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Abstract: With rapid urbanization, an increasing number of resettlement housing neighborhoods
have been developed in suburbs in China. Such neighborhoods often face problems of spatial
mismatch (jobs–housing and daily life), excessive street scale, and inconvenient transportation,
which directly and indirectly lead to long travel distances and higher travel carbon emissions for
residents. Understanding how to improve the built environment of resettlement housing and thus
influence travel CO2 emissions is essential to guide low-carbon travel and reduce greenhouse gas
emissions. Based on an electronic questionnaire and travel carbon emission measurements collected
in 12 resettlement housing neighborhoods in Nanjing in 2022, this study used a three-group structure
equation model (SEM) to measure the impact of resettlement housing’s built environment on travel
CO2 emissions from commutes, housework trips, and recreational trips. It was found that the
improvement of destination accessibility can significantly reduce the carbon emissions of residents’
trips. Second, the built environment of resettlement housing can affect travel carbon emissions
through mediator variables and direct effects. In addition, these effects show different paths and
sizes depending on the purpose of the travel trip. These results are significant for the planning and
construction of resettlement houses and offer guidance for low-carbon travel.

Keywords: built environment; CO2 emissions; resettlement neighborhood; travel purpose

1. Introduction

Transportation-related greenhouse gas (GHG) emissions, especially CO2 emissions,
are one of the most pressing issues in the context of global warming and climate change [1].
There are three main factors influencing the carbon emissions of urban transport: travel
behavior (e.g., travel distance, travel mode choice), urban space (e.g., urban form, land use,
street design), and transportation carbon technologies (e.g., vehicle technology and fuel
technology) [2–4]. In urban planning, research focusing on improving urban spatial struc-
ture and optimizing land-use patterns, thus reducing travel demand, changing travel
behavior, and reducing carbon emissions to combat climate change, has attracted consider-
able attention [5–7].

Rapid urbanization in China has brought about constant renewal in the city centers
and rapid suburban expansion. Generally speaking, to use land efficiently, houses with
well-positioned locations and convenient transportation but poor living environments
in the city centers have been demolished by the government. The residents have been
relocated to houses in the suburbs, called resettlement housing. As marginalized urban
living spaces, these resettlement housing neighborhoods face problems: spatial mismatch
(jobs–housing and daily life), excessive street scale, and transportation difficulties [8,9].
For example, regarding commutes, John Kain’s spatial mismatch hypothesis suggests that
restricted housing options can limit people’s access to optimum jobs [10], which means more
cars and travel carbon to offset this effect. Another study has shown that street scale and
active travel facilities can impact travel carbon emissions [11]. Moreover, poorer facilities
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and lower accessibility of public service facilities may lead to higher carbon emissions [12].
In addition, several studies on travel carbon emissions at the urban level also show that
people living in suburban areas tend to use more motorcars [13]. Therefore, it is essential to
discuss the impact of built environments in resettlement areas on people’s travel behavior
and carbon emissions.

2. Theoretical Background

Research on the built environment, travel behavior, and carbon emissions from travel
has focused on studying the interaction between the two. Travel behavior, such as travel
mode, distance, purpose, and frequency, influences travel carbon emissions. Among these,
travel mode and travel distance, as the most critical factors, directly affect travel carbon
emissions, while carbon emission factors measured for different travel modes are also
proliferating [14–16]. As for travel purposes, a study in Baltimore found that the built
environment has a different impact on vehicle miles traveled (VMT) and vehicle energy
consumption between commuting and non-commuting trips [17]. A study in Guangzhou,
China, discussed the impact of the built environment of community dimensions on travel
carbon emissions for different trip purposes, including commuting trips, social trips,
recreational trips, and daily shopping trips [15,18]. In addition, the studies concluded that
residents who traveled longer distances had higher travel carbon emissions, while those
who traveled more times in a day and used more low-carbon modes (including walking,
bicycle, bus, and subway) had lower travel carbon emissions [19].

Many studies have examined the relationship between the built environment and
travel behavior, among which Cervero and Kockelman in 1997 first proposed the use of “3D”
to assess the built environment, namely, “density,” “diversity,” and “design” [20]. On this
basis, “destination accessibility” and “distance to transit” were added for the “5D“ [21].
Most research about travel behavior focuses on travel mode choice, travel distance, travel
frequency, and VMT. There are some commonalities, although the conclusions of these
studies are not entirely consistent. For example, in areas with higher population and
building density, due to the proximity of origins to destinations and the prevalence of better
public transportation services, travel distances are likely to be reduced, and travel modes
may shift to non-motorized modes [22]. In terms of trip frequency, the study concluded
that the frequency of non-commute activities decreases primarily with the increasing travel
distance [23]. For personal VMT, a study of the Baltimore metropolitan area concluded
that the residential built environment has a significant impact on VMT for commute
and non-commute trips, primarily in terms of employment density, land-use mixture,
street connectivity, and accessibility [17]. However, the above studies pay little attention to
the environmental costs, such as travel carbon emissions, which are also intimately related
to the urban built environment and residents’ travel [18,24].

From the relationship between built environment and travel behavior, scholars have
started to use travel behavior as a mediator to study the relationship between the built
environment and carbon emissions from travel. In terms of density, Gim’s study on the
international scale concluded that higher population density in high-density built-up areas,
along with compact development in urban cores, reduces travel, indirectly reducing travel
CO2 emissions [25]. Cao and Yang’s study on Guangzhou concluded that residential density
negatively affects CO2 emissions from commuting but positively affects CO2 emissions
from social, recreational, and daily shopping trips [18]. In addition, studies on the non-
linear relationship between density and travel-related carbon emissions have emerged in
recent years. Hong noted that the impact of increasing residential density on reducing travel
carbon emissions would be insignificant when the residential density reaches a certain
level [26]. A study by Liu et al. in Norway pointed out that household transportation
carbon emissions show an inverted U-shape relationship with building density [24].

Diversity is commonly measured using land-use mixture, which significantly impacts
travel carbon emissions. Cervero found that more intensive and higher mixed development
can promote the use of transit and non-motorized modes of travel [21]. A study by
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Liu et al. in Beijing found that residents living in higher land-use mixtures tended to use
“low-carbon” travel modes (i.e., walking, bicycle, bus, and subway) and emit less CO2 on
their daily trips [19]. The Minneapolis-St. Paul Metropolitan Area study by Wu et al. used
the land-use entropy index to measure diversity and concluded that the land-use entropy
index was negatively correlated with travel CO2 emissions over a range of values [27].

Direct research on design and travel carbon emissions remains scarce, and the focus of
relevant studies is still on the traditional effects of road network density and road crossing
density on travel behavior, lacking consideration of walking and cycling environments.
Studies have shown that the slow traffic system, specifically, pedestrian-friendly roadway
design (e.g., traffic calming, sidewalk shading), can reduce car trips and increase walking,
biking, and transit travel [20,23], but there is a lack of discussion on travel-related carbon
emissions. A study in Albuquerque, USA, found that bicycle facilities can increase the
bicycle mode share and reduce the use of driving by influencing those with less cycling
experience. However, this study did not address the impact on travel carbon emissions [28].

Destination accessibility (DA) has an impact on people’s travel behavior. Accessibility is
an important predictor of VMT, car ownership, travel mode choice, and mode share [29,30].
A study in Greater Montreal found that both local and regional accessibility had a statisti-
cally negative association with driving choice and vehicle distance driven by drivers [31].
A study of Guangzhou, China concluded that residents of newly developed urban areas
and remote districts with lower population and employment density, along with poorer
accessibility to facilities and services, produce more CO2 emissions during the workday [12].
However, some studies have argued that an increase in facility accessibility, i.e., a reduction
in the average distance to a facility, may result in more travel demand, and the net influence
is uncertain [23,32].

There is a quantitative relationship between public transport accessibility (PTA) and
travel-related CO2 emissions. Research by Ashik et al. on Dhaka, the capital of Bangladesh,
concluded that a high-quality public transport system and shorter distance to transit stops
could reduce CO2 emissions indirectly by reducing car ownership [33]. A study in Beijing,
China, concluded that residents with higher retail density, subway accessibility, and low-
speed street density tend to emit less CO2 in their daily travel [19]. There are also research
findings that public transit services have no quantitative relationship with travel-related
CO2 emissions. A study in Beijing and Xi’an concluded that metro stations within 500 m
of the household location were not statistically significant in reducing commuting CO2
emissions [13].

It is worth mentioning that the variation in findings across studies for the same
variables has been attributed to “Residential self-selection (RSS)”. RSS refers to people’s
choice of residential location based on travel demand, travel ability, and travel preference.
For example, residents who prefer to travel by walking choose to live in a walkable envi-
ronment rather than a non-walkable environment, creating residents who like walking [34].
Along with the changing housing supply market and affordability of residents, a growing
number of studies have considered residential self-selection. For our research, however,
unlike commercial housing, the housing locations and environments are built by government-led
construction in resettlement housing residential locations, which means residents have a
smaller degree of RSS. Therefore, this study did not include RSS as a point of discussion.

The aforementioned studies did not consider resettlement housing. Furthermore, their
focus was primarily on general residential areas, most of which were in main city areas.
For instance, a study in Beijing and Xi’an, China, concluded that residents living in the
outer suburbs had the lowest travel CO2 emissions, while those living in the inner suburbs
had the highest travel CO2 emissions [13], which did not involve the classification of
residential spaces and populations. However, even for suburban residential neighborhoods,
travel mode choices are often related to residential self-selection effects and affordability,
especially for ordinary commercial housing. The results for resettlement neighborhoods,
government-led construction, and less selective locations are often not representative.
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In conclusion, although existing studies discuss the relationship between the built
environment, travel behavior, and travel-related carbon emissions, they primarily focus on
discussing ordinary residential neighborhoods in main city areas. Taking Nanjing city as a
case study, we investigated the relationship between the built environment, travel behavior,
and travel carbon emissions around the three issues of resettlement housing neighbor-
hoods. A three-group structural equation model (SEM), grouped by commutes, housework
trips, and recreational trips, was used to analyze the direct effects (DE), indirect effects
(IE), and total effects (TE) of research content. The built environment was divided into
density, diversity, satisfaction with slow traffic system (SSTS), destination accessibility (DA),
and public transport accessibility (PTA). Among these, SSTS represents residents’ feelings
about the street scale, DA shows the spatial mismatch of neighborhoods, and PTA indicates
the convenience of travel. This is the difference between our research and similar studies.

The remainder of this paper is structured as follows: The second section presents the
data, methodology, and theoretical framework. The model results are explained in the third
section. The last section discusses the main conclusions of the study and the corresponding
policy recommendations.

3. Materials and Methods
3.1. Study Area and Neighborhoods Surveyed

The city of Nanjing was used as the case city in this research. Unlike Western countries,
China’s suburban residential resettlement pattern tends to place demolished residents,
poor people with housing difficulties, and people with relatively low incomes in suburban
areas [35]. The same pattern exists in Nanjing, the capital of Jiangsu Province and the core
city of China’s Yangtze River Delta economic zone (Figure 1). With the accelerated renewal
process of the old city and the continuous expansion of urban space, the scale of resettle-
ment housing construction in Nanjing has gradually increased since 2002. The completed
area of affordable housing, mainly resettlement houses and public rental houses, has in-
creased from 0.2 million square meters in 2002 to 2.08 million square meters in 2020. Twelve
resettlement neighborhoods were selected based on different construction years, locations,
and built environments for our study. Their locations are shown in Figure 2. The construc-
tion year and built environment indicators of each neighborhood are shown in Table 1. As
can be seen from the table, the year of construction of the 12 resettlement housing neighbor-
hoods are all after 2000. Among them, a greater number of neighborhoods were built from
2003 to 2007, which is consistent with the period of large-scale construction of affordable
housing in Nanjing. It is worth mentioning that the construction of resettlement housing in
Nanjing generally takes the pattern of batch construction, which means differences in the
geographical location and the built environment of resettlement house neighborhoods in
different construction years. For example, Lian Hua Xin Cheng, built in 2000, is located in
the southwest of the main city of Nanjing, which has a higher population density, better
facilities for daily life, and public transportation. As for the building form, most of the build-
ings before 2008 were multistory apartments, while the resettlement housing complexes
built after 2008 were high-rise apartments. To ensure the representativeness of the surveyed
neighborhoods for built environment indicators, our research used population density
(PD), land-use mixture (LUM), distance to the nearest metro station (DTMS), and bus stop
density (BSD) for 12 resettlement housing communities. The neighborhood nearest to the
city center (No. 12) had the highest population density in the survey, and the one located
on Nanjing’s Jiangxin Island (No. 09) had the lowest population density. Regarding land
use, Xian Lin Xin Cun, located in Xian Lin university town and 15 km from the city center
(Xinjiekou), has the lowest mixture of land use; Jia He Yuan, with the highest mixture of
land use, is 5.5 km from Xinjiekou, with ample commercial facilities around the community,
including Wanda Plaza, Suning Huigu, and other commercial shopping squares. More
than half of the neighborhoods are within 1.5 km of the path distance from the subway
station, and the average density of bus stops is 5.5/km2. In general, represented by PD,
LUM, DTMS, and BSD, there are some differences in the built environment of these 12
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resettlement housing neighborhoods. The diversity of the built environment makes it more
beneficial to quantify the impact of the built environment on travel-related CO2 emissions
in Section 4.
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Table 1. Basic characteristics of surveyed neighborhoods.

ID Name Year of Construction Building
Form PD LUM DTMS BSD Valid

Samples

01 Lian Hua Xin Cheng
2000 (Jia Yuan)
2005 (Bei Yuan)

2012 (Nan Yuan)
HA 10,010.83 0.19 627.67 6.80 32

02 Xian Lin Xin Cun 2001 MA 6676.29 0.16 879.00 9.95 28

03 Bai Shui Qian Cheng,
Bai Shui Jia Yuan

Shang Shui Fang (2003)
Chun Shui Fang (2003)
Bai Shui Jia Yuan (2004)
Yun Shui Fang (2007)

MA 7029.53 0.24 1754.50 3.98 26

04 Yin Long Hua Yuan 2004 (Phase I)
2005 (Phase II) MA 6355.23 0.18 4462.00 2.99 31

05 She Shan Xing Cheng 2005 (Ting Zhu Yuan)
2007 (Shang Ju Yuan) MA 3387.50 0.22 1253.00 5.97 48

06
Dai Shan Qi Xiu Bei
Yuan, Dai Shan Qi

Xiu Nan Yuan

2008 (Bei Yuan)
2010 (Nan Yuan) HA 3126.14 0.18 986.00 6.22 36

07 Jia He Yuan 2009 HA 7520.09 0.27 572.00 7.96 39

08 Sheng He Jia Yuan 2012 HA 2678.14 0.18 2962.00 4.48 29

09 Zhou Dao Jia Yuan,
Zhou Dao He Yuan

2014 (Zhou Dao Jia Yuan)
2015 (Zhou Dao He Yuan) HA 1361.86 0.24 3539.50 2.49 42

10 Ding Jia Zhuang Hui
Jie Xin Cheng 2016 HA 5104.24 0.18 3215.00 4.48 52

11 Qin Wan Jing Yuan 2017 HA 4245.36 0.18 945.00 3.98 27

12 Yu Dao Jia Ting 2020 HA 34,165.59 0.17 542.00 6.97 28

Note: HA is high-rise apartments; MA is multistory apartments; population density (PD) is measured in
10,000 persons/km2; distance to the nearest metro station (DTMS) is measured in km; bus stop density (BSD) is
measured in counts /km2.

The survey was conducted in June and July 2022. We used an electronic questionnaire
for sample selection using random face-to-face sampling on the street. The question-
naire included three aspects of travel behavior, neighborhood built environment scores,
and personal socioeconomic attributes. Finally, 424 questionnaires were collected, and 418
valid questionnaires were obtained after data collation. In addition, each questionnaire
was collected for three trip purposes: commute, housework trips and recreational trips,
which received 409, 365, and 339 valid origin–destination (OD) data separately, totaling
1113 travel data. Details of the individual socioeconomic attributes of the sample are shown
in Table 2. The sample was generally balanced in terms of gender distribution, with the
largest age group amount being the 30–40 year-old range and more than 50% of respon-
dents having education below a bachelor’s degree. Over 77% of respondents reported a
household size of three or more, while nearly three-quarters had only one to two employed
persons in their families. Occupations were widely distributed, with the largest number
of groups being corporate management/technical employees and corporate logisticians;
more than 80% of residents had a monthly personal income of less than CNY 10,000 (official
currency of the People’s Republic of China); nearly 70% of residents owned private cars,
but only 10% of respondents said they preferred to travel in cars.
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Table 2. Distribution of socioeconomic attributes for sample.

Variable Level Frequency Percentage

Gender
male 180 43.06%
female 238 56.94%

Age

≤20 7 1.67%
20–30 130 31.10%
30–40 131 31.34%
40–50 89 21.29%
50–60 44 10.53%
>60 17 4.07%

Household size
1–2 94 22.49%
3–4 257 61.48%
≥5 67 16.03%

Employed size in
household

1–2 309 73.92%
3–4 103 24.64%
≥5 6 1.44%

Any child under 18 Yes 220 52.63%
No 198 47.37%

Education
Senior high school and below 99 23.68%
Junior college 119 28.47%
Bachelor/Master degree 200 47.85%

Occupation

Government or institutional employees 54 12.92%
Corporate management/technical
employees 122 29.19%

Corporate logistics employees 71 16.99%

Service industry employees 35 8.37%
Self-employed 15 3.59%
Freelancers 57 13.64%
Students 14 3.35%
Non-working/retired 50 11.96%

Length of residence

Less than 1 year 52 12.44%
1–3 years 89 21.29%
3–5 years 74 17.70%
5 years or longer 203 48.56%

Personal monthly
income

≤2500 CNY 58 13.88%
2500–5000 CNY 138 33.01%
5000–10,000 CNY 141 33.73%
10,000–15,000 CNY 52 12.44%
15,000–20,000 CNY 16 3.83%
>20,000 CNY 13 3.11%

Car ownership

0 car 118 28.23%
1 car 258 61.72%
2 cars 37 8.85%
>2 cars 5 1.20%

Preference for car
travel

Yes 39 9.33%
No 379 90.67%

Bike/E-bike
ownership

Yes 332 79.43%
No 86 20.57%

3.2. Variables and Data

The data in this study were divided into individual travel behavior, travel carbon
emissions, and built environment. The sources of data and their characteristics are described
as follows:
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3.2.1. Travel Behavior

According to the addresses of residential neighborhoods and three types of travel
destinations obtained from the questionnaire, the corresponding latitude and longitude
were collected through the Amap open platform geocoding application programming
interface (API). The surrounding search API was used to correct the unclear addresses
through the Python program. The final travel OD flows were obtained as shown in
Figure 3. Respondents’ workplaces were concentrated in the city center, but relatively
evenly distributed overall. Similarly, recreational destinations were mostly located in the
city center, but with a more obvious trip centripetal. Housework destinations were mostly
distributed around the residential neighborhood, and there were a few long-distance trips.
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The individual travel distances were obtained through the route search API of the
Amap open platform based on the longitude and latitude of the travel origin and destina-
tion, which is more accurate than using the straight-line distance to characterize the travel
distance. As for the travel modes, we took six types of travel modes commonly used by
residents in China: walking, bike (including private and public bikes), e-bike, bus, subway,
and car (including private car, taxi, and car-hailing services). Among the six travel modes,
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all except the car were defined as low-carbon travel modes, which is consistent with the
definition of related low-carbon travel studies [19,36,37].

It is worth mentioning that although vehicle energy transitions are included as an
important study in some low-carbon travel studies, our research does not make a distinction
based on the difference in energy use by motor vehicles. There are two reasons for this:
first, according to the Nanjing Statistical Yearbook 2021, by the end of 2020, the number of
cars in Nanjing was 1,737,600, of which 54,200 were new energy vehicles (including electric
cars and hybrid power cars), accounting for only 3% of the total [38,39]. High-carbon
emission vehicles powered by fossil fuels still remain the primary choice for people with
small cars. Therefore, to simplify the calculation, the car mode discussed in this research
includes cars of various energy sources.

The percentage of travel mode and the average distance of travel for the three travel
purpose samples are shown in Figure 4. For commuting, the most popular travel mode
used by residents of resettlement house neighborhoods was e-bikes, accounting for more
than one-third of the commute sample, followed by cars and subways, accounting for 20%
and 18%, respectively. The average travel distance for the commuter sample was 10.11 km,
the highest percentage of e-bike travel was lower than the total sample at 7.06 km, and the
subway had the farthest average travel distance at 16.23 km.

Housework travel was dominated by walking (48%) and e-bikes (28%), with an overall
average travel distance of 2.68 km. The average distance for all six modes of household
travel was lower than the average travel distance in commute. The subway (7.22 km) was
at the top of the list of average travel distances, while buses (6.67 km) and cars (6.46 km)
had travel distances close to the subway. It can be seen that a higher proportion of people
choose low-carbon travel modes for housework trips, but there are some motorized trips
with slightly longer travel distances.

For recreational trips, cars (including taxis) (30%), e-bikes (25%), and subways (22%)
were dominant. The average travel distance for recreation was 8.52 km, between the
average commute distance and housework trips. Among them, the subway still had the
longest average travel distance, reaching 13.07 km, but was lower than the average travel
distance for commutes.

For all six modes, walking (48%) accounted for the highest percentage of housework
trips, e-bikes (34%) were used for the highest percentage of commutes, and cars (30%)
tended to be used more for recreational trips. The proportion of bikes for the three travel
purposes was basically equal, and the ratio of bus and subway use was closer for com-
mute and recreation, which shows that the people using these three modes are more fixed.
The difference in travel mode choice between the three travel purposes may be related to the
varying demands of residents. Studies show that people care more about travel time and
efficiency when traveling [40]. Not only can e-bikes move faster on congested city streets
during peak hours in the morning and evening, avoiding the crowds of public transporta-
tion, but they are also more physically efficient than walking and biking. For housework,
as shown in Figure 3, residents’ housework travel destinations were generally located
around their homes, as it is more convenient to walk and e-bike. Those residents who
make recreational trips prefer to travel by car with a higher level of comfort. In addition,
even if the comfort level is inferior to the car, people are willing to travel by e-bike due to
the convenience, compact size, and money-saving features, as well as people’s preference
in travel mode. Overall, there are differences in travel mode choices for different travel
purposes, which provides a theoretical basis for the subsequent research in this study using
travel mode as a mediator variable.
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3.2.2. Travel-Related CO2 Emissions

Referring to existing studies involving carbon emissions from travel [12,13,19,41,42],
we applied the following formula to calculate the personal CO2 emissions from a single
trip of the sample:

Carbon = D × EFm

where: Carbon denotes personal CO2 emissions for a single trip (kgCO2/Person), D indicates
travel distance (Km), and EFm. is the travel emissions factor based on different travel modes
(kgCO2/ PKM). Even if a single trip involved more than one travel mode, to simplify the
calculation, we took the main travel mode for a single trip mode. The main travel mode
here refers to the mode that residents used for the longest distance in a single trip, and we
asked respondents to choose it in the questionnaire. In addition, according to Wallner et al.,
when residents use cars to commute on a single trip, they usually do not use active travel
and public travel modes at the same time [43]. Moreover, when public transportation is the
main mode, people walk between public transportation stations, and in most conditions,
use only a single public transportation service [43]. In fact, when residents mix non-
motorized and motorized modes, the distance for motorized travel is usually longer than
that of non-motorized travel. Therefore, the main travel mode was selected for carbon
emission calculation in our research.

For relevant studies that considered travel CO2 emission factors, most European
and American countries used their own national traffic travel data to make calculations.
However, for China’s research, scholars have mostly used an earlier carbon emission factor
or foreign carbon emission factor to make calculations. A study on Portland used travel
emission factors sourced from the U.S. Energy Information Administration, Oregon Metro
Regional Transit Plan, and U.S. Environmental Protection Agency [44]; a study of GHG
from commuting to Spanish universities used emission factors from the Annual Report
of the Public Transport Authority of Madrid Region [41]. For China, Yang et al. used
the 2008 study by Entwicklungsbank on the carbon emissions of transportation in China,
involving passenger cars (taxi), urban bus, coach, and metro, without considering the
e-bike, which is commonly used by Chinese people nowadays [15,45]; Liu et al. pointed out
the lack of official and consistent carbon emission factor measurements for each travel mode
in China, and after comparing reports published by a profit-oriented company, they used
the EU’s TREMOVE baseline model for carbon analysis in Beijing [19]. In our research,
we used the Beijing carbon emission factors in 2022 from the “Beijing Low Carbon Travel
Carbon Emission Reduction Methodology (Trial Version)” for calculation. The document
was jointly researched and drafted by the “Beijing combat Climate Change Management
Affairs Center” and the “Beijing Institute of Transportation Development”. Compared with
the carbon emission factors used in the European and American studies, this value is a
relatively accurate measure of the carbon emissions in the Chinese scenario. The travel
emission factors for the six modes are shown in Table 3.

Table 3. CO2 emission factors per mode.

Travel Mode CO2 Emission Factor (kgCO2/PKM)

Walk 0
Bike 0

E-bike 0.012
Bus 0.067

Subway 0.039
Car 0.238

To examine the validity of the sample, empirical cumulative distribution function
(ECDF) curves were drawn to describe the distribution of CO2 emissions for the total
sample, and the subsamples with different trip purposes, based on the measured carbon
emissions of the residents for a single trip (Figure 5). As shown in the figure, the total
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cumulative carbon emissions from housework travel were the lowest, while the cumulative
carbon emissions from commute were the highest. The structure of carbon emissions shows
that over 80% of housework travel had zero cumulative carbon emissions. However, com-
pared to the total sample, commute and housework travel, the ECDF curve for recreational
travel shows an earlier increase, indicating residents generally produced more carbon
emissions during recreational trips. Even though there are some differences in the curves
between the total sample and the three subsamples, there are inflection points when the
ECDF is located around 0.8, implying that 20% of the residents produced up to 80% of
the CO2 emissions, which is similar to the study of Guangzhou, China by Yang et al. [15],
indicating that this data distribution can be used for subsequent quantitative analysis.
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Table 4 shows the mean and analysis of variance (ANOVA) results for travel carbon
emissions based on socioeconomic attributes and travel modes. The mean value in each
row is the result of group average calculations based on different socioeconomic attribute
groups. ANOVA was carried out using IBM SPSS Statistics 26. Specifically, men had higher
average travel carbon emissions than women, except for housework trips. The highest
carbon emissions from commuting were generated by residents aged 40–50, with a mean
value of over 1 kg of carbon emissions from a single trip. Residents aged 30–40 had higher
carbon emissions from housework trips, while residents aged 50–60 had higher carbon
emissions from recreational trips. Regardless of the purpose of the trip, people with lower
monthly personal incomes also had lower carbon emissions when they travelled. The more
cars owned by a family, the higher the carbon emissions of their travel. In addition, residents
who preferred cars and those who chose cars to travel had higher carbon emissions.

ANOVA analysis was used to see if the differences in travel carbon emissions differed
between groups with different socioeconomic attributes and travel modes. The results are
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shown in Table 4. For CO2 emissions from commuting, differences in gender, monthly
personal income, car ownership, preference for small car trips, and travel mode were signif-
icant. For housework trips, the difference in travel carbon emissions was significant in the
preference for car travel and modes. For recreational trips, there were significant differences
between groups for car ownership, preference for car travel, and modes. In summary,
the difference in travel-related CO2 emissions due to personal socioeconomic attributes
was smaller compared to the difference in carbon emissions due to mode preference and
choice. There were differences in travel-related CO2 emissions among different groups and
modes for the three travel purposes. The specific differences will be further analyzed in the
results of SEM.

Table 4. Travel-related CO2 emissions based on socioeconomic attributes and travel mode.

Variable Level
Commute Housework Recreation

CO2
(kg) ANOVA CO2

(kg) ANOVA CO2
(kg) ANOVA

Gender
male 1.07 6.6 (0.011) 0.19 0.06 (0.808) 0.84 0.25 (0.617)
female 0.68 0.21 0.78

Age

≤20 0.25 1.35 (0.243) 0.11 0.51 (0.768) 0.45 0.63 (0.678)
20–30 0.78 0.18 0.76
30–40 0.93 0.26 0.91
40–50 1.11 0.18 0.76
50–60 0.51 0.15 0.94
>60 0.60 0.02 0.46

Personal
monthly
income

≤2500 CNY 0.46 2.20 (0.053) 0.08 0.83 (0.527) 0.53 1.43 (0.214)
2500–5000 CNY 0.67 0.18 0.80
5000–10,000 CNY 1.02 0.28 0.79
10,000–15,000 CNY 1.04 0.21 0.98
15,000–20,000 CNY 1.38 0.07 1.39
>20,000 CNY 1.28 0.26 0.69

Car ownership

0 car 0.40 7.39 (0.000) 0.09 1.42 (0.236) 0.53 3.65 (0.013)
1 car 0.95 0.23 0.85
2 cars 1.38 0.29 1.18
>2 cars 2.48 0.21 1.60

Preference for
car travel

Yes 2.29 38.88 (0.000) 0.59 14.56 (0.000) 1.40 10.44 (0.001)
No 0.71 0.16 0.74

Travel mode

Walk 0.00 93.92 (0.000) 0.00 88.84 (0.000) 0.00 72.02 (0.000)
Bike 0.00 0.00 0.00
E-bike 0.08 0.03 0.08
Bus 0.72 0.45 0.68
Subway 0.63 0.28 0.51
Car (including taxi) 3.02 1.54 2.05

3.2.3. The Features of the Built Environment in Neighborhoods

In contrast to the traditional “5D” factors, five categories of variables were used in our
research: density, diversity, satisfaction with slow traffic system (SSTS), destination accessibility
(DA), and public transport accessibility (PTA). The following are detailed data sources:

Density. Population density was used for the study. Data were obtained from World-
pop’s open dataset and analyzed using ArcGIS to obtain the corresponding population
density data for every sample’s residential neighborhood. The year of data was 2020.
(https://www.worldpop.org/, accessed on 19 July 2022).

Diversity. The land-use mixture was used to characterize the diversity index by
extracting different types of points of interest (POI) within an 800m radius of the sam-
ple residential neighborhood, including restaurants, shopping, parks, education, culture,
medical and sports, and calculated by using the entropy index proposed by Cervero in
1989 [46]. The formula is:

Entropy index = −∑(pij ln pij)/ ln Nj

https://www.worldpop.org/
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where: pij is the proportion of type i POI points in neighborhood j and Nj is the number of
POI types in neighborhood j.

Satisfaction with slow traffic system (SSTS). The slow traffic system variables used
in this study provided subjective scores for walking and cycling environments from both
safety and comfort perspectives, including sidewalk flatness, sidewalk shading, safety of
bike lanes, and the convenience of shared bikes. The related questions were set using
a 5-point Likert scale, with a score of “1” indicating “very poor” and “5” indicating
“very good,” and the survey was conducted along with the electronic questionnaire.

Destination accessibility (DA). In this study, the density of daily shopping, regional
shopping centers, educational facilities, and sports facilities were used to measure DA [47,48].
The data above were measured by the corresponding POIs within an 800 m radius around
the living location.

Public transport accessibility (PTA). The density of bus stops (number of bus stops
within an 800 m radius of living location/area) and the subway stations nearby (availabil-
ity of subway station entrances and exits within 800m radius of the residential neighbor-
hood) were used to reflect the accessibility of public transport in neighborhoods.

The summary statistics of travel variables and built environment variables used in
this study are shown in Table 5. The average subjective satisfaction score of the slow
traffic system was around 3.5, indicating that the setting of slow traffic facilities around the
research area still requires improvement. The four variables measuring DA had a low mean
value, except for the density of daily shopping, and some densities were 0 counts/km2,
demonstrating the poor DA of resettlement housing neighborhoods. The mean value for
the subway stations nearby in PTA was 0.51. Due to it being a dummy variable, this value
means almost half of the neighborhoods in the sample do not have a subway station nearby.

Table 5. Summary statistics of travel and built environment variables (N = 1113).

Variable Grouping Variables Mean Std. Dev. Min Max

Travel behavior

Travel mode 3.49 1.77 1 6
Travel purpose 1.94 0.82 1 3
Travel CO2 emission 0.62 1.23 0.00 13.99

Built environment

Density Population density (10,000
people/km2) 0.70 1.01 0.03 10.44

Diversity Land-use mixture 0.21 0.03 0.13 0.32

Satisfaction with slow
traffic system

Sidewalk flatness 3.61 1.04 1 5
Sidewalk shading 3.58 1.12 1 5

Convenience of shared bikes 3.46 1.29 1 5
Safety of bicycle lanes 3.34 1.24 1 5

Destination accessibility

Density of daily shopping
(counts/km2) 18.78 17.37 0.99 97.48

Density of regional
shopping centers
(counts/km2)

5.47 4.55 0.00 17.41

Density of education
facilities (counts/km2) 2.72 1.57 0.00 7.96

Density of sports facilities
(counts/km2) 3.25 4.20 0.00 18.40

Public transport
accessibility

Density of bus stops
(counts/km2) 5.10 2.11 1.49 10.95

Subway stations nearby 0.51 0.50 0 1

3.3. Theoretical Framework and Model

Based on the existing research, our research proposed the theoretical framework shown
in Figure 6. According to the second part of this study, the built environment and personal
socioeconomic attributes impact people’s travel behavior and travel carbon emissions.



Buildings 2022, 12, 1718 15 of 23

However, in most studies on travel carbon emissions, the analysis of travel behavior as
a mediator variable is insufficient. Most research only explores the direct effect of the
built environment on travel behavior or travel carbon emissions, which is not conducive to
guiding urban planning and renewal. In this study, using the travel mode as a mediator and
different travel purposes as subsamples, we explored the built environment’s mediating
effects and direct effects on travel-related CO2 emissions. Both the built environment
and socioeconomic attributes were set as exogenous variables of the model (Figure 6).
Furthermore, because the unordered categorical variable was not suitable as a mediator
variable in SEM, we classified six travel modes into zero-carbon (walking, bike), medium-
carbon (e-bike, bus, and subway), and high-carbon (car) travel modes. The classification
was based on the carbon emission factors of each mode. Finally, the classification was
brought into the model as an ordered categorical variable.
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Figure 6. Theoretical framework of SEM.

Analysis was conducted using SEM and AMOS software (version 26). SEM calculated
the direct, indirect, and total effects of the built environment on travel-related CO2 emis-
sions. The SEM involves the measurement model, defining the linear relationship between
the latent variable and observed variable, and the structural model, analyzing the causal
relationship between latent variables. Since the discussion of SSTS and DA involved latent
variables, the measurement model was used. The research concerns the direct, indirect,
and total effects of the built environment on travel CO2 emissions; therefore, SEM was
suitable for the study. It is worth mentioning that most studies only use the observed
variable to represent one aspect of built environment characteristics, while this study’s
SEM sets SSTS and DA as latent variables. Each latent variable consisted of four observed
variables. It was possible to discuss the impact of the built environment with multiple
factors on travel carbon emissions.

4. Results and Discussion
4.1. Goodness-of-Fit for Structural Equation Models

The reliability and validity of the data were first analyzed before modeling, followed
by confirmatory factor analysis (CFA) of the measurement model, and finally, adjusting
the appropriate measurement model to bring it into the structural model. The Cronbach’s
alpha value for the data was 0.905, which is higher than the acceptable standard of 0.7,
which means the data has good reliability. The Kaiser–Meyer–Olkin (KMO) value of the
data was 0.882, with a p-value of less than 0.001, indicating good data validity. In statistics,
these two values are usually used to demonstrate whether the data have good validity or
not [49]. We calculated them in the IBM SPSS Statistics 26.

Since the original data does not obey multivariate normal distribution, if the maximum
likelihood estimation was used, it would lead to bias in the model results; therefore,
the Bollen–Stine bootstrap estimation method was used in this study [18,50], and the
sample size of the bootstrap was set to 1000. Based on different trip purposes, we divided
the total sample into three subsamples of commutes, housework travel, and recreational
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travel to establish three SEM models. The model fit indices are shown in Table 6, with all
indicators showing a good fit between the model and the sample data.

Table 6. The model fit indices for the SEM.

Model Fit Index Reference
Value

Model 1:
Commute
Model

Model 2:
Housework
Model

Model 3:
Recreation
Model

Chi-square (χ2) - 228.244 153.867 180.715
Degrees of freedom (df) - 92 79 89

Goodness-of-Fit Index (GFI) >0.9 0.947 0.954 0.947
Comparative Fit Index (CFI) >0.9 0.955 0.971 0.967
Root Mean Square Error of
Approximation (RMSEA) <0.08 0.06 0.051 0.055

Figure 7 illustrates the path diagrams for the three models, involving variables such as
the built environment of resettlement neighborhoods, travel mode, travel carbon emissions,
and socioeconomic attributes. The path relationships of the three models were similar
but differed in some way due to removing paths and variables that were not statistically
significant, and the modified model was re-estimated in each case. This also indicates that
residents’ carbon emissions from travel are influenced by different factors when travel
purposes are different.
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4.2. Results for SEMs

Table 7 shows the three models’ standardized direct and total effect coefficients.
Travel mode as a mediator variable in all models has a significant positive effect on travel
carbon emissions.

Table 7. Standardized direct and total effects of three models.

Variables Effect
Model 1: Commute Model 2: Housework Model 3: Recreation

Travel
Mode CO2

Travel
Mode CO2

Travel
Mode CO2

Population density
TE - - - - - −0.117 *
DE - - - - - −0.104 **
IE - - - - - −0.013

Land-use mixture
TE - - - - - −0.163 ***
DE - - - - - −0.111 **
IE - - - - - −0.053

Satisfaction with slow traffic system
TE - −0.130 *** - - - -
DE - −0.090 ** - - - -
IE - −0.040 - - - -

Destination accessibility
TE - −0.172 *** −0.157 ** −0.178 *** - -
DE - −0.118 ** −0.157 ** −0.090 - -
IE - −0.055 - −0.088 ** - -

Density of bus stops
TE −0.153 *** 0.080 * - - −0.325 *** −0.325
DE −0.153 *** 0.169 *** - - −0.325 *** 0.103 *
IE - −0.089 *** - - - −0.210 ***

Subway stations nearby
TE - - - - −0.396 *** −0.246 ***
DE - - - - −0.396 *** 0.010
IE - - - - - −0.257 ***

Travel mode
TE - 0.582 *** - 0.560 *** - 0.648 ***
DE - 0.582 *** - 0.560 *** - 0.648 ***
IE - - - - - -

Age
TE 0.102 ** 0.076 ** - - - -
DE 0.102 ** 0.016 - - - -
IE - 0.060 ** - - - -

Personal monthly income
TE 0.113 ** 0.079 * - - - -
DE 0.113 ** 0.014 - - - -
IE - 0.066 ** - - - -
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Table 7. Cont.

Variables Effect
Model 1: Commute Model 2: Housework Model 3: Recreation

Travel
Mode CO2

Travel
Mode CO2

Travel
Mode CO2

Car ownership
TE 0.160 *** 0.161 *** - - 0.123 ** 0.148 **
DE 0.160 *** 0.068 ** - - 0.123 ** 0.068
IE - 0.093 *** - - - 0.080 **

Preference for car travel
TE 0.331 *** 0.263 *** 0.154 ** 0.179 *** 0.171 *** 0.139 **
DE 0.331 *** 0.070 0.154 ** 0.093 * 0.171 *** 0.028
IE - 0.193 *** - 0.086 ** - 0.111 ***

Note: Significance levels for direct and total effects are bootstrap approximations. Bootstrap replications = 1000.
The p-value indicates significance, ‘p < 0.1’ indicates a statistical correlation between the variables, and a smaller
p-value indicates a greater statistical correlation, where ‘*’, ‘**’, and ‘***’ mean ‘p < 0.1’, ‘p < 0.05’, and ‘p < 0.01’.
TE is total effects; DE is direct effects; IE is indirect effects.

4.2.1. Direct Effects of the Built Environment and Socioeconomic Attributes on Travel Mode

In terms of travel mode choice, a combination of the three models shows that the
built environment has different significant impact factors for different travel purposes.
For the commutes, the higher the density of bus stops, the lower the probability of residents
choosing high-carbon (car) travel. This finding is similar to the study by Ding et al. for the
Washington metropolitan area, which concluded that BSD significantly negatively impacts
car ownership [51]. This implies that the more bus stops a place has, the fewer cars will be
owned, and the less car travel will take place [51]. For housework travel, the significant
positive impact of DA, composed of the density of daily shopping, regional shopping
centers, education facilities, and sports facilities, will be on the choice of low-carbon travel
mode. People who made recreational trips were more likely to be influenced by the density
of bus stops (−0.325) and the subway stations nearby (−0.396), with the coefficient of the
model results showing that the degree of impact of both was almost equal. In addition,
population density and land-use mixture were insignificantly correlated with mode choice
for all three trip purposes, with similar studies concluding that density and mixed land
use have little impact on mode choice [20,52]. The increase in BSD had a higher impact
on the choice of mode of recreational travel (−0.325) than commuting (−0.153). That is to
say, the mode of recreational travel is more likely to be influenced by the accessibility of
public transport.

For personal socioeconomic attributes, age, personal monthly income, car ownership,
and preference for car travel had varying degrees of influence on people’s travel mode
choice, consistent with the conclusions obtained from most studies [53–55]. Specifically,
the older the resident and the higher the personal monthly income, the more likely the
person is to choose a high-carbon commute mode. Residents who own private cars are asso-
ciated with less use of low-carbon travel for both commuting and recreational. High-carbon
travel is preferred for people who travel by car, not only for commuting and recreational
travel, but even when undertaking housework travel.

4.2.2. Direct Effects of the Built Environment and Socioeconomic Attributes on
Travel-Related CO2 Emissions

The direct effect of the built environment on travel CO2 varies depending on the
purpose of the travel. As far as commuting is concerned, SSTS, DA, and BSD significantly
impact travel-related CO2 emissions. For SSTS, it has a significant negative effect on the car-
bon emissions of commuting, which means that higher SSTS around resettlement neighbor-
hoods has a direct effect on reducing the CO2 emissions of commutes. However, there was
no significant correlation for housework and recreational trips. DA had a significant nega-
tive direct effect on the carbon emissions of commuting, which is similar to the conclusions
of the research on Guangzhou and Zhengzhou [12,47]. While increased BSD can reduce the
choice of high-carbon modes during a commute, it has a significant positive association
with commuting carbon emissions, consistent with Yang et al.’s study of Guangzhou [18].
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This suggests that reducing the high-carbon travel mode does not necessarily reduce travel
CO2 emissions. An increase in BSD may have resulted in more bus trips and more travel
carbon emissions.

Housework CO2 emissions are not statistically significant with the built environment,
and only DA indirectly affects travel carbon emissions by influencing mediator variables,
as will be specified in the next section.

For recreation, the impact of population density and land-use mixture on travel CO2
emissions showed a significant negative correlation, indicating that CO2 emissions from
recreational trips are lower when the population density and land-use mixture of neigh-
borhoods are higher. Different conclusions have been reached on the relationship between
population density and travel carbon emissions. Some studies have concluded that pop-
ulation density has a positive effect on travel CO2 emissions [18,33], because increased
population density results in excessive travel distances. However, some research suggests a
non-linear relationship between population density and travel CO2 emissions [27]. The re-
settlement housing neighborhoods, generally located in the suburbs, have lower population
densities than the city centers, consistent with Wu et al.’s findings [27]. Furthermore, BSD
has a significant positive direct effect on carbon emissions from recreational travel (0.103),
but is lower than the impact on carbon emissions from commuting (0.169).

4.2.3. Indirect and Total Effects of the Built Environment and Socioeconomic Attributes on
Travel-Related CO2 Emissions

The indirect effect of the built environment on travel-related CO2 emissions comes
from the effect of the built environment on mode choice, which in turn has a direct effect
on travel CO2. SSTS, DA, and BSD have significant indirect or total effects on travel carbon
emissions in commuting. Specifically, as SSTS and DA increase, carbon emissions from
commuting decrease, with standardized regression coefficients of −0.130 and −0.172 for
the total effect. By influencing the choice of mode, the density of bus stops has a significant
negative indirect effect on the CO2 emissions in commuting, which is contrary to the result
of its direct effect. Perhaps as the density of bus stops increases, people tend to use more
public transportation rather than cars to travel; however, more carbon emissions from
public transportation offset the reduction of carbon emissions from cars.

Destination accessibility showed a significant negative indirect effect (−0.088) and
total effect (−0.178) with travel CO2 emissions for housework. This shows that improving
DA can reduce carbon emissions by influencing travel mode choice in housework trips.

The significant negative total effect of land-use mixture on carbon emissions from
recreational travel implies that although increasing land-use mixture does not necessarily
encourage low-carbon travel for all purposes, it helps to reduce CO2 emissions from
recreational travel. The influence of BSD on the carbon emissions in recreational trips
shows similar results as commuting, but its influence on recreational trips is greater. Finally,
nearby subway stations in residential areas can influence people’s mode choices and reduce
carbon emissions from recreational trips.

5. Conclusions

Based on the travel survey data of resettlement housing neighborhoods in Nanjing,
focused on the problems of spatial mismatch, excessive street scale, and inconvenient
transportation, we used three-group SEM to study the impact of the built environment on
the carbon emissions of three travel purposes, including commutes, housework, and recre-
ation. By choosing the built environment variables representing the resettlement housing
neighborhoods, the following conclusions and planning recommendations were proposed:

First, unlike previous similar research, we found that DA has a greater effect on the
travel carbon emissions of residents in resettlement housing than the population density
and land-use mixture that are commonly referred to. From another aspect, this demon-
strates that the accessibility of destinations around resettlement housing remains poor.
By increasing the accessibility of public services, such as daily shopping, regional shopping
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centers, education facilities, and sports facilities, travel distances and carbon emissions can
be significantly reduced.

Second, for the resettlement housing neighborhoods in Nanjing, some built environ-
ment variables have indirect and total effects on travel carbon emissions, such as land-use
mix, satisfaction with the slow traffic system and the subway stations nearby. This means
that even if the built environment does not directly affect travel carbon emissions, it can
indirectly affect travel-related CO2 emissions by influencing the mediator. The mediator
chosen in this study was travel mode. Similar studies have chosen car ownership and
travel distance as mediators [18,33], which reinforces the existence of multiple paths of
environmental influence on residents’ travel carbon emissions. Urban planners should
pay attention to the long-term impact of the environment on people, such as changing
people’s mode choices, reducing the purchase of cars, setting up a work-housing balance,
building a non-motorized, people-oriented travel environment, and providing adequate
public transportation services.

Third, differences exist in the impact paths of the built environment on residents’
travel carbon emissions for different trip purposes. SSTS, DA, and BSD influence the carbon
emissions produced by commuting. Housework travel-related CO2 emissions are only
influenced by DA. Population density, land-use mix, and the subway stations nearby affect
the carbon emissions of recreation. Therefore, for the planning, design, and renewal of a
resettlement housing area oriented to low-carbon travel, there should be attention paid not
only to commuting, but also travel for purposes such as housework and recreation, in order
to comprehensively reduce CO2 emissions.

As mentioned earlier, the suburbanization of resettlement housing neighborhoods
is a common feature in China, our study can provide a case study for this phenomenon.
This study has good insights into the planning, construction, and renewal of resettlement
housing neighborhoods, which are generally located in the suburbs in China. Regarding the
problems of spatial mismatch, excessive street scale, and inconvenient traffic in the reset-
tlement housing areas, site selection should consider the living, working, recreation, and
traffic of residents. The location choice should consider the overall cost of living, especially
low-income residents. It should also ensure the distribution of resettlement houses in vari-
ous parts of the city to avoid high travel costs, inadequate infrastructure, and residential
segregation caused by large-scale resettlement housing construction. In the construction of
resettlement housing and community renewal, it is important to consider the optimized
distribution of supporting facilities and building a non-motorized travel-friendly transport
environment.

In addition, the government should actively promote the advantages of low-carbon travel
to residents and encourage low-carbon travel. For example, in terms of low-carbon travel
awareness, people should be informed that low-carbon travel can help reduce GHG emissions
and improve air quality. Additionally, low-carbon travel can increase physical activity and
reduce the chance of disease. Regarding the travel mode, residents who choose a low-carbon
mode will be given specific incentives to establish a low-carbon incentive mechanism. Similarly,
people who frequently use public transportation will be given price discounts.

However, the study does have limitations. The calculations of travel CO2 in this
study were based on the carbon emission factors of travel modes from existing studies.
There are some limitations in the values due to the differences in measurements by different
researchers. Second, this research only focuses on resettlement housing neighborhoods in
China’s suburbanization process; however, other types of neighborhoods exist in similar
locations, and a possible future research direction would be to investigate various types of
neighborhoods. Third, the impact of built environment factors on travel carbon emissions
may differ for different scales, and future studies should consider built environment factors
at various spatial scales.
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