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Abstract: A method for predicting the financial status of construction companies after a medium-
to-long-term period can help stakeholders in large construction projects make decisions to select an
appropriate company for the project. This study compares the performances of various prediction
models. It proposes an appropriate model for predicting the financial distress of construction
companies considering three, five, and seven years ahead of the prediction point. To establish
the prediction model, a financial ratio was selected, which was adopted in existing studies on
medium-to-long-term predictions in other industries, as an additional input variable. To compare the
performances of the prediction models, single-machine learning and ensemble models’ performances
were compared. The comprehensive performance comparison of these models was based on the
average value of the prediction performance and the results of the Friedman test. The comparison
result determined that the random subspace (RS) model exhibited the best performance in predicting
the financial status of construction companies after a medium-to-long-term period. The proposed
model can be effectively employed to help large-scale project stakeholders avoid damage caused by
the financial distress of construction companies during the project implementation process.

Keywords: financial distress; prediction; large construction project; machine-learning; medium-to-
long-term; construction company

1. Introduction

Large construction projects account for approximately 8% of the global gross domestic
product (GDP) [1]. This proportion is rapidly increasing to meet the demand for social
infrastructure and different types of construction plants because of increased population
and economic growth [2–4]. However, large-scale construction projects are characterized
by many stakeholders, huge investments, long lead times [5,6], and frequent overruns and
delays owing to various factors [7–11]. Several previous studies [12–15] have conducted
surveys on the factors causing overruns and delays in large-scale construction projects.
They discovered that among the various factors, contractor financial difficulties were the
most important. Therefore, identifying and evaluating a contractor’s financial position at an
early stage can contribute to the successful implementation of large construction projects.

When a contractor is selected for a project in the construction industry, the contractor’s
financial risk assessment is conducted by a pre-qualification (PQ) examination [16]. In
Korea, public procurement services perform financial risk assessments for contractors. For
this purpose, a credit rating report issued is used for bidding in public organizations [17].
The credit rating evaluation of a construction company aims to evaluate its ability to fulfill
its financial obligations at the time of evaluation [18,19]. The valid term for the evaluated
credit rating is 18 months from the settlement date of the final financial statements [18–20].
However, the contractor’s credit rating may change during the project period because
the duration of large-scale construction projects is typically longer than 18 months [21].
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Therefore, the future has to be predicted to evaluate the financial risk of contractors partici-
pating in large construction projects. For this, there are studies conducted to predict the
mid-to-long-term financial risks of companies.

Several studies have predicted the financial health of construction companies, includ-
ing their financial distress, insolvency, and bankruptcy, e.g., [16,22–29]. Existing studies
have attempted to make short-term predictions of the financial distress of construction
companies for less than one year using machine learning methods [23–25]. One study pre-
dicted the financial health of construction companies for two and three years, considering
the long duration of projects [26], which is a common characteristic in the construction
industry. According to the International Contractors Association of Korea, the average
construction period was 4.8 years for large projects [30]. When conventional financial risk
prediction methods select contractors for large construction projects lasting more than five
years, it becomes impossible to predict the overall financial health over the project’s life.
Therefore, prediction models need to predict the short-term and medium-to-long-term
financial distress of construction companies considering the duration of projects.

This study proposes suitable models for predicting the financial distress of construction
companies for three-, five-, and seven-year periods through the use of variables affecting
the company’s financial status after the medium-to-long-term period and to compare
the performance of various prediction models. The financial ratio used in medium-to-
long-term prediction studies in other industries was reviewed, and input variables that
affect the company’s financial status after the medium-to-long-term period were used.
The performance of ensemble models that have been proven to improve the prediction
of medium-to-long-term financial distress in previous studies of other industries. Thus,
prediction models that were used in the studies for the existing construction industry were
compared. The receiver operating characteristic curve (AUC) was used to confirm the
predictability of the medium-to-long-term financial distress of the construction companies,
and the Friedman test was used to verify the performance ranking of the prediction model.

2. Literature Review

This section presents research trends and limitations in financial distress prediction
for construction companies. Because the financial health of a construction company is
considered a major risk factor in construction projects, several studies have used various
methods to predict the financial distress of construction companies. Initially, statistical
methods such as logistic regression (LR) and multiple discriminant analysis (MDA) were
applied to financial distress prediction models [23,27]. Machine learning has recently been
used to predict financial distress. However, as most studies presented prediction models
that considered less than one year or a maximum of three years ahead of the prediction
point, they failed to account for the characteristics of the construction industry, which
comprises numerous projects spanning more than three years.

Previously, a support vector machine (SVM) model was used to predict the financial
distress of construction companies one year ahead of the prediction point [22]. The authors
used financial data of Portuguese construction companies from one year before the pre-
diction year as input variables and constructed datasets by assigning binary class labels
based on company delisting in the corresponding year. The study findings demonstrated
that machine learning models, such as SVM, exhibited superior prediction performance
compared to LR models. Another study used an adaptive boosting model to forecast the
bankruptcy of construction companies one year ahead of the prediction point [25]. The
financial data of Korean construction companies from one year before to the prediction year
were used as input variables. The datasets were constructed by assigning binary class labels
based on bankruptcy filings in the corresponding year. The study findings indicated that
an adaptive boosting model exhibits superior prediction performance compared to other
models, such as an artificial neural network (ANN), SVM, decision tree (DT), and Z-score.

Furthermore, a k–nearest neighbor (KNN) model was used to predict the financial
distress of construction companies one year ahead of the prediction point [28]. The financial
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data of construction companies from one year before the prediction year were used as input
variables. The datasets were constructed by assigning binary class labels based on company
delisting in the corresponding year. The study findings demonstrated that the KNN model
exhibits superior prediction performance compared to other models, such as naïve Bayes
(NB), MDA, LR, and SVM. Thus, prediction models have improved the financial distress
prediction in construction companies. However, as the studies above attempted to predict
for one year or less, the findings did not apply to large construction projects performed
over long periods.

Recently, several studies have attempted to predict the financial distress of construction
companies three years ahead of the prediction point to overcome these limitations. One
used an LR model [29]. Here, the financial data of construction companies from three years
before the prediction year were used as input variables. The datasets were constructed
by assigning binary class labels based on company delisting in the corresponding year.
This study reported an AUC value of 0.76. Another study used a voting ensemble (Vot)
model to predict the financial distress of construction companies three years ahead of the
prediction point [26]. The average values of the financial data of construction companies
from one, two, and three years before the prediction year were used as input variables. The
datasets were constructed by assigning binary class labels based on the special treatment
(ST) in the corresponding year. The study findings demonstrated that a voting ensemble
model exhibits superior prediction performance compared to other models such as NB, LR,
DT, KNN, ANN, and SVM.

Thus, most existing studies have focused on short-term predictions of one year or
less that cannot be applied to medium-to-long-term projects. To overcome these limita-
tions, studies predicting financial distress three years ahead of the prediction point have
verified the potential for medium-term predictions. However, they did not compare the
performance with other prediction models. Moreover, an actual comparison of model
performance is impossible because each study used different data and pre-processing
procedures. To summarize, existing studies on the prediction of financial distress in the
construction industry do not compare the performance of models for predictions of three
years or longer. Consequently, several limitations exist in identifying models with adequate
performance for medium-to-long-term predictions. Therefore, establishing prediction mod-
els that can effectively predict the medium-to-long-term financial distress of construction
companies three years or longer ahead of the prediction point is essential for long-term
projects in the construction industry.

To overcome the limitations of short- and medium-term predictions, we used financial
data to predict the financial distress of construction companies three, five, and seven years
ahead of the prediction point. Moreover, the financial ratios used in existing studies on
predicting medium-term financial distress in other industries were analyzed, and models
that exhibited adequate performance were used for comparison. We analyzed various
prediction models based on single-machine learning and ensemble methods to identify
their potential for predicting the medium-to-long-term financial distress of construction
companies and compared the performance of the prediction models.

3. Methodology
3.1. Data Collection

The present study obtained data on financial information-associated variables from
the Korea Information Service Value and NICE Information Service [17]. This database was
used by Choi et al. [26].

Existing studies on predicting financial distress have defined financial status based
on corporate financial statements. Several studies [31–33] have used the ST definition to
differentiate between financially healthy and distressed companies. The ST definition was
developed in China for early notification of potential financial distress among publicly
traded companies [26,34]. Companies designated for ST subsequently encounter financial
difficulties and legal bankruptcy procedures. Accordingly, the status of companies that
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use ST can be divided into financially healthy and distressed companies [35]. Companies
designated as ST refer to companies with negative corporate net profits for the second
consecutive year, and companies suffer from financial difficulties if their net profit is
negative. These companies cannot carry out construction projects normally if they fail
to resolve financial difficulties and face legal bankruptcy proceedings later because of a
series of problems arising from financial difficulties. Therefore, whether a company suffers
from the ST definition is an important criterion for determining the future state of the
company. Therefore, companies with two consecutive years of negative net income are
financially distressed.

Input variables based on financial ratios were collected for the modeling process of
the machine learning models. Generally, credit analysis is conducted based on information
regarding the current status of companies in industries. In particular, the financial ratio
is applied as an indicator of the current status of companies. Numerous existing studies
have applied the financial ratio to models for predicting the future status of construction
companies (e.g., [23–25]). Thus, this study also adopted the financial ratio derived through
the processes indicated below as an input variable for the modeling process.

To reflect the impact on the financial status of a company after medium-to-long-term
periods, we selected 17 input variables used in previous studies in other industries that
predicted the financial status after more than five years [36–43]. It was verified that the
prediction model applying the selected financial ratio exhibited satisfactory prediction
performance based on five years, with an accuracy of at least 77%. Among the 17 input vari-
ables, 7 are different from the input variables used in previous studies, which predicted the
financial status of companies considering a period of three years or less. Among the seven
input variables, cash/current liabilities, cash flow/total assets, retained earnings/total
assets, assets/equity total, and fixed/total assets were verified as indicators that can affect
the financial status of companies after a long-term period [44–46]. The selected financial
ratios into four categories represent a construction company’s financial characteristics and
performance. Table 1 presents selected financial ratios and their corresponding categories.

Table 1. Input Variable (Financial Ratio).

Variable [42] [40] [36] [41] [38] [39] [43] [37]

Activity Sales/Total Assets O O O O
Sales/Inventory O O O O

Sales/Balance of Accounts Payable O O
Current Liabilities/Total Assets O O O O O O

Leverage Total Liabilities/Total Assets O O O O O
Total Liabilities/Total Shareholders’

Equity O O O

Retained Earnings/Total Assets O O O

Liquidity Current Assets/Current Liabilities O O O
(Current assets—Inventory)/Current

Liabilities O O O O

Working Capital/Total Assets O O O O
Cash/Total Assets O O O O O O

Cash/Current Liabilities O O O
Total assets/Total Shareholders’ Equity O O O

Fixed Assets/Total Assets O O O

Profitability Net Profit/Total Assets O O O O O O O
Net Profit/Sales Revenue O O O

Earnings before Income Tax/Total
Assets O O O O O O O



Buildings 2022, 12, 1759 5 of 15

The financial status of the selected companies was defined based on the procedure
above, and the financial data of Korean construction companies from 2009 to 2018 were
collected to set the input variables. For instance, the dataset for predicting the financial
status of the company three years ahead of the prediction point defined the financial status
based on the net income of 2017 and 2018, whereas the financial ratio from 2015 was used
as an input variable. Moreover, data with missing values during the data collection period
and companies that experienced financial distress between 2015 and 2018 were excluded.
Finally, three datasets representing the financial status of companies three, five, and seven
years ahead of the prediction point were constructed, as presented in Table 2.

Table 2. Number of Data for Each Prediction Year.

Period Number of Companies Output Year Input Year
Normal Distressed

T + 3 661 41 2018 2015
617 25 2017 2014
594 14 2016 2013

Sum 1872 80
T + 5 542 24 2018 2013

527 18 2017 2012
495 9 2016 2011

Sum 1564 51
T + 7 548 38 2018 2011

516 23 2017 2010
480 38 2016 2009

Sum 1544 99

3.2. Synthetic Minority Over-Sampling Technique (SMOTE) for Imbalanced Data

Classification model learning assumes that each class is learned at the same misclassi-
fication cost. Therefore, imbalanced data cause overfitting and underfitting of the majority
and minority classes, respectively. In the three datasets of the medium-to-long-term periods
of financial distress prediction, the ratio of companies in financial to normal distress was
less than 6.5%. Various pre-processing techniques maintain the balance of data by pre-
processing imbalanced data. SMOTE, a pre-processing technique based on oversampling,
does not cause overfitting because it does not replicate the minority class, unlike the other
techniques. This technique does not result in data loss because it does not eliminate the
majority class [26,47]. Therefore, SMOTE was used to handle imbalanced data.

The SMOTE generates minority class samples to balance imbalanced data [48]. This al-
gorithm uses the features of the minority class based on KNN rather than simply replicating
the minority class data. The SMOTE algorithm involves the following steps [49].

Step 1. Samples nearest to the minority class samples (KNNs) were selected (k = 5), as
recommended in a previous study [48].

Step 2. The vectors are created between KNNs.
Step 3. The created vectors were multiplied by a random value between zero and one.
Step 4. New samples are created by adding the average of the vectors multiplied by a

random number to the minority class samples.
Step 5. The steps above were repeated until the majority, and minority class samples

were balanced.
Table 3 presents the datasets comprising balanced data obtained after applying the

SMOTE algorithm.
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Table 3. Number of Data Before and After the Application of SMOTE Algorithm.

Period Ratio Original Pre-Processed

Normal Distressed Total Normal Distressed Total

T + 3 4.2735 1872 80 1952 1872 1872 3744
T + 5 3.2608 1564 51 1615 1564 1564 3128
T + 7 6.4119 1544 99 1643 1544 1544 3088

3.3. Machine Learning Model Building

In this study, machine learning and ensemble techniques were used to compare
the performance of prediction models for predicting the financial distress of construc-
tion companies after a medium-to-long-term period. Machine learning models such as
SVM, multi-layer perceptron (MLP), KNN, DT, and ensemble model Vot are models that
attempted predictions for three years in previous construction industry studies, and predic-
tive performance for medium-to-long term predictions can be expected. Ensemble models
such as adaptive (Boost) and gradient boosting (GB), RS, and stacking ensemble (Stack)
can predict the performance of medium-to-long-term predictions in the construction sector
with models that have attempted to predict over five years in other industries. Therefore,
we analyzed a single-machine learning model and a machine learning ensemble model.
The single-machine learning models and the machine learning ensemble models were
compared. The remainder of this section briefly introduces the prediction models.

3.3.1. Single-Machine Learning Model

Support Vector Machine (SVM) is a widely applied classification model used to solve
binary classification problems [50]. The SVM generates a hyperplane that classifies data in
the feature space of N-dimension, where N is the number of data features. The training data
are mapped to the feature space using kernel parameters to generate the hyperplane. After
that, the classification margin between the two closest datasets with different classes and
the hyperplane was calculated. This procedure updates the parameters of the hyperplane,
and the procedure is completed when the classification margin reaches the maximum.

Multilayer perceptron (MLP) is a back-propagation natural network model used in
many studies to model nonlinear functions [26]. An MLP that imitates a biological brain
derives an output value through a natural network consisting of input, hidden, and output
layers. The perceptron of each layer was randomly assigned a weight. Subsequently, a
binary cross-entropy value used as a loss function in the binary classification problem was
calculated. The loss function is minimized by repeatedly updating the weight through
gradient descent. When the loss function converges, learning is completed.

A decision tree (DT) is a machine learning algorithm created to solve binary classifica-
tion problems. DT is similar to the tree structure of the data structure, which is determined
by splitting the data according to the division rules at the tree node and dividing it into
its leaves. The entropy of classification at the first node was calculated, and the decision
value in the direction of the entropy descents was updated. The learned tree structure is
formed through the recursive split, dividing the data into subsets until all the learning data
are classified.

K-nearest neighbor (KNN) is a nonparametric machine learning algorithm used in
classification and regression problems [51]. The KNN classifier is used for determining the
class to which the data belong based on the similarity of the features in the space. When
the predicted data are mapped to the feature space, the Euclidean distance between all data
in the feature space and the predicted data is calculated. The KNNs were selected based on
the Euclidean distance of each data point. This procedure is completed by determining the
class to which many KNNs belong to the predicted data output.
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3.3.2. Machine Learning Ensemble Classifier

Adaptive boosting (Boost) is a machine learning ensemble algorithm proposed to
improve incorrect classifications. Boost improves predictive performance by combining
multiple base learners using bootstraps. Initially, the Boost assigns the same weight to all
learning data and learns the data through base learners. A larger weight was assigned for
data incorrectly classified in the previous base learner, and the data were learned through
another base learner. This process is known as bootstrapping. Learning is completed
through repetitive bootstraps, and the final decisions determine the data class using the
voting method.

Gradient boosting (GB) is a machine learning ensemble algorithm that numerically
solves incorrect classifications. Like Boost, GB improves predictive performance by com-
bining multiple base learners. The difference is that a boost occurs during the improvement
procedure. GB calculates the loss function that occurs between incorrect classifications and
learning data. The loss function is reduced by updating the parameter in the direction of
the reducing loss function using gradient descent. Learning is completed by repeating the
above procedure, and the final decisions determine the data class using the voting method.

A random subspace ensemble (RS) is an algorithm that adds feature selection to the
bagging ensemble process to improve predictive performance. The RS selects the input
data features according to a predetermined ratio. Randomly sampled input data for which
features are selected to create multiple subset database learners are independently trained
for the generated subset data. The base learner is trained until the error converges, and the
final decisions determine the data class using the voting method.

A voting ensemble (Vot) is an algorithm that combines the base learner’s prediction
method results to improve the predictive performance. Vot combines the base learner’s
prediction results to derive based on probability. Initially, Vot learns all base learners about
the learning data. For the learning data, the class with the highest probability is selected by
averaging the results predicted by the base learner. Because a pre-trained base learner is
used, the above procedure is not repeated.

Stacking ensemble (Stack) is an algorithm of the relearning prediction method results
of the base learner to derive results from improving predictive performance. Stack uses
the base learner’s prediction results, similar combining the prediction results are different.
Initially, Stack learns all base learners about the learning data using the same procedure as
Vot. The meta-classifier re-learns the result value predicted by the base learner. The class
was determined based on the final result value derived from the meta-classifier. Because
a pre-trained base learner is used, the above procedure ends when the meta-classifier’s
learning is completed.

3.4. Hyper-Parameter Optimization

As hyperparameters affect the data learning performance of the model [52], an accurate
determination is essential for effective predictions. To select hyperparameters suitable
for the data used in this study, we applied a Bayesian optimizer tuning it by efficiently
searching the hyperparameter space. This algorithm does not search for all hyper-parameter
ranges; therefore, it can optimize parameters faster than the grid search by requiring less
computational time [53,54]. Moreover, hyper-parameters can be optimized more efficiently
than random search because the search in this algorithm is performed in a sequential
iterative process using a sequential model-based global optimization (SMBO) method based
on prior knowledge. The details of the hyperparameter optimization for the prediction
models are presented in Table 4.
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Table 4. Hyper-parameters of machine learning classifiers.

Prediction Models Hyperparameters Search Range Selected Hyperparameters

3-Year 5-Year 7-Year

SVM C: Penalty log2C ∈
{−5,−4, . . . , 14, 15} 2 4 5

γ: Kernel log2γ ∈
{−15,−4, . . . , 4, 5} −8 −3 −7

MLP Learning rate {0.1, 0.2, . . . , 0.9, 1} 0.2 0.3 0.6
Momentum {0.1, 0.2, . . . , 0.9} 0.6 0.5 0.7

DT Max depth {1, 2, . . . , 49, 50} 26 17 32
Min sample leaf {1, 2, . . . , 49, 50} 1 1 1

KNN K {1, 3, . . . , 47, 49} 5 13 7
Boost N estimators {10, 11, . . . , 499, 500} 52 73 44

Learning rate {0.1, 0.2, . . . , 0.9, 1} 0.2 0.1 0.1
GB N estimators {10, 11, . . . , 499, 500} 75 42 83

Max depth {1, 2, . . . , 31, 32} 6 5 6
RS N estimators {10, 11, . . . , 499, 500} 69 33 152

Max feature {0.1, 0.2, . . . , 0.9, 1} 0.4 0.7 0.4
Vot Base learner single classifier SVM, KNN SVM, KNN, MLP SVM, KNN

Stacking Base learner single classifier SVM, KNN, MLP SVM, KNN, DT SVM, KNN
Meta classifier single classifier SVM SVM SVM

4. Experiments and Results
4.1. Experiments

Data were applied with winsorization, an outlier pre-processing method used in previ-
ous studies to prevent outlier-biased learning [55]. This method can obtain more data than
other outlier elimination methods. Normalization was applied such that there was no differ-
ence in the level at which the features were learned [42,56,57]. In the experimental stage of
this study, single-machine learning and ensemble models selected optimization parameters
that derived the highest accuracy in ten learnings through 10-fold cross-validation and
a Bayesian optimizer. After obtaining the model’s optimization parameter, its predictive
performance was calculated by averaging the performance of the 10-fold cross-validation
model set as the optimization parameter. The 10-fold cross-validation used in this study
is a verification method that can minimize the bias of results [58,59]. The most important
task was to compare the predictive performance to accurately compare the model’s pre-
dictive performance results, which are statistically tested to verify the superiority of the
prediction models.

The experiments in this study used four single-machine learning models (SVM, MLP,
DT, and KNN) and machine learning ensemble models (Boost, GB, RS, Vot, and Stack) to
predict the medium-to-long-term financial distress of construction companies. The experi-
ments in this study were carried out using the Python programming language [60], and the
Python scikit-learn library [61] was used for data processing and implementing the machine
learning models. Figure 1 illustrates the entire framework of the experimental setup.
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Figure 1. Experiment Framework.

4.2. Results

In this section, the predictive performance of the machine learning model is measured,
and the results of statistical tests are discussed.

4.2.1. Performance Measure

Previous studies have demonstrated that the receiver operating characteristic (ROC)
curve can be an excellent tool for evaluating prediction models of financial status [36,62–65].
In the ROC curve, the x-axis is the false positive rate (FPR), and the y-axis is the true positive
rate (TPR) and is drawn while changing the classification threshold from a minimum to a
maximum value. The AUC had a value between 0 and 1 in the area under the ROC curve,
less than 0.5, indicating that the performance of the classifier is less than a random guess.
If it is 0.7 or higher, it shows a predictive performance that can be classified [66,67]. All
classification algorithms use AUC for binary classes (financial normal-0, financial distress-
1). Table 5 summarizes the AUC values of each model for predicting the financial distress
of construction companies.

Table 5. Area Under Curve (AUC) for Each Classifier with Three Different Prediction Years.

Classifier Prediction Year

T + 3 T + 5 T + 7 Average

SVM 0.7395 ± 0.0188 0.7622 ± 0.032 0.7672 ± 0.0261 0.7563 ± 0.0281
MLP 0.651 ± 0.053 0.7191 ± 0.0508 0.7123 ± 0.0526 0.6941 ± 0.0592
DT 0.6097 ± 0.0785 0.6775 ± 0.0463 0.692 ± 0.0349 0.6598 ± 0.0655

KNN 0.7176 ± 0.0564 0.7731 ± 0.0593 0.782 ± 0.0334 0.7576 ± 0.0571
Boost 0.7153 ± 0.0401 0.7156 ± 0.0299 0.7546 ± 0.0308 0.7285 ± 0.0377

GB 0.7236 ± 0.0393 0.7229 ± 0.0385 0.7568 ± 0.0178 0.7344 ± 0.036
RS 0.7412 ± 0.0192 0.7751 ± 0.0535 0.7864 ± 0.0325 0.7675 ± 0.0414
Vot 0.7291 ± 0.0365 0.7836 ± 0.0306 0.7609 ± 0.033 0.7578 ± 0.0395

Stack 0.705 ± 0.0478 0.7584 ± 0.0595 0.7443 ± 0.0349 0.7359 ± 0.0521
The text in bold denotes the best performance for each prediction year and the average performance.

The RS algorithm achieved the best prediction performance, yielding a score of 0.7675
concerning the AUC metric, followed by Vot with a score of 0.7578. In addition to exhibiting
the best performance for the overall average, the RS ensemble showed a high prediction
performance for individual years, ranking first, second, and first for three, five, and seven
years ahead of the prediction point, respectively. The RS ensemble generated significant
results exceeding single-machine learning prediction models. Based on these results, we
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confirmed that the RS algorithm performs better than the other algorithms in predicting
the medium-to-long-term financial distress of construction companies.

4.2.2. Statistical Significance Test

In this study, statistical tests were used to determine significant differences in the
ranking of prediction model performance. The Friedman test analyzes classification algo-
rithms based on the ranking for each dataset [68], and previous studies have compared
the performance of the model. Comparing model performance using the average is not
objective, considering that specific model performance is excessively high for one data fold.
The Friedman test indicates that the ranking of multiple algorithms by comprehensively
considering the performances derived from multiple folds can be evaluated, and the follow-
ing hypothesis is proposed. The null hypothesis (H0) of the Friedman rank test indicates
no difference in the performance of the predictive models.

Conversely, the alternative hypothesis (H1) indicates that at least one prediction
model exhibits a significantly different performance than the other classifiers [69]. This test
examined the differences in the performance of the prediction models through significance
testing. Table 6 summarizes the Friedman rank test results for each model to predict the
financial distress of construction companies.

Table 6. Friedman Rank Test for Each Classifier.

Classifier SVM MLP DT KNN Boost GB RS Vot Stack

Rank 3.49 7.51 8.58 3.12 4.38 3.93 1.60 2.37 5.17

The text in bold denotes the highest ranking of the prediction models.

The results from the Friedman rank test in terms of AUC presented a test statistic
(value) of 5.35× 10−4, which was smaller than the high significance level (α < 0.01). Based
on this statistical test, the Friedman rank test null hypothesis (H0) is rejected, whereas the
alternative hypothesis (H1) is accepted. Therefore, considering the results for performance
in terms of AUC, we concluded that at least one prediction model exhibits significantly
different performance than the others.

The relative prediction ranking of the Friedman test showed a similar order as the
ranking of the mean AUC. According to the results of the Friedman test, the RS algorithm
is a high-performing algorithm in most data folds and ranks 1.60th out of the nine algo-
rithms. From these results, it can be confirmed that the RS algorithm shows good overall
performance in the medium-to-long term and after a specific year prediction.

4.3. Discussion

As mentioned above, this study compared the performance of single-machine learning
and ensemble models in predicting the financial distress of construction companies after
a medium-to-long-term period. It was determined that the RS ensemble model had the
highest AUC in prediction after three and seven years ahead of the prediction point. This
model also exhibited the best performance among various machine learning models in
comprehensive medium-to-long-term prediction evaluations based on the Friedman test.
The second-best prediction performance was exhibited by the Vot ensemble model, which
exhibited satisfactory performance for predicting the financial distress of construction
companies after three years in existing studies. The RS algorithm exhibited the best
performance because the Vot and RS models indicated a difference in the composition
of base learners used for the ensemble and feature selection processes, despite the same
ensemble methods used in these models. Unlike the Vot model, the RS model established
an ensemble model by generating tens to hundreds of base learners, exhibiting the highest
data classification performance. Based on these results, the ensemble models exhibited
outstanding performance in predicting the financial distress of construction companies
after a medium-to-long-term period.
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All ensemble models indicated an AUC value of 0.7 or higher in the overall medium-
to-long-term prediction experiments. Some single-machine learning models indicated an
AUC value of 0.7 or lower. Generally, a model shows predictability for a classification
problem when the AUC value is 0.7 or higher [66,67]. The evaluation results based on AUC
values indicated that ensemble models better predict construction companies’ financial
distress after a medium-to-long-term period than single-machine learning models.

The optimization results of the voting and stacking ensemble showed that the base
learner did not merely select a single classification model with high accuracy. Because
the algorithm’s purpose was to increase the prediction performance by combining single
classification models with low prediction performance, we assumed that combining a single
classification model with high prediction performance would yield the best result. However,
the optimization results confirmed that the DT model was selected as the base learner of
the stacking ensemble even though it performed less favorably than the MLP in terms of
prediction after five years, which implies that even a single classification model with low
accuracy can correct the class “misclassified” by the ones with high accuracy. Therefore,
when constructing an ensemble model, the maximum number of single prediction models
must be considered and optimized to ensure that they complement each other, even if their
accuracies are low.

The results of this study are similar to the results of machine learning model perfor-
mance in various real-life applications of soft-computing studies. Oza and Tumer [70]
reported that ensemble models generally utilize all available classifier information and
can provide more robust solutions than single-machine learning models. Li and Chen [71]
evaluated corporate credit based on an ensemble model and verified that it exhibited better
evaluation performance than single-machine learning models. However, the boosting
models did not perform better than the other ensemble models. These results reveal the
importance of generalized learning ability for outliers, one of the main characteristics of
financial data when predicting medium-to-long-term financial difficulties of construction
companies, which is consistent with the results of previous studies [71,72].

5. Conclusions

In the implementation process of large construction projects, the financial distress of
construction companies is a crucial issue that might affect project stakeholders, such as
investors and subcontractors, and even has a national-level influence. Numerous studies
have been performed to predict the financial status of companies in the construction
industry; however, most of these studies focused on prediction a year after the prediction
point. A few studies predicted the financial status of companies by considering only
three years ahead of the prediction point. The average implementation period for large
construction projects is 4.8 years, and a few large construction projects require a longer
implementation period. In this regard, it can be concluded that predictions based on
three years or less are insufficient to identify the financial status of companies in selecting
a construction company that will be responsible for implementing a large-scale project.
Thus, this study aims to propose suitable models for predicting the financial distress
of construction companies for three-, five-, and seven-year periods through the use of
variables affecting the company’s financial status after the medium-to-long-term period
and to compare the performance of various prediction models.

The main contributions of this paper are as follows:

(1) The proposed prediction method can predict the financial status of construction
companies based on three, five, and seven years ahead of the prediction point by
considering the entire period of large-scale construction projects, which tend to be
conducted for approximately five years on average, ranging from project planning to
completion.

(2) To select input variables for the medium-to-long-term prediction model, this study
utilized 17 financial indicators, which were applied multiple times in previous studies
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on medium-to-long-term prediction in other industries and were verified to affect the
financial status of companies after the period.

(3) By comparing the performance of a single-machine learning model and an ensemble
model, this study demonstrated that the ensemble model generally performs well in
medium-to-long-term predictions.

This study compared the performance of prediction models using data on the financial
status of construction companies in Korea collected from 2009 to 2018. The comparison
result of the RS model exhibited high performance in predicting financial distress for three,
five, and seven years ahead of the prediction point. The results of the Friedman test also
revealed that the RS model was ranked highest for relative prediction performance among
the nine models and that this model exhibited the best performance for comprehensive
medium-to-long-term predictions. These analytical results indicate that the RS model
can provide more accurate information on companies than other prediction models in
evaluating the financial status of construction companies after a medium-to-long-term
period. Consequently, this study proposes an algorithm that generally exhibits excellent
performance. The proposed algorithm can be effectively employed to help large-scale
project stakeholders evaluate the financial status of construction companies after a medium-
to-long-term period during the project planning stage.

Despite the results above, this study had several limitations. This study adopted a
financial ratio, which has been applied in previous studies to predict the financial status of
companies after a medium-to-long-term period, as an input variable. However, external
factors other than the financial ratio can affect companies’ financial status. Thus, in addition
to corporate financial data, it is necessary to consider the use of other construction project
indicators, stocks, and macroeconomics and to analyze the sensitivity of added variables
to identify those having a major impact on the medium-to-long-term financial distress of
construction companies. Moreover, this study used financial data obtained at a certain point
instead of other data types, such as sequential and spatial data. Accordingly, this study
failed to compare the prediction results with those based on the deep learning technique.
In the future, studies should compare predictive performance with more diverse deep
learning and hybrid models and consider using various data such as time series and matrix
types. Finally, in addition to Bayesian optimization, there is an urgency to shorten the
learning optimization time of the model and improve the prediction performance using
hyperparameter optimization techniques such as genetic algorithms.
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