simulates the practical features of biological
neural networks [41]. As a parallel structure, an ANN consists of simple processing units
similar to the human brain’s structure, referred to as artificial neurons. The artificial neuron
comprises bias, weights, and an activation function as per Equation (6), where f is the
activation function, Wm is the weight matrix, Xm is the input vector, b is the bias vector,
and Y is the output.

Y = f (∑ WmXm + b) (6)

Grey wolves (which belong to the Canidae family) are recognized as apex predators
located at the top of the food chain. In general, they live in packs with a group size of 5–12
with a strict community dominant hierarchy, as shown in Figure 12. The leaders are either
female or male, and these so-called alphas (a, or leading wolf) principally make decisions
regarding where/when to sleep, when to wake, and other activities, such as hunting. Every
decision made by the a is fully dictated to the whole pack, though some cases of social
behavior have also been observed, in which a may follow the other pack members. When
they are near to each other, all of the group members admit the a as a leader by keeping
their tails down. Only the a is allowed to mate in the pack. However, the a is not necessarily
the strongest member, but rather the most skilled one in managing the group. In other
words, the organization’s discipline of the pack is of higher significance than the power of
a group member.
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In this hierarchy, the second level belongs to the beta, β, which is a subsidiary member
that aids a in performing its activities and making decisions. The β can either be female or
male and is possibly the most suitable candidate to be the a if one of the a wolves becomes
very old or passes away. The β should obey the a, but commands the other wolves in the
pack. β wolves play the role of a counselor to the a and a disciplinarian for the pack. The β
reinforces the a’s orders throughout the pack and advises the a.

The lowest position in the grey wolves’ pack is the omega (ω). The ω is representative
of a scapegoat, should always obey all of the other leading wolves, and comprises the
wolves in the pack least allowed to eat. It may appear that the ω is not a group member;
nevertheless, several observations have shown that the entire pack faces problems and
internal fighting once losing the ω. It therefore helps to satisfy the whole pack and preserves
the dominant structure.

In the case when a wolf is neither α nor β or ω, it is a subordinate (or delta, δ). δs
obey α and β, but are still dominant over ωs. Sentinels, elders, hunters, caretakers, and
scouts are categorized in this group. In general, scouts warn the pack when danger lies
ahead and inspect the territory’s boundaries, while sentinels defend the pack’s safety.
Elders are skilled wolves that have formerly been an α or β. Hunters assist the α and β in
hunting and preparing food. Finally, caretakers care for the sick or weak members of the
group. Furthermore, group hunting is another interesting aspect of the social hierarchy
of a wolf’ pack. The fundamental steps involved in grey wolves’ hunting process have
been summarized by Muro et al. [42] as follows: (i) chasing, tracking, and pursuing the
prey; (ii) surrounding and harassing the prey until it stops running; and (iii) attacking the
prey. Figure 13 illustrates all of these steps. Further information about the meta-heuristic
Grey Wolf Optimizer can be found in [43], while the algorithm’s performance in structural
optimization problems compared to other metaheuristic algorithms has been studied in [44].
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The steps of the optimization methodology using the Grey Wolf algorithm are shown
in Figure 14. The iterations continue to find constant value as the stopping criteria, which
are defined by the user. The objective function is the crack width of the one-way slab.
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5.2. Generation of Training and Testing Data Sets

Table 12 illustrates the properties of the dataset used in this study, which is given
in more detail in Appendix A. As mentioned earlier, the independent input parameters
in each datum include the load magnitude, the ratio of the CFRP length to the slab bay,
the ratio of the CFRP width to the slab bay, the crack location in the x-direction, the crack
location in the y-direction, the stress in the steel bar, and the stress in the concrete, which
form a 7 × 1 matrix, while the dependent output parameter is the crack width, which
forms a 1 × 1 matrix. The data, including crack width, the stress in concrete and steel
reinforcement, were generated at a given load for each specimen. Recording of the data
began with the appearance of the first crack and continued until the ultimate capacity of
the slab was reached.

Table 12. Properties of the used dataset.

Statistical
Parameters Unit Type Max Min STD Average

Loading (kN) Input 54.0 19.5 8.3 31.4
CFRP

Length/Slab
Bay

- Input 0.8 0.0 0.3 0.5

CFRP
Width/Slab

Width
- Input 0.2 0.0 0.1 0.1

X Location mm Input 1385.0 300.0 233.1 870.5
Y Location mm Input 95.0 10.0 22.7 53.7

Stress in Steel
Bar MPa Input 367.3 25.9 98.5 236.7

Stress in
Concrete MPa Input 22.32 3.5 21.5 13.7

Crack Width mm Output 0.9 0.1 0.2 0.3
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Any algebraic relationship, either causal or not, between two causal variables is known
as the correlation or dependency. On a large scale, correlation denotes the degree to which
a two or more variables are linearly correlated. A correlation matrix is a table presenting
the relationship coefficients amongst the input variables where there is a correlation among
the two parameters in each cell of the table. To analyze the data at an advanced level, a
correlation matrix aids in summarizing the relationships between the data. The present
paper’s correlation matrix for the input/output parameters is displayed in Figure 15.
Considering each input parameter’s domain and evading any divergence in the results,
Equation 7 was used to normalize each parameter in the range of −1 to 1, where Xn is the
normalized value of the parameter, Xmax is its maximum value, and Xmin is its minimum
value. X is the original (non-transformed) value of the variable.

Xn =
2(X− Xmin)

Xmax − Xmin
− 1 (7)
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According to the number of input parameters, which is seven, Equation (8) resulted 
in 15 neurons within the hidden layers. Therefore, different architectures with two hidden 
layers and a maximum of 15 neurons in total were investigated. Overall, 30 different net-
work topologies were evaluated. It was revealed that the network with a topology with 7-
7-4-1 layers (two hidden layers) reached the lowest error values for RMSE, AAE, VAF, and 
the highest value of R2 to estimate the crack width. Table 13 depicts the statistical metrics 
of selected topology which provided the most accurate results compared to the other two 
topologies. The ANN developed in this research was the Newff feedforward, where 70% 
of the dataset was considered for training, and the remaining 30% was used for testing the 
network. The Grey Wolf Optimizer (GWO) algorithm provided the least prediction error 
for the trained structure and optimized both the biases and weights of the ANN. Table 14 
shows the parameters of the employed GWO algorithm. 

Figure 15. Correlation matrix between input and output parameters.

Figure 15 confirms that the output parameter, the crack width, mainly correlated with
the depth of the beam (y location, stress in concrete and steel bars, and loading magnitude.
Moreover, Figure 16 shows the histogram and half violin diagram of the output parameter.
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The trial-and-error approach was adopted to develop the most effective architecture
of the ANN model, which can best reproduce the features of the experimental dataset. In
the present paper, an advanced technique was implemented for determining the number of
neurons within the hidden layers based on Equation (8).

NH ≤ 2NI + 1 (8)

where NH signifies the number of neurons within the hidden layers, and NI stands for
the number of input variables. The Levenberg–Marquardt training algorithm and hy-
perbolic tangent stimulation function were used in all developed networks. Moreover,
the statistical indices, including the root mean squared error (RMSE), average absolute
error (AAE), variance account factor (VAF), and correlation coefficient R, as expressed in
Equations (9)–(12), were used to evaluate the performance of developed topologies.

RMSE =

[
1
n

n

∑
i=1

(Pi −Oi)
2

] 1
2

(9)

AAE =

∣∣∣∑n
i=1

(Oi−Pi)
Oi

∣∣∣
n

× 100 (10)

VAF =

[
1− var(Oi − Pi)

var(Oi)

]
× 100 (11)

R =

 ∑M
i=1

(
yi(Actual) − y(Actual)

)(
yi(Model) − y(Model)

)
∑M

i=1

(
yi(Actual) − y(Actual)

)2
×∑M

i=1

(
yi(Model) − y(Model)

)
 (12)

According to the number of input parameters, which is seven, Equation (8) resulted in
15 neurons within the hidden layers. Therefore, different architectures with two hidden
layers and a maximum of 15 neurons in total were investigated. Overall, 30 different
network topologies were evaluated. It was revealed that the network with a topology with
7-7-4-1 layers (two hidden layers) reached the lowest error values for RMSE, AAE, VAF, and
the highest value of R2 to estimate the crack width. Table 13 depicts the statistical metrics
of selected topology which provided the most accurate results compared to the other two
topologies. The ANN developed in this research was the Newff feedforward, where 70% of
the dataset was considered for training, and the remaining 30% was used for testing the
network. The Grey Wolf Optimizer (GWO) algorithm provided the least prediction error
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for the trained structure and optimized both the biases and weights of the ANN. Table 14
shows the parameters of the employed GWO algorithm.

Table 13. Statistics of top three artificial neural networks combined Grey Wolf Optimizer on training
and testing data.

Topology Train Test

RMSE AAE VAF% RMSE AAE VAF%

GWO-ANN 2L(7-4) 0.05 0.15 91% 0.06 0.20 89%
GWO-ANN 2L(4-5) 0.08 0.24 78% 0.10 0.36 68%
GWO-ANN 2L(3-4) 0.06 0.19 86% 0.09 0.29 77%

Table 14. Parameters of the GWO algorithm.

Parameter Value

Max generations 300
Search agents 10

5.3. Multiple Linear Regression and Imperialist Competitive Algorithm Models

To examine the reliability of the proposed hybrid GWO-ANN model, a multiple linear
regression (MLR) model was also developed in this research. In the MLR model, some
independent parameters mainly influence the dependent variable, as per Equation (10), where
y is a dependent or output parameter and x1, x2, . . . are independent input parameters.
a1, a2, . . . are coefficients of the equation.

y = f (x1, x2, . . .)→ y = a0 + a1x1 + a2x2 + . . . (13)

Equation (11) shows the most appropriate coefficients for the MLR model for estimat-
ing the studied specimens’ crack width, and Table 15 depicts the statistical metrics resulting
from this model.

Crack Width = −0.0957 + 0.00839Loading
−0.0757CFRP Length/Slab Bay
−0.030CFRP Width/Slab Width− 0.000049X Location
+0.00503Y Location− 0.000119Stress in Steel Bar
+0.000692 Stress in Concrete

(14)

Table 15. Statistical metrics resulting from MLR model.

Topology Train Test

RMSE AAE VAF% RMSE AAE VAF%

MLR 0.08 0.24 76% 0.09 0.32 74%

5.4. Comparison of Accuracy of Proposed GWO-ANN Model

Figures 17 and 18 compare the actual experimental data with the predictions of the
novel GWO-ANN computational intelligence model developed in this study and the MLR
model. It can be observed that the GWO-ANN performed more reliably in estimating the
crack width compared to the MLR informational models.
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6. Conclusions

This research work examines the effects of carbon fiber-reinforced polymer (CFRP)
strengthening on the crack development in reinforced concrete slabs and develops an
informational model using a hybrid Grey Wolf Optimizer-Artificial Neural Network al-
gorithm (GWO-ANN) to estimate the crack width. Six reinforced concrete (RC) slabs
strengthened with CFRP of various lengths were tested, and the results were compared to
those of conventional RC slabs. Applied loading, CFRP width/length, X/Y crack positions,
and steel reinforcement and concrete stress were defined as the input parameters for the
development of the informational model. The main findings of the research work are
summarized below:

• Before steel reinforcement’s yielding, the CFRP plate was de-bonded at the CFRP/concrete
contact.

• EC2 provides an unconservative estimation for the RC slabs’ crack widths when CFRP
laminates are attached to the slab for strengthening purposes. This behavior can
be explained by the fact that attaching the CFRP laminates to the RC slabs leads to
increased stiffness and bending moment capacity of the section, which is not accounted
for by the EC2 formulas and may be associated with the unconservative estimation for
the crack widths.
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• On average, the crack width in slabs retrofitted with CFRP laminates increased by
around 80% compared to a slab without CFRP. Nevertheless, increasing the length
and width of CFRP laminates had a minor effect on strength and crack development.

• The results confirm the higher reliability of the proposed GWO-ANN model for
estimating the crack width in flat slabs compared to the multiple linear regression
(MLR) model. The statistical metrics used, namely RMSE, AAE, and VAF, showed the
better performance of the proposed GWO-ANN model in comparison with the MLR
model. It captures the underlying mechanisms involved in the crack development of
the slab. Accordingly, the proposed equation developed using the MLR model can
be directly used without time-consuming analysis and computations. This empirical
expression is primarily a function of the slab/CFRP geometry and the crack location.
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Appendix A

Table A1. The dataset used in this study.

Input Parameters Output

ID Loading
(kN)

CFRP
Length/Slab

Bay

CFRP
Width/Slab

Width

X Location
(mm)

Y Location
(mm)

Steel Bar
Stress
(MPa)

Concrete
Stress
(MPa)

Crack
Width
(mm)

1 24 0.388 0.1 580 35 142.5 8.269 0.2
2 24 0.388 0.1 710 40 142.5 8.269 0.15
3 24 0.388 0.1 860 40 142.5 8.269 0.25
4 25 0.388 0.1 850 63 227.4 9.17 0.45
5 25 0.388 0.1 1160 35 227.4 9.17 0.2
6 25 0.388 0.1 480 75 227.4 9.17 0.3
7 25 0.388 0.1 550 85 227.4 9.17 0.4
8 28 0.388 0.1 700 70 303 10.466 0.3
9 28 0.388 0.1 1060 45 303 10.466 0.25

10 28 0.388 0.1 1140 65 303 10.466 0.4
11 32 0.388 0.1 1040 60 340 10.81 0.3
12 33 0.388 0.1 700 85 351 11.11 0.45
13 33 0.388 0.1 830 80 351 11.11 0.65
14 37 0.388 0.1 820 95 359 13.82 0.75
15 20 0.61 0.1 710 35 67.42 6.88 0.2
16 21 0.61 0.1 1060 45 107.5 7.44 0.15
17 23 0.61 0.1 870 30 167.7 8.01 0.25
18 23 0.61 0.1 720 70 167.7 8.01 0.3
19 23 0.61 0.1 1060 75 167.7 8.01 0.25
20 39 0.61 0.1 855 65 215 9.13 0.45
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Table A1. Cont.

Input Parameters Output

ID Loading
(kN)

CFRP
Length/Slab

Bay

CFRP
Width/Slab

Width

X Location
(mm)

Y Location
(mm)

Steel Bar
Stress
(MPa)

Concrete
Stress
(MPa)

Crack
Width
(mm)

21 39 0.61 0.1 1060 80 215 9.13 0.5
22 39 0.61 0.1 735 85 215 9.13 0.55
23 40 0.61 0.1 850 70 276.3 10.53 0.5
24 40 0.61 0.1 1060 85 276.3 10.53 0.65
25 42 0.61 0.1 1060 95 366 10.91 0.8
26 20 0.83 0.1 1030 40 92.27 5.19 0.1
27 20 0.83 0.1 850 30 92.27 5.19 0.15
28 21 0.83 0.1 700 25 118.4 6.1 0.25
29 21 0.83 0.1 850 50 118.4 6.1 0.2
30 21 0.83 0.1 1050 50 118.4 6.1 0.15
31 29 0.83 0.1 700 40 187 8.69 0.3
32 29 0.83 0.1 850 70 187 8.69 0.3
33 29 0.83 0.1 1030 65 187 8.69 0.25
34 29 0.83 0.1 1160 60 187 8.69 0.15
35 32 0.83 0.1 600 20 210.7 9.35 0.25
36 36 0.83 0.1 850 75 251.26 10.38 0.45
37 41 0.83 0.1 1140 85 289.3 11.94 0.45
38 45.5 0.83 0.1 480 55 363.35 14.41 0.35
39 45.5 0.83 0.1 690 85 363.35 14.41 0.55
40 45.5 0.83 0.1 1000 85 363.35 14.41 0.75
41 19.5 0.388 0.16 1220 35 25.88 3.51 0.25
42 25 0.388 0.16 640 25 51.77 5.73 0.15
43 25 0.388 0.16 730 20 51.77 5.73 0.2
44 25 0.388 0.16 1170 30 51.77 5.73 0.25
45 25 0.388 0.16 1215 55 51.77 5.73 0.2
46 28 0.388 0.16 635 60 214.48 7.55 0.3
47 28 0.388 0.16 730 65 214.48 7.55 0.25
48 32 0.388 0.16 640 70 340.2 11.71 0.32
49 32 0.388 0.16 1170 45 340.2 11.71 0.45
50 32 0.388 0.16 1220 80 340.2 11.71 0.45
51 37 0.388 0.16 950 45 356 22.1 0.35
52 37 0.388 0.16 1170 85 356 0.65
53 21 0.61 0.16 760 25 72.5 7.86 0.1
54 24 0.61 0.16 1040 10 121 9.21 0.15
55 29 0.61 0.16 680 20 176.6 11.42 0.2
56 29 0.61 0.16 860 30 176.6 11.42 0.15
57 29 0.61 0.16 1045 45 176.6 11.42 0.2
58 34 0.61 0.16 760 35 239 13.51 0.2
59 34 0.61 0.16 860 40 239 13.51 0.25
60 34 0.61 0.16 1055 75 288 13.51 0.45
61 39 0.61 0.16 300 10 288 15.84 0.2
62 39 0.61 0.16 630 40 288 15.84 0.25
63 39 0.61 0.16 775 75 288 15.84 0.5
64 39 0.61 0.16 860 60 288 15.84 0.45
65 39 0.61 0.16 1140 35 288 15.84 0.1
66 39 0.61 0.16 1385 45 288 15.84 0.15
67 45 0.61 0.16 300 20 358.8 15.84 0.3
68 45 0.61 0.16 600 20 358.8 18.18 0.25
69 45 0.61 0.16 650 70 358.8 18.18 0.5
70 45 0.61 0.16 790 90 358.8 18.18 0.75
71 45 0.61 0.16 1245 25 358.8 18.18 0.2
72 45 0.61 0.16 1385 60 358.8 18.18 0.4
73 21 0.83 0.16 760 20 75.7 6.83 0.1
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Table A1. Cont.

Input Parameters Output

ID Loading
(kN)

CFRP
Length/Slab

Bay

CFRP
Width/Slab

Width

X Location
(mm)

Y Location
(mm)

Steel Bar
Stress
(MPa)

Concrete
Stress
(MPa)

Crack
Width
(mm)

74 21 0.83 0.16 1020 25 75.7 6.83 0.15
75 21.5 0.83 0.16 755 40 85.3 7.77 0.2
76 22 0.83 0.16 1035 30 115.8 9.38 0.25
77 28 0.83 0.16 760 55 149.7 10.45 0.3
78 28 0.83 0.16 1045 60 149.7 10.45 0.3
79 29 0.83 0.16 860 25 187.8 12.19 0.15
80 32 0.83 0.16 860 55 222.2 13.39 0.3
81 32 0.83 0.16 1055 80 222.2 13.39 0.4
82 39 0.83 0.16 610 35 222.2 14.6 0.1
83 40 0.83 0.16 1170 40 249 15.2 0.15
87 44 0.83 0.16 625 60 288 16.61 0.5
85 44 0.83 0.16 860 85 288 16.61 0.55
86 48 0.83 0.16 640 75 321 18.1 0.65
87 54 0.83 0.16 860 95 363 20.76 0.85
88 21 0 0 640 30 191 9.21 0.25
89 21 0 0 760 34 191 9.21 0.3
90 21 0 0 980 41 191 9.21 0.3
91 23 0 0 750 62 222 10.21 0.35
92 24 0 0 647 54 258 11.18 0.3
93 24 0 0 990 66 258 11.18 0.35
94 24 0 0 1100 35 298.8 13.21 0.15
95 26 0 0 1285 30 321.2 15.41 0.2
96 33 0 0 680 80 362 18.21 0.45
97 33 0 0 1080 75 362 18.21 0.25
98 33 0 0 1270 55 362 18.21 0.4
99 33 0 0 590 40 362 18.21 0.35

100 33 0 0 380 60 362 18.21 0.4
101 33.3 0 0 740 95 367.3 223.2 0.75
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