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Abstract: With the development of metering technologies, data mining techniques such as machine
learning have been increasingly used for the prediction of building energy consumption. Among
various machine learning methods, the KNN algorithm was implemented to predict the hourly
energy consumption of community buildings composed of several different types of buildings. Based
on the input data set, 10 similar hourly energy patterns for each season in the historic data sets
were chosen, and these 10 energy consumption patterns were averaged. The prediction results were
analyzed quantitatively and qualitatively. The prediction results for the summer and fall were close
to the energy consumption data, while the results for the spring and winter were higher than the
energy consumption data. For accuracy, a similar trend was observed. The values of CVRMSE for the
summer and fall were within the acceptable range of ASHRAE guidelines 14, while higher values of
CVRMSE for the spring and winter were observed. In sum, the total values of CVRMSE were within
the acceptable range.

Keywords: hourly energy consumption; KNN algorithm; energy pattern; community buildings

1. Introduction

With notable concern for CO2 emission increases, energy consumption by buildings
has been significantly increasing [1–3]. According to the “Energy Statistics Handbook in
2020” provided by the Korea Energy Agency, a large amount of energy is accounted for
in building sectors [4]. Thus, much attention has been paid to a reduction of energy con-
sumption by buildings in South Korea (hereafter Korea). There have been many attempts
to reduce or optimize building energy consumption. Focusing on passive or active design
strategies, many studies have performed investigations to improve energy efficiency in
buildings by enhancing the thermal performance of building envelopes, replacing them
with advanced mechanical systems or installing renewable energy systems [5–13]. While
these design strategies have played an important role in building energy management,
the effects on the reduction of building energy consumption vary from 3% to 10% of the
total building energy consumption [14,15]. In addition, a better energy performance can be
expected only when these design strategies are implemented in the early building design
stage.

With the rapid development of information and communication technologies, building
energy management and prediction becomes a fundamental key for improving energy
efficiency as well as for reducing building energy consumption [16]. By implementing
metering technologies, the specific information on building operation and energy con-
sumption data are more available for analyses of understanding energy use behaviors in
buildings [17]. The large amount of data (i.e., hourly or sub-hourly energy performance
data, etc.) collected by some systems such as building automation systems and building
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energy management systems can be used to predict their dynamic interactions affecting
building energy consumption [18,19]. For example, Jairo et al. have analyzed the inter-
relationship between the electrical loads of each space in relation to the total building
energy consumption for a full week of operation from the data obtained by the energy
management systems [20]. Similarly, Alam and Devjani have implemented the building
management systems to obtain the data at 5 min interval for one year to analyze the energy
patterns of educational buildings [21]. Thus, it is inevitable to understand a huge number
of data sets of energy consumption for developing effective energy saving strategies.

Traditionally, statistical methods have been employed to handle sets of data for iden-
tifying the patterns of building energy consumption. However, it is difficult to handle a
huge amount of data. According to the study by Fan et al., data mining techniques are
effective to clarify the massive data sets [22]. Therefore, the present study exists to predict
the energy consumption of buildings by utilizing the data mining technique. Three years
(2018–2020) of energy consumption in community buildings were used to train the mining
technique such as the KNN (K-nearest neighbor) algorithm. By recognizing data patterns
through the calculation of distances between test and training data sets, the KNN method is
increasingly used for the analysis of large historical data sets [23]. The community buildings
were composed of offices, a gymnasium, exhibition hall, etc. The energy consumption data
of the community buildings were collected. By implementing the KNN algorithm, the
seasonal energy consumption patterns were identified by the KNN method. The clustered
energy consumption patterns were averaged, and then, these averaged patterns were
verified with the collected energy consumption data qualitatively and quantitatively. By
using the suggested method in the present study, the energy consumption of buildings in
a community can be forecasted faster than other machine learning techniques. Currently,
much attention has been paid to energy-sharing strategies in community buildings [24–26].
Therefore, the prediction of energy consumption by the KNN algorithm can be helpful to
develop effective energy-sharing strategies for community buildings.

2. Literature Review

The use of machine learning algorithms has been increasingly implemented to analyze
data as well as to continuously learn judgments or predictions for the future [27]. In the
case of building energy predictions, steady-state approaches such as averaged monthly
or hourly calculation methods have been generally used instead of dynamic approaches
due to high computational cost. In the comparison of the energy demand of buildings by
energy simulations, Fantozzi et al. mentioned that dynamic approaches can provide more
accurate prediction than those obtained by the average monthly calculation method [28].
The accuracy of the hourly model was also pointed out by the study of Ballarini et al. [29].
Considering this point, it is necessary to implement machine learning techniques for
achieving the accuracy of the energy consumption prediction by handling a huge amount
of data sets.

For the present study, the energy demand patterns were recognized by the machine
learning methods. To identify energy usage patterns, clustering techniques have been
commonly used, which are generally unsupervised learning techniques for recognizing
inherent data patterns [30]. Typically, these clustering techniques can be categorized as
several methods: partition, hierarchical, and density-based [31]. As one of the partitioning
clustering algorithms, the K-means algorithm has been widely used in several studies for
the energy pattern identification due to its high efficiency [30]. However, the use of K-
means algorithm had difficultly handling massive time series of similar electric load profiles,
and the calculation can be computationally expensive [32]. Considering these difficulties,
several researchers proposed supervised data mining-based approaches. According to
the study of Xiong and Yao, common supervised classification algorithms are Artificial
Neural Networks (ANN), Support Vector Machine (SVM), K-nearest neighbor (KNN), and
so on [27].
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Among these algorithms, the ANN algorithm is the most typical regression and
commonly used technique in which the concept of this algorithm resembles the human
brain by using interconnected processors, but this method requires a large number of
parameters and massive training data sets [33]. In the case of the SVM algorithm, it is widely
applied for pattern classification, which computes the linear regression function [34,35].
However, it requires a large number of historical data sets and design inputs [36]. As one of
the supervised machine learning algorithms, the KNN can be also used to recognize data
patterns. Contrary to other machine learning algorithms, the KNN only defines the number
of the nearest neighbors not requiring other parameters [27]. Because of these convenient
issues, the KNN algorithm can be increasingly applied for pattern recognition. Several
studies revealed the high accuracy and computational efficiency of the data classification
by the KNN algorithm [37,38].

Generally, the KNN algorithm calculates the distance between test and training sam-
ples and then returns k closest samples by using the linear search method to find the exact
k nearest neighbors [37]. This means that the KNN algorithm can map the relationship
between independent and dependent variable spaces. The computational complexity
of the KNN algorithm is proportional to the size of the training data set for each test
sample [39,40]. The sample distance can be calculated by using the Minkowski distance
equation [36]:

d = (
n

∑
i=1
|xi − yi|p)

1/p

(1)

where xi and yi are the coordinates of the sample points in multidimensional space. d is the
absolute distance (the Manhattan distance), when p is 1. When p is 2, d is the linear distance
(the Euclidean distance). If the sample distribution is unbalanced, the KNN algorithm
weighs points regarding the inverse of the distance to minimize the impact of the distance
between the test and training samples [36]. For example, closer neighbors of a query point
have a more significant impact on the result than farther neighbors [41]. Since the region of
the k-neighborhood is determined by the values of k, the classification performance can be
easily affected by outliers of the smaller or larger value of k [42]. In addition, the k data
points closest to the test point can be obtained by calculating the distances [27]. Since the
number k is the number of data points needed, the clustering model can be oversensitive
to sample points near the test point, if the number k is too small. If it is too large, a poor
clustering result can be produced [27]. The best number k can be determined by cross
validation by considering its accuracy.

3. Methodology

In the present study, a prediction strategy based on the classification of hourly energy
consumption patterns was proposed by using the KNN algorithm for several buildings
in the A community buildings, where these buildings are located in Gyeonggi-do, South
Korea (Figure 1). While most previous studies have focused on single building function
such as residential or commercial buildings, this study focuses on energy consumption
patterns of community buildings composed of different building types. The A community
buildings include six different buildings such as office, auditorium, gymnasium, and so on.
Three years (2018–2020) of hourly electricity consumption data obtained from i-SMART
of Power planner in KEPCO were utilized [43]. These data were classified seasonally. For
each season, the maximum daily energy consumption data of the A community buildings
were identified. In addition, the daily weather data were recognized. By implementing
the KNN algorithm, the energy consumption patterns for each season were identified and
validated with the historic energy consumption data.
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Figure 1. The buildings in the A community.

3.1. Data Preparation

This study analyzed the hourly electricity data for three years (2018–2020) of the A
community. Among these data, the hourly energy consumption data for two years (2018
and 2019) were used as training data sets, while the data for the year of 2020 were used
as test data sets. In addition, three years of TMY weather data for the location of the A
community buildings were used as input data. Table 1 shows the summary of the KNN
method. The description of buildings in the community is presented in Table 2. The energy
consumption of each building is presented in Table 3. As the area of the building increased,
high energy consumption was observed. In the case of the community center, the energy
consumption was higher than that of the auditorium, while the area of the community
center was smaller than that of the auditorium. This can be caused by the longer building
occupancy schedule of the community center. In addition, the total energy consumption in
2019 was slightly more increased than that in 2018 (about 2%), while about a 5% decrease
in the total energy consumption was observed compared with that in 2020. This can be
caused by limited personal and social activities by COVID-19.

Table 1. Summary of the KNN algorithm.

Characteristics

Type of building Office, auditorium, gymnasium, accommodation, community center, exhibition

Time interval Hour, day, year

Metric RMSE and CVRMSE

Input Electrical consumption (Mainly heating and cooling)
Weather: Ambient temperature, solar radiation, humidity ratio, wind speed

Table 2. Building description.

Building Floors Gross Floor Area (m2)

Office 3 floors and 1 basement floor 3917
Auditorium 2 floors and 1 basement floor 1809
Gymnasium 2 floors 1357

Accommodation 2 floors and 1 basement floor 2743
Community center 4 floors 1485

Exhibition 2 floors and 1 basement floor 1103
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Table 3. Energy consumption of the A community buildings.

Year Office
(kWh)

Auditorium
(kWh)

Gymnasium
(kWh)

Accommodation
(kWh)

Community
Center
(kWh)

Exhibition
(kWh)

Total
Energy

Consumption
(kWh)

2018 1,216,539 891,488 772,653 1,188,113 897,536 413,645 5,379,974
2019 1,236,482 906,103 785,319 1,207,590 912,250 420,426 5,468,170
2020 1,183,300 867,130 751,542 1,207,590 873,013 402,343 5,232,980

As shown in Figure 2, the data collection began from 01 January 2018 to 31 December
2020. In general, the building energy consumption can be affected by some considerable
factors such as building design variables, occupants’ behaviors, building systems operation
and their efficiency, and climatic conditions [21]. For this study, the hourly electrical
consumption data, mainly heating and cooling, were collected for each building, and
then, these data were summed to reduce computational errors as well as to promote
computational efficiency. As a result, 26,280 records were available, and these were broken
down seasonally (Figure 3). Table 4 presents the seasonal energy consumption data of the
community buildings for three years. Among the energy consumption data for three years,
the biggest energy consumption was observed in 2019, and this trend was also shown in
most seasons except for winter.
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Table 4. Seasonal energy consumption and the hourly average of the A community buildings for
three years.

Season Year Total Energy Consumption (kWh) Hourly Average (kWh)

Spring
2018 1,150,590 521

2019 1,249,676 566

2020 1,149,997 520

Summer

2018 1,166,838 528

2019 1,176,430 532

2020 1,098,648 497

Fall

2018 1,176,219 538

2019 1,197,061 556

2020 1,208,927 553

Winter

2018 2,222,270 1028

2019 2,099,024 961

2020 2,088,060 1009

Total

2018 5,752,180 656

2019 5,862,931 673

2020 5,545,632 631
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Based on the hourly average energy consumption for each season, four dates were
selected for each season. As shown in Figure 4, hourly energy consumption on the selected
dates for three years are presented. Even though there was a little difference in energy
consumption, similar patterns in each season for three years are observed visually, except
for the spring season. Moreover, the daily weather data (outdoor temperature) and the
cooling and heating energy consumption in each season for three years are presented in
Figure 5. As presented, the energy consumption patterns for heating and cooling were
different, but similar patterns within the heating and cooling were identified.
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3.2. The KNN Algorithm

Generally, the proper number of k can be selected after some experiments by using
an optimized tool [44]. In the present study, the distances between the patterns in the
training data sets were computed to find the optimal number of k. Among the nearest
patterns, the optimal number of k nearest patterns was extracted from the historical data
sets. In addition, the weighed averaging values of each pattern were created for forecasting
future values [45]. To assess the forecast model of electricity consumption pattern by the
KNN algorithm, two performance assessments were employed: root mean square error
(RMSE) and coefficient of variation of the root mean squared error (CVRMSE). While RMSE
indicates the size of the variation, CVRMSE indicates the deviation degree of error of the
training data for the comparison between different data sets [46]. These equations are
expressed as Equations (2) and (3) [46]:

RMSE =

√
∑n

i=1
(
Yi −Yˆ

i
)2

n
(2)

CVRMSE =

√
∑n

i=1
(
Yi −Yˆ

i
)2

n
/

∑n
i=1 Yi

n
(3)

where Yi is the ith actual value, and Yˆ
i is the ith predicted value. n is the total number of

data in the KNN algorithm model.

4. Results
4.1. Forecasting Results

For the KNN algorithm, the periodicity of the variable was found (p = 24). Thus,
the Euclidean distance was employed and calculated by Equation (1). First, the outdoor
temperature patterns for each season were classified. As can be shown in Figure 6, 10
similar outdoor temperature patterns (i.e., the k number = 10) for two years (2018 and 2019)
were identified based on test data on the selected dates for the year 2020. In the spring,
10 similar hourly outdoor temperature patterns for two years were chosen based on the
daily outdoor temperature on 20 April in 2020 (blue curve). By averaging these chosen 10
outdoor temperature patterns, the prediction of the hourly outdoor temperature pattern for
the spring was obtained (red curve). In a similar way, similar outdoor temperature patterns
on the other seasons were classified for two years (2018 and 2019) based on the test data
sets on the selected dates of 12 August, 16 October, and 20 January. As a result, it can be
seen that the predictions for the summer, fall, and winter showed a similar pattern with the
test data on these specific dates. In the case of spring, a somewhat difference of the outdoor
temperature between the prediction and the test data on the specific date was observed.
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Figure 6. The outdoor temperature patterns from the KNN algorithm.

As with the outdoor temperature prediction, the hourly energy consumption patterns
for each season were identified (Figure 7). Based on the test data on 20 April in 2020 (Blue
curve), 10 similar patterns in 2018 and 2019 were clustered for the spring season. The red
curve presents the average value of the chosen 10 similar energy consumption patterns in
2018 and 2019. For the other seasons, 10 similar patterns based on the test data on specific
dates were classified, and then, these were averaged. As shown in Figure 7, it can be seen
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that the test data on the selected dates in the summer and fall were close to the predicted
energy consumptions by the KNN algorithm. While there was little difference in the energy
consumption during the afternoon between the test data and the prediction in the winter,
a similar pattern was observed. In the spring, a different pattern of energy consumption
between the test data on the selected date and the prediction was observed. This was also
observed in the outdoor temperature prediction in the spring.
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Figure 7. Energy consumption patterns by the KNN algorithm.

4.2. Evaluation of Forecasting Accuracy by the KNN Method

Table 5 summarizes the forecasting accuracy by using the assessment indicators.
As shown below, the RMSE and CVRMSE values of four seasons and the total energy
consumption are presented. The RMSE and CVRMSE of the total energy consumption
were 139.44 kWh and 24.15%, respectively. According to the ASHRAE guidelines 14,
the acceptable range of the CVRMSE value can be differentiated as hourly, daily, and
monthly [47]. By considering the hourly acceptable range of 30%, the CVRMSE values
of the summer and fall were below 30%, while the values of the spring and winter were
somewhat higher than or close to 30%. For the total energy consumption forecasting, the
CVRMSE was below 30%.
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Table 5. Summary of the indicator for RMSE and CVRMSE.

Season Spring Summer Fall Winter Total

Metric RMSE
(kWh)

CV-RMSE
(%)

RMSE
(kWh)

CV-RMSE
(%)

RMSE
(kWh)

CV-RMSE
(%)

RMSE
(kWh)

CV-RMSE
(%)

RMSE
(kWh)

CV-RMSE
(%)

Mean 382.93 34.29 89.46 12.21 94.32 13.78 211.32 29.74 139.44 24.15

5. Discussion

By using the KNN method, the energy consumption patterns of the community
buildings including several building functions for two years were clustered. Based on
the k value of 10, 10 hourly energy consumption profiles for each season were chosen.
In addition, their averaging values (i.e., the prediction) were compared with the energy
consumption data of the community buildings. Similar with the present study, building
electrical demand was predicted by using the KNN algorithm in the study of Gomez-
Omella et al. [45]. With 122 residential and small office buildings, they utilized two different
versions of the KNN algorithm for an effective analysis of a large historical time series of
electricity consumption data sets. While there was a little difference in the prediction results
and computational efficiency between the two KNN algorithms, both the KNN methods
provided good accuracy. In the case of the study by Liu et al., two step clustering approaches
including density-based spatial clustering application and the k-means algorithm were
used to identify daily electricity usage patterns of three office buildings [17]. However,
it was difficult for the density-based clustering application to select the values of radius
and the minimum number of observations, and the fast KNN algorithm was implemented.
As shown in the results of the present study, the CVRMSE values of the prediction were
somewhat higher than that obtained from the previous KNN studies. It can be seen that
the overestimated value of the present study was caused by the different schedules and
functions of the various types of buildings such as office, auditorium, gymnasium, and
so on in the community buildings, while several studies focused on one or two different
building functions. Moreover, the results predicted by the KNN method are presented in
Table 6 by using the Mean Bias Error (MBE) (Equation (4)).

MBE =
∑n

i=1
(
Yi −Yˆ

i
)2

∑n
i=1 Yi

× 100 (4)

where Yi is the ith actual value and Yˆ
i is the ith predicted value. n is the total number of

data in the KNN algorithm model.

Table 6. Summary of the indicator for the MBE.

Season Spring Summer Fall Winter Total

MBE (%) 12.5 −2.8 4.3 10.7 11.2

Considering the acceptable error of the MBE (±10), the value of the spring was not
acceptable, while the values of the summer and fall were acceptable. In the case of winter,
the MBE value was slightly over the acceptable range. As observed in the CVRMSE values,
spring carried the biggest prediction errors. It can be seen that the errors in the spring were
caused by very irregular weather profiles in each year. This added greater probabilistic
patterns to the prediction by the KNN method as opposed to the KNN predictions with
clear weather characteristics of other seasons. As a result, this led to the overestimated
MBE values in the total energy consumption prediction.

Moreover, the KNN algorithm was used for various purposes. For example, Xiong
and Yao implemented this method to establish a personalized adaptive thermal comfort
environment for occupants’ indoor environmental preferences [27]. In their study, the KNN-
based thermal comfort model proved to have good accuracy after a large amount of data
training. In addition, they calculated the distance for the parameters of the thermal comfort.
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Martinez et al. used the KNN method to handle time series patterns seasonally [44]. They
applied different KNN schemes for different seasons. For the chiller system optimization,
Ho and Yu utilized the KNN regression to discover optimal strategies [48]. Using the
k number of 3, the design parameters were selected to identify specific strategies to the
existing chiller system. Most previous studies pointed out the importance of the k number
since the classification performance is quite affected by the k number [36]. For the present
study, the k value was 10. To find the best k value, several k values were investigated.
However, the k numbers above 10 were not investigated due to computational efficiency.
In addition, the authors in the previous studies also stated that different scale combinations
can influence the accuracy of forecasting. Even though hourly energy consumption for
two years was used for the study, this seemed to be insufficient in that the overestimated
CVRMSE values for some seasons were obtained. For further study, it is required to
consider the prediction performance by different distances and different KNN schemes for
better accurate prediction. In addition, it is also necessary to compare the prediction results
with other machine learning techniques with the same data used for the present study.

By training three years of energy consumption data sets with weather parameters, the
KNN method clustered similar patterns of energy consumptions with them in 2020. Even
though it seemed that the predicted results were overestimated, this can be overcome with
more historic data sets. In addition, it can be seen that the data sets were classified where
similar weather characteristics were observed. Thus, it can expected to predict building
energy consumption in more than a year with the data sets of weather information.

6. Conclusions

As with the development of mining techniques, the use of machine learning methods
has been significantly increased. For the present study, the hourly energy consumption data
were predicted by the machine learning technique, especially the KNN algorithm, which
explores the whole training data sets for clustering based on the input test sample. Thus, the
energy consumption pattern classification by using the KNN algorithm can recognize each
pattern and then provide targeted predictions within each pattern. By using three years
of hourly energy consumption data, the hourly energy consumption of the A community
buildings composed of several types of buildings was predicted by the KNN algorithm.

The outcomes of the study were as follows:

(a) For the KNN algorithm, the periodicity of the variable was set at 24. Thus, Euclidean
distance was chosen for clustering the hourly energy consumptions for each season.

(b) By investigating several k numbers, 10 was selected. Using this k number, 10 similar
hourly energy consumption patterns for two years (2018 and 2019) were clustered
based on the test data on seasonal specific dates in 2020. Then, these 10 clustered
hourly energy consumption patterns were averaged for the prediction. As a result,
the averaged energy consumption for the summer and fall were close to the test data,
while the prediction results of the spring and winter were a little higher than the test
data.

(c) The accuracy of the prediction by using the KNN method was assessed by the RMSE
and CVRMSE quantitatively. The CVRMSE values of the summer and fall ranged from
12–13%, which was within the acceptable range provided by ASHRAE guidelines 14.
In the case of spring and winter, the values of CVRMSE were higher than 30% or close.
In sum, the total CVRMSE was about 24%.

Considering the outcome of the present study, the total value of CVRMSE was within
the acceptable range of ASHRAE guidelines 14. However, the CVRMSE values of the
prediction results were still high in that the accuracy seemed to be overestimated. This
can be caused by insufficient historic data sets and design inputs of the various types of
buildings in the A community buildings. Further study will include design inputs of vari-
ous building functions for more accurate prediction by using the KNN method. Moreover,
it is necessary to compare the prediction results with other machine learning techniques
to enhance the accuracy of the KNN method. As shown in the results, the prediction by
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using the KNN algorithm was obtained with three years of energy consumption data of the
community buildings composed of various building functions. By improving the accuracy,
the suggested method can be implemented to develop energy sharing strategies for the
community buildings.
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