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Abstract: Disassembling brick wall pieces into brick wall sections and constructing masonry buildings
with disassembled brick wall sections (DBWSs) can reduce construction waste production at source
and help achieve carbon peak and carbon neutrality. A finite element model (FEM) for typical
MSBD is established based on the calibrated finite element analysis method to evaluate the seismic
performance of masonry structures built with disassembled brick wall sections (MSBD). Subsequently,
the peak ground acceleration is selected as the ground motion intensity index, and the maximum inter-
story displacement angle is chosen as the structural damage index. The 20 ground motion records are
selected and scaled by peak acceleration in 0.2 g steps to form 120 structure-ground vibration samples
for incremental dynamic analysis (IDA) and seismic vulnerability analysis. The IDA results indicated
that with the gradual increase in peak ground acceleration, the maximum inter-story displacement
angle increases and the model transits from the elastic stage to the elastoplastic stage. Because the
characteristics of ground motion records are different, the order of structural plasticity development
will be different and the number of ground motion records needs to be considered in the seismic
performance assessment. The calculation model will not collapse under the 7 and 8 degree design-
based earthquake and the probability of moderate and severe damage of the structure under the
rare earthquake is minimal, according to the seismic vulnerability curves. The seismic vulnerability
analysis results indicate that MSBD has good seismic performance under earthquakes and meets
the requirements of “perfect subjected to frequent earthquake, reparable subjected to design based
earthquake, no collapse subjected to rare earthquake.” The seismic vulnerability analysis based on
probability statistics can provide a reference for seismic design and evaluation of earthquake damage.

Keywords: DBWSs; MSBD; reutilization; seismic performance; vulnerability analysis

1. Introduction

Due to its advantages in terms of easy production, straight forward construction,
and durability, clay bricks are frequently employed in civil building projects worldwide.
China issued a ban on the production and use of clay bricks in 2004 to save energy and
land resources [1]. With the rapid development of society, some masonry structures are
facing the situation of renovation or demolition, owing to the function that does not meet
the requirements of modern society, the seismic fortification level that does not meet the
current standards and the need for urban reconstruction, etc. [2–5]. However, the quality
of the brick walls of the masonry houses that are planned to be demolished may still
be good, and most of the demolished materials are treated as construction wastes [6],
which is incompatible with the road of green development of construction projects. At
present, countries, such as China and Germany, are vigorously building a circular economy
system [7]. In this context, the dismantling and reuse of brick wall sections can reduce the
production of construction waste at source and help achieve carbon peaking and carbon

Buildings 2022, 12, 1831. https://doi.org/10.3390/buildings12111831 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12111831
https://doi.org/10.3390/buildings12111831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-1824-448X
https://doi.org/10.3390/buildings12111831
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12111831?type=check_update&version=1


Buildings 2022, 12, 1831 2 of 19

neutrality [8]. One method of reusing masonry structural elements is to recover bricks of
good quality. This method is largely driven by the specific high-value or unique vintage
look of the bricks [9]. Another method of reusing masonry structural elements is to crush
and grind bricks and mortar blocks to a certain fineness. Brick powder of certain fineness
has pozzolanic activity and hydration activity [10,11], which can be used as an admixture
to reduce the amount of cement. This method can reduce resource consumption and
environmental pollution caused by cement production.

In addition, using disassembled brick wall sections (DBWSs) to build new masonry
structures is an effective method. The notion of employing well-preserved brick wall parts
to build new masonry homes introduced by the Cubo project [12], which focuses on the
renovation of residential houses. Zhou [13] analyzed the mechanical properties of the
disassembled bricks and the brick wall specimens made from the disassembled bricks. It
was stated that the disassembled process had little effect on the masonry properties, and its
bearing capacity calculation could also be carried out regarding the current code. Ucer [14]
obtained the DBWSs from the demolition site and tested the mechanical properties. The
strength of the bricks and wall sections was found to be more than the current code’s
minimal requirement, and the bonds between brick and mortar were good. In other words,
the DBWSs can be used to build new houses, provided proper design methods are used.

The seismic performance of masonry structures is significantly influenced by the
performance of the brick walls and linkages between walls and structural columns. Nev-
ertheless, for seismic performance, most existing studies focus on reinforced masonry
structures and masonry structures built with new materials. Additionally, little attention
has been paid to the research on the seismic performance of masonry structures built with
disassembled brick wall sections (MSBD). Compared with usual masonry structures, the
spacing between constructional columns of MSBD is smaller. It is worth evaluating the
seismic performance of buildings with MSBD characteristics. Accurate seismic vulnera-
bility analysis is a necessary condition for reliable prediction in seismic risk assessment.
In the previous studies, four vulnerability analysis methods were proposed, including
the expert judgment method, empirical analysis method, theoretical analysis method, and
mixed analysis method [15,16]. The advantage of the theoretical analysis method is using
numerical simulations for the study, which is not limited by specific conditions and can
analyze the vulnerability of structures lacking research data.

Therefore, this paper proposed a modeling method of MSBD based on Abaqus soft-
ware and confirmed the validity of the finite element analysis methods. Based on the usual
MSBD, a simplified five-story masonry cross wall was created as the calculation model and
20 ground motion records were chosen for nonlinear incremental dynamic analysis (IDA).
Based on the IDA curves and the structural performance level, the seismic vulnerability
curves of the calculation model can be created. The seismic capacity of the structure can be
determined according to the conditional probability of the structure reaching each limit
state, which can serve as a guide for seismic design and earthquake damage assessment.

2. Masonry Structures Built with DBWSs

To ensure the durability and seismic performance of MSBD, the brick wall sections
without surface damage in a dry and low erosive environment should be selected as the
objects for disassembling, and the mechanical properties of the DBWSs should be examined.
The actual size of the wall pieces, the permitted size of the transport trucks, the lifting
capacity of the lifting equipment, etc., should be considered when determining the size
of the DBWSs. The width of the DBWSs is recommended to be 1.0~4.8 m and the height
of the DBWSs is recommended to be 0.9~3.6 m, according to GB 50003-2011 [17] and
18CG40 + 18CJ79-1 [18].

Wall components for brick masonry houses comprise both wall pieces and wall pieces
with cavities. The roof slab of the floor on which the brick wall to be cut is disassembled
must first be removed before the brick wall pieces may be divided into brick wall sections.
For brick wall components without cavities, the cutting strategy should be chosen based on
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the actual wall layout and the previously indicated specifications for cutting size. According
to the principle of the holes’ staggered tangency, the coring machine will be utilized to
create holes on both sides of the proposed DBWSs, as shown in Figure 1a. The diameter,
distance of holes, and dimension of shear keys should be determined according to the
connecting performance of the DBWSs and column, cutting efficiency, operability, etc. The
recommended value for diameter, the distance of holes, and the dimension of shear keys
are illustrated in Table 1. It was found that there is a risk of damage to the DBWSs during
disassembling, lifting, and transportation. Hence, a clamping frame suitable for lifting and
transporting the DBWSs was proposed by our research group, as shown in Figure 1b. The
clamping frame is set on both sides of the DBWSs, and there are wooden slats between the
clamping frame and the DBWSs. The clamping frames are attached to each other by bolts
on both sides and at the bottom and are lifted off by lifting points located on the top of
the clamping frames. The clamping frame can be fitted and connected to the crane’s hook
after the holes have been drilled through both sides of the DBWSs. Once the holes have
been drilled through the bottom of the DBWSs, the DBWSs can be raised off the ground.
At this point, it should be noted that to prevent the DBWSs from tipping over during the
disassembly process, temporary supports must be placed up. Additionally, brick wall
components containing cavities can be disassembled using the approach described above.
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Figure 1. Disassembling details: (a) the coring machine to form holes at both sides of the DBWSs;
(b) the clamping frames details.

Table 1. The recommended value for diameter, the distance of holes, and the dimension of shear
keys/mm [17].

Diameter (D) Horizontal Distance (B) Vertical Distance (H) Width (b) Height (h)

120 80 90 80 180
160 100 125 100 250
200 120 160 120 320

The reliable connection method between the components can ensure the continuity of
the wall system, which is the premise of precast concrete shear wall structure to be widely
promoted. Similarly, this requirement applies to MSBD. According to GB 50003-2011 [17],
tie bars should be placed every 500 mm along the height of the wall, and the connection
between the constructional column and the wall should be made into the toothing indenting.
In this study, to solve the problem of vertical joints between the DBWSs, the connection
method of “holes + bonded rebars + columns” was proposed based on the characteristics
of the DBWSs themselves. The construction details of vertical joints in the plane between
the DBWSs are shown in Figure 2. Uniformly distributed bonded rebars along the height
of the DBWSs and the large size of shear keys can ensure a reliable connection between
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the DBWSs and the constructional column, ensuring the continuity of load transfer. The
L-shaped connection and T-shaped connection between the DBWSs can be completed by
referring to the above method.
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3. Finite Element Models
3.1. General Strategy

In this section, the numerical simulation of the masonry structure model is carried out
using the finite element analysis program ABAQUS. Generally speaking, masonry wall
modeling approaches are classified into integral modeling and separated modeling [19];
the choice depends on the accuracy required for the study. The integral modeling approach
treats masonry as homogeneous material and models masonry walls as a series of con-
tinuous units [20], as shown in Figure 3a. It is more advantageous in modeling relatively
large and complex masonry walls. This method, however, cannot be used to describe
precise failure modes. The separated modeling approach in Figure 3b considers elements,
mortars, and interfaces to provide accurate results. However, the applicability of this
method in the analysis of large masonry buildings is constrained by the high computational
cost [20]. Alternatively, a simplified separated modeling approach in Figure 3c can be used
to simplify calculation costs, which reduces mortar joints to non-thickness interfaces, and
half of the mortar’s thickness was added to the element’s thickness to take into account the
mortar’s thickness. The accuracy of the simulation findings could be slightly affected by
this streamlined approach, but researchers still heavily favor this approach because of the
huge cost savings [21].
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3.2. Calibration of the Finite Element Model (FEM)

Recently, an experimental study on in-plane static cyclic loading of a two-story ma-
sonry structure model built with the DBWSs has been carried out. The findings of this study
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in terms of force–displacement curves and observed failure modes were used to confirm
the validity of the finite element analysis methods. The simplified separated modeling
approach was used to establish the FEM of MSBD. Due to masonry walls’ highly nonlinear
and brittle characteristics, a dynamic explicit solver was selected as the numerical solving
method. A dynamic explicit solver does not require an assembly matrix, which makes it
easy to solve complex contact problems, compared to the standard solver. As the model
grows, dynamic explicit solver requires fewer resources than standard solver. It should
be noted that the dynamic explicit solver essentially uses slow loading to model static
problems that require increased computation time to reduce the effect of inertial forces.
Generally, quasi-static analysis can be accomplished by taking more than 10 times the
period corresponding to the structure’s lowest order modal. Simultaneously, the kinetic
energy and internal energy of the model must be assessed. When the material’s kinetic
energy does not exceed 10% of the internal energy, the loading process can essentially be
ensured to be quasi-static [23].

3.2.1. Material Constitutive Model

The objects of finite element analysis are masonry walls with structural columns,
including extended units of bricks and mortar, concrete and reinforcement. Due to its
capability of taking into account the fully inelastic behavior of concrete in compression and
tension, the concrete damaged plasticity (CDP) model in ABAQUS can be used to study the
mechanical properties of brittle materials, such as concrete and masonry, under uniaxial
loading or cyclic loading [21,24]. For masonry modeling, Yang [25] and Sekender Ali [26]
produced a model that was considered for stress–strain relationship and was presented in
Figure 4. Yang [25] established the masonry uniaxial compressive stress–strain relationship
based on the unitary equilibrium condition through a mesoscopic model. Yang model [25]
can be stated as:

σc

fcm
=

η

1 + (η − 1)( εc
εcm

)η/(η−1)
εc

εcm
(1)

where σc is the compression stress of masonry; εc is the compression strain of masonry;
f cm is the peak compression stress of masonry; fcm = 0.78 f 0.5

1 (1 + 0.07 f2) where f 1 is the
average compressive strength of bricks, f 2 is the average compressive strength of mortar;
εcm is the peak compression strain of masonry; εcm = 0.005/

√
fcm where η is the ratio of

the initial tangential modulus to the peak cutline modulus, generally taken as 1.633.
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Sekender Ali [26] used a simplified bilinear model to describe the uniaxial tensile
stress–strain relationship in masonry. Sekender Ali [26] model can be expressed, as shown
in Equation (2):

σt =

{
Eεt , εt ≤ εtm
E(4εtm−εt)

3 , εtm < εt ≤ 4εtm
(2)

where σt is the tension stress of the masonry; εt is the tension strain of the masonry; εtm is the
peak tension strain of the masonry; E is the elastic modulus of masonry; E = 370 fcm

√
fcm.

Extended units of bricks and mortar modeling are considered as an integral model of
bricks and mortar, except that the weak layer of masonry is modeled by an interface model.
Thus, the stress–strain relationship of masonry is still used in the simplified separated
model for the extended units. The Poisson’s ratio of masonry and the extended units was
set as 0.15.

For concrete modeling, the uniaxial stress–strain relationships used for concrete pro-
posed by GB50010-2010 were considered. The Poisson’s ratio of concrete was set as 0.2.
Damage factors for both masonry and concrete were calculated based on the Sidoroff
energy equivalence principle [27]. The bilinear elastic–plastic stress–strain model with
strain hardening was taken into consideration for modeling steel reinforcement, and it is
shown in Figure 5. Based on the results of the material testing, the steel reinforcement’s
parameters were established, and the Poisson’s ratio was set at 0.3.
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3.2.2. Modelling Approach

The FEM in simplified separated modeling was composed of extended units, concrete
columns, concrete foundation beams, concrete slabs, and steel reinforcements. The C3D8R
was used for extended units, concrete foundation beams, and concrete slabs. The T3D2
was used for steel reinforcements. The proper FEM mesh size was chosen based on the
mesh sensitivity analysis. The global mesh size of the FEM was set to 60, and the sweep-
ing approach was employed. The “Tie” constraint was used to establish the interaction
between extended units, concrete columns, concrete foundation beams, concrete slabs. The
relationship between concrete columns and steel reinforcements was established via the
“Embedded” constraint.

Under horizontal loads, the damage to masonry usually occurs at the mortar interface,
which has a certain tensile and shear strength, and the adjacent part has a friction effect after
the joint interface is damaged. It is possible to accurately simulate the shear behavior of
masonry by modeling the joint interfaces between the expanded units using a surface-based
cohesive approach [28]. The interaction between the expanded units was modeled using
the “General” contact. The cohesive interface model is a bilinear constitutive model, which
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is based on a bilinear traction separation model in tension and shear in ABAQUS [29]. The
interface strength begins to degrade once the specified ultimate strength is reached in the
traction separation model, which initially exhibits a linear elastic behavior. Using the laws
of initial damage and damage evolution in contact properties, the mechanical properties
of degradation can be simulated. The traction separation model [30] can be expressed, as
shown in Equation (3):

t =


tn
ts
tt

 =

 knn 0 0
0 kss 0
0 0 ktt


δn
δs
δt

 = Kδ (3)

where tmax
n , tmax

s , tmax
t are the ultimate traction forces in the linear elastic phase, respectively,

which are usually taken as the tensile and shear strength of the mortar; δ0
n, δ0

s , δ0
t are the

corresponding displacements; K is the stiffness matrix of joint interfaces; knn = EuEm
hm(Eu−Em)

,

kss = ktt =
GuGm

hm(Gu−Gm)
where Eu is the elastic modulus of brick, Em is the elastic modulus

of mortar, Gu is the shear modulus of brick, Gm is the shear modulus of mortar, hm is
the thickness of mortar. The critical mixed-mode fracture energy needed to destroy joint
surfaces can be seen as the darkened area in Figure 6, which is based on the Benzeggagh–
Kenane law. The normal and tangential fracture energies can be calculated from the
interfacial tensile and shear strength due to the difficulty in measuring fracture energies in
tests [28,31]. The maximum traction forces, the stiffness matrix, and the critical mixed-mode
fracture energy determine the cohesive interface model.
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is the elastic modulus of mortar, uG  is the shear modulus of brick, mG  is the shear mod-
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3.2.3. Comparison with Experimental Results

The experimental study on in-plane static cyclic loading of a two-story masonry struc-
ture model built with the DBWSs was performed at the structural and seismic laboratory of
Harbin Institute of Technology. Due to the limitation of the test site and loading device, the
model plane size was determined as 3.24 m × 3.24 m, the wall thickness was 240 mm, the
height of the 1st floor was 2.0 m, and the height of the 2nd floor was 1.7 m. The dimension
of bricks used in the DBWSs was 240 mm× 115 mm× 53 mm. All the DBWSs and columns
were built over reinforced concrete foundation beams and bolted to a strong and rigid floor
designed to prevent the experimental model from moving during cyclic loading.

The material properties used for masonry in the FEM, especially compressive strength,
shear strength, density, and elasticity modulus, shall be determined by referring to GB 50003-
2011 [17], GB/T 50129-2011 [32], and GB/T 50315-2011 [33]. Other properties, including
concrete’s compressive strength, tensile strength, density, and elasticity modulus, were
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determined by referring to GB 50010-2010 [34]. The mechanical properties of masonry,
concrete, and steel used in the FEM are shown in Table 2.

Table 2. Mechanical properties of materials.

Material Property Value

Masonry

Compressive strength 3.40 MPa

Shear strength 0.304 MPa

Modulus of elasticity 2320 MPa

Density 2000 kg/m3

Poisson’s ratio 0.15

Concrete

Compressive strength 23.41 MPa

Tensile strength 2.57 MPa

Modulus of elasticity 29,254 MPa

Density 2500 kg/m3

Poisson’s ratio 0.2

Steel

Yield strength of HPB300 346 MPa

Yield strength of HRB400 485 MPa

Modulus of elasticity 210,000 MPa

Density 7850 kg/m3

Poisson’s ratio 0.3

In the CDP model, it is also necessary to specify the relevant material parameters to
define the plastic flow potential function and yield surface accurately. The default values
for flow potential eccentricity (ε = 0.1), the ratio between biaxial and uniaxial compressive
yield stress ( fb0/ fc0 = 1.16), the ratio between the second stress invariants on the tensile
and the compressive meridians (K = 2/3), and the viscosity parameter (µ = 0.001) were
determined, according to the Abaqus user’s manual [35] and previous studies [30,36–41].
In addition, to correctly simulate masonry behavior during the calibration process, the
dilation angles of 36◦ and 20◦ for concrete and masonry materials were considered.

Due to the symmetry of load and geometry of the studied masonry structure model
built with the DBWSs, only one-half model was built to improve computational efficiency
in the current study. For boundary conditions, the displacements of the 1st and 2nd
floor slab in X rotation, Y translation, and Z rotation were restricted. For the loading
method, unidirectional displacement loading is applied to the reference point to consider
the computational efficiency, coupled to the top surface of the 2nd floor slab. The vertical
loads were applied to the 1st and 2nd floor slab, resulting in vertical stress of 0.5 MPa
for the 2nd floor walls and 0.6 MPa for the 1st floor walls, as illustrated in Figure 7. The
damage of the floor slab was not considered; only the part in contact with the wall pieces
was created and set as a rigid body.

Figure 8a,b represent the damage distribution between the experimental model and
the FEM. In terms of failure and cracking mode, the FEM results were found to be in good
agreement with the experimental results. In addition, the force–displacement curves of the
FEM and the experimental model were compared in Figure 8c. The force–displacement
curves were nearly identical; however, the FEM’s stiffness of the rising phase of the
force–displacement curve was slightly greater than that of the experimental model. The
differences are related to the loading method and the assumptions of the material con-
stitutive model. Low-cyclic reversed loading was used in the experimental model. The
accumulation of compressive and tensile damage under cyclic loading led to a decrease
in the stiffness of the experimental model, and the assumption of homogeneous materials
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was equivalent to enhancing the mechanical properties of materials. However, the FEM
was unable to account for the aforementioned factors temporarily.
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The stiffness, strength, and ductility of the experimental model were generally accu-
rately represented by the simplified separated FEM, demonstrating the applicability of the
methods and assumptions used in the finite element modeling, which will be implemented
in the subsequent seismic vulnerability analysis.
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4. Seismic Vulnerability Analysis for MSBD

The seismic vulnerability analysis of buildings can predict damage before earthquakes
and help designers improve structures’ seismic performance [16]. It can also be used to
evaluate the losses after earthquakes and provide a basis for disaster estimation, relief, and
reconstruction. IDA can reflect the change process of strength, stiffness, and deformation
capacity of structures under different ground motions, which can be used to analyze the
vulnerability of MSBD [42]. Furthermore, IDA can forecast the probability of damage
at different degrees of earthquake activity, which can establish a rationale for seismic
performance assessment based on scientific data.

4.1. FEM for Seismic Vulnerability Analysis

In this paper, the masonry structure model built with the DBWSs was simplified
as a three-dimensional masonry wall piece for analysis, since only the in-plane failure
mechanism of masonry structures was concerned, and the out-of-plane failure mechanism
was not considered for the time being. The influence of DBWSs dimensions on the seismic
performance of brick masonry structures should be taken into consideration in the structural
design, compared to conventional masonry structures. Therefore, a five-story masonry
crosswall was designed as the calculation model for vulnerability analysis. The thickness
of crosswall was 240 mm, the width of each DBWSs was 3.0 m, and the height of each floor
was 3.0 m. The dimensions of structural columns and ring beams were 240 mm × 240 mm
and 180 mm × 240 mm, respectively. The thickness of the concrete protective layer of
structural columns and ring beams was 20 mm, and the reinforcement was configured
according to the structure. All parameters of the computational model were determined to
meet the GB50003-2011 [17] requirements.

The calculation model was built the same way as in Section 3.2, and the material
parameters were the same as in Table 2. A vertical load of 0.2 MPa was applied to the ring
beam of each floor. For the computational model, it should be noted that when all wall
parts are built using the separated modeling approach and considering the contact between
units, the modeling and computational workloads will be relatively large, and appropriate
simplification of the computational model can be considered. Therefore, the DBWSs were
established with a height of 1.41 m, and only the contact between DBWSs was considered,
as shown in Figure 9.
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Figure 9. Calculation model.

4.2. Selection of Ground Motion Records

According to Riddell’s study [43], the correlation of the peak ground acceleration index
decreased with increasing structural period and was applicable to short-period building
structures. The period of masonry buildings was generally not higher than 0.4 s, a short-
period structure. Further, the seismic hazard levels in GB50011-2011 [44] were prescribed in
terms of peak ground acceleration; hence, the peak ground acceleration (Apg) was selected
as the ground motion intensity index. To reduce the impact of ground motion uncertainty
on the seismic vulnerability analysis, 20 ground motion records were selected from the
strong shaking record database of the Pacific Earthquake Research Center, regarding the
wave selection principles suggested in the FEMA-P695 [45], as shown in Table 3. The
selected seismic records’ average response spectrums generally agree with the Chinese
code design response spectrum [44], as presented in Figure 10.
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Table 3. The selected ground motion records.

Earthquake
Name

Record
Sequence
Number

Peak
Ground

Acceleration

Earthquake
Name

Record
Sequence
Number

Peak
Ground

Acceleration

San_Fernando PEL090 0.21 g Northridge-01 MUL279 0.52 g
Friuli-Italy TMZ270 0.31 g Kobe-Japan NIS000 0.51 g
Imperial_Valley DLT352 0.35 g Kobe-Japan SHI000 0.24 g
Imperial_Valley E11230 0.38 g Kocaeli-Turkey ARC000 0.22 g
Superstition_Hills ICC000 0.36 g Kocaeli-Turkey DZC270 0.36 g
Loma_Prieta CAP000 0.53 g ChiChi CHY101E 0.35 g
Loma_Prieta G03000 0.56 g ChiChi CHY101N 0.44 g
Cape_Mendocino RIO360 0.55 g Duzce-Turkey BOL000 0.73 g
Landers CLW-TR 0.42 g Hector_Mine HEC000 0.27 g
Landers YER270 0.24 g Hector_Mine HEC090 0.34 g

4.3. Judgment of Structural Performance Level

The applicability and accuracy of the structural damage index directly affect the shape
of the vulnerability curve and conditional exceedance probability. Displacement indexes
are mainly adopted for seismic vulnerability analysis, including maximum inter-story
displacement angle and maximum inter-story displacement [46,47]. The maximum inter-
story displacement angle (θmax) can reflect the influence of factors, such as structural form,
material, story height, and damage; thus, it is selected as the structural damage index.

The performance level cutting point on the IDA curves should be identified to eval-
uate the seismic performance of structures during earthquakes. Based on the three-level
fortification requirements of GB50011-2010 [44], the recommendations of FEMA [48] and
previous studies [46,49–51], the performance level of masonry structure was divided into
four grades, operational (OP), immediate occupancy (IO), life safety (LS) and collapse
prevention (CP). The inter-story displacement angle limits of each performance level are
shown in Table 4.

Table 4. Inter-story displacement angle limits of each performance level.

Performance levels Operational Immediate Occupancy Life Safety Collapse Prevention

Damage state Slight damage Moderate damage Severe damage Collapse
Inter-story

displacement angle 0.0005 0.0011 0.0018 0.0029

4.4. Seismic Vulnerability Curve

The 20 ground motion records selected previously were scaled by peak acceleration
in 0.2 g steps to form 120 structure–ground vibration samples. The maximum inter-story
displacement angle for different ground motion intensities can be determined utilizing
Abaqus to conduct elastic–plastic time–history analysis on the calculation model. After
multiple calculations and integration of relevant data, 20 IDA curves can also be obtained.
Statistical methods were used to measure the analysis results of IDA curves [52], and
the 16%, 50%, and 84% exceedance probability curves of the overall analysis results are
illustrated in Figure 11.

As can be seen from Figure 11, when the peak ground acceleration was small, the
model was in the elastic stage, and the IDA curves exhibited a monotonic increasing
trend. The model entered the elasto-plastic stage and damage intensification and stiffness
degradation began, and the IDA curves displayed a non-monotonic increasing trend as the
peak ground acceleration gradually increased. When the model was seriously damaged,
16% of the 20 ground motion records had a peak acceleration of no more than 1.18 g, 50%
had a peak acceleration of no more than 1.02 g, and 84% had a peak acceleration of no more
than 0.88 g.
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Figure 12 shows the maximum inter-story displacement angle and the location of the
floor under four groups of ground motion records to obtain the complete development of
the inter-story displacement angle of the calculation model. A pentagram demonstrates
the floor in Figure 12, where the maximum inter-story displacement angle was located. It
was found that when the peak ground acceleration was small, the maximum inter-story
displacement angle of the calculation model mainly appeared on the 2nd and 3rd floors.
On the other hand, when the peak ground acceleration was large, the maximum inter-story
displacement angle of the calculation model mainly appeared on the 1st floor. In particular,
with the increase in peak ground acceleration, the inter-story displacement angle became
smaller under CAP000. Due to the different spectrum characteristics of ground motion
records, the order of development of structural plasticity may differ and the floor location at
which the maximum inter-story displacement angle may change accordingly. It is necessary
to select a sufficient number of ground motions for the calculation to reflect the weakness
of a structure in IDA fully.

It is worth noting that under various ground motion records, the IDA curves are
discrete. In order to accurately reflect the seismic capacity of the model under different
ground motion records, vulnerability curves can be drawn based on the IDA results.
Through the structural failure probability, it may assess its seismic performance and reduce
discreteness. The seismic vulnerability curves are generated using the maximum inter-story
displacement angle and peak ground acceleration obtained in the previous IDA. According
to Mackie’s study [53], the maximum inter-story displacement angle (θmax) can be calculated
by a power model, which can be expressed as in Equation (4), where a and b are the linear
regression coefficients. According to the IDA results, the probabilistic structure demand
model can be obtained by a linear regression analysis based on Equation (4), as is depicted
in Equation (5) and Figure 13.

θmax = aAb
pg (4)

ln(θmax) = −6.12341 + 1.74557 ln
(

Apg
)

(5)
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According to Hwang’s recommendations [54], structure demand and capacity param-
eters followed the lognormal distributions. The failure probability of structure demand
exceeding the structure capacity Pf can be expressed as:

Pf = ϕ

 ln
(
θ̂
)
− ln(Ĉ)√

β2
c + β2

d

 (6)

where θ̂ and βd are the mean value and logarithmic standard deviation of the structure
demand parameter, Ĉ and βc are the mean value and logarithmic standard deviation
of the structural capacity parameter, which could be determined from the performance
level points in Table 4. According to Schneider’s study [47], when Apg was used as the

independent variable of vulnerability curves,
√

β2
c + β2

d could be taken as 0.5. In addition,
ϕ(x) the standard normal distribution could be described as Equation (7).

ϕ(x) =
1√
2π

∫ x

∞
exp

(
− t2

2

)
dt (7)
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Based on Equations (5) and (6), it was possible to determine the failure probability
of the maximum inter-story displacement angle reaching each performance level under
different ground motion intensities, as demonstrated in Figure 14.
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Based on Equations (5) and (6), it was possible to determine the failure probability of 
the maximum inter-story displacement angle reaching each performance level under dif-
ferent ground motion intensities, as demonstrated in Figure 14. 

Figure 13. The probabilistic structure demand model.
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The slope of vulnerability curves was notably different under different performance
levels, according to investigations on vulnerability curve characteristics. The slope of
vulnerability curves was progressively slower from the operational level (OP) to the collapse
prevention level (CP). The vulnerability matrix of the calculation model under 7- and
8-degree earthquakes is shown in Table 5.

It can be seen from Table 5 that the failure probability under the rare earthquake of
8 degrees (0.4 g) at the performance levels of OP to CP was noted as 40.37%, 3.43%, 0.25%,
and 0%, respectively. In general, the seismic performance of the model structure under
earthquake action was relatively good. Under a rare earthquake, the structure may be
moderately damaged; however, the failure probability is not very large; thus, the structure
will not be seriously damaged or even collapse. The brick masonry structure was mainly
anti-seismic by the wall pieces when the intensity of the ground motion was minimal. With
the increase in ground motion intensity, the structural column gradually played a role
after the structure cracks, especially when the structure entered a more serious damage
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state, such as serious damage and collapse. Small spacing and a robust restraining effect
provided by the MSBD structural columns significantly improve the structure’s ductility
and contribute to preventing the structure from collapsing.

Table 5. Vulnerability matrix.

Design Intensity

The Failure Probability under Different Performance
Levels

Slight
Damage

Moderate
Damage

Severe
Damage Collapse

7
degree

Frequent earthquake 0 0 0 0
Design-based

earthquake 0 0 0 0

Rare earthquake 0.99 0 0 0

8
degree

Frequent earthquake 0 0 0 0
Design-based

earthquake 0.39 0 0 0

Rare earthquake 40.37 3.43 0.25 0

5. Conclusions

In the current study, the operation methods of disassembling the brick wall pieces
into brick wall sections and building masonry structures with DBWSs were proposed,
providing a new choice for reusing masonry structural elements. To evaluate the seismic
performance of MSBD, the FEM was established based on Abaqus, and the FEM results
were compared with an experimental model to verify the accuracy and practicality of
the modeling method. The 20 ground motion records were selected and scaled by peak
acceleration in 0.2 g steps to form 120 structure–ground vibration samples for incremental
dynamic and seismic vulnerability analysis. The research can provide a reference for seismic
design and earthquake damage evaluation of MSBD, which promote the application of
DBWSs in building masonry structures. The following conclusions can be drawn from the
obtained findings:

(1) The FEM captures the experimental model’s stiffness, strength, and ductility with
acceptable accuracy, proving the material constitution’s applicability and assumptions used
in finite element modeling. This modeling method can be regarded as an effective and
reliable tool for seismic vulnerability analysis of MSBD.

(2) Based on elastic–plastic analysis under various ground motions, it is possible to
determine the progression of a structure from elastic deformation to plastic deformation
and ultimately to collapse under an earthquake. From the IDA curves of the calculation
model, it can be seen that the maximum inter-story displacement angle increased with the
gradual increase in peak ground acceleration. The damage degree gradually increased,
the stiffness gradually decreased, and the model transited from the elastic stage to the
elastoplastic stage.

(3) Due to the different spectrum characteristics of ground motion records, the order
of structural plasticity development will be different, and the factor of floors needs to be
considered in the seismic performance assessment. To completely reflect the weakness of
the structure, a sufficient number of ground motions need to be selected for IDA.

(4) From the seismic vulnerability curves of the calculation model, it can be seen that
the structure would not collapse under the 7 and 8 degree design-based earthquake and
the probability of moderate and severe damage of the structure under the rare earthquake
was also minimal. The structure fulfills the requirements for “no collapse subjected to rare
earthquake”. The seismic performance evaluation of structures can use the probabilistic
statistics-based seismic vulnerability analysis as a reference.
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