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Abstract: Infrastructural assets such as roads, bridges, and buildings make a considerable contribu-
tion to national economies. These assets deteriorate due to aging, environmental conditions, and
other external factors. Maintaining the performance of an asset in line with rational repair strategies
represents a considerable challenge for decision-makers, who may not pay attention to developing
adequate maintenance plans or leave the assets unmaintained. Worldwide, organizations are under
pressure to ensure the sustainability of their assets. Such organizations may burden their treasury
with random maintenance operations, especially with a limited budget. This research aims to develop
a generalized condition assessment approach to monitor and evaluate existing facility elements. The
proposed approach represents a methodology to determine the element condition index (CI). The
methodology is reinforced with an artificial neural network (ANN) model to predict the element
deterioration. The performance of this model was evaluated by comparing the obtained predicted
CIs with ordinary least squares (OLS) regression model results to choose the most accurate predic-
tion technique. A case study was applied to a group of wooden doors. The ANN model showed
reliable results with R2 values of 0.99, 0.98, and 0.99 for training, cross-validation, and testing sets,
respectively. In contrast, the OLS model R2 value was 1.00. These results show the high prediction
capability of both models with an advantage to the OLS model. Applying this approach to different
elements can help decision-makers develop a preventive maintenance schedule and provide the
necessary funds.

Keywords: condition prediction; condition assessment; artificial neural networks; asset management;
multiple regression analysis

1. Introduction

Assets such as buildings, roads, and bridges represent the infrastructure of countries,
which contributes considerably to the national economy. In 2001, the USA federal govern-
ment owned more than 500,000 buildings [1]. These public assets were valued at more than
USD 328 billion. According to the U.S. Census Bureau, the annual value of construction
that is put in place for public assets in the United States was between USD 346 and USD
361 billion in 2020 and 2021, respectively [2]. These assets must be preserved and devel-
oped to ensure a country’s ongoing development. However, they cannot be completely
protected from potential deterioration due to aging, the nature of their usage, climatic
effects, or geological conditions [3]. For these reasons and when building maintenance
is neglected, maintenance work puts a huge burden on a country’s budget, especially in
developing countries. For instance, in 2017, the Central Agency for Public Mobilization
and Statistics in Egypt announced that Egypt possessed almost 14.3 million buildings [4],
both residential and non-residential. More than 3.3 million of these assets needed minor or
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major repair, or complete demolition [5]. This represents approximately 23% of the total
assets. A large budget should be established for maintenance operations to ensure these
assets function efficiently. According to the last census in 2007, the U.S. Census Bureau
reported that the expenditure for maintenance and repairs of residential properties was
over USD 54 billion [6]; this represents the consumption of treasury funds if no plans are
made to bear these costs in advance.

In terms of decision-making, experts suggest developing an asset management pro-
gram. This program includes policies, objectives, and strategies before embarking on a
specific asset management plan. In this regard, asset management information systems
(AMIS) are a crucial topic. An AMIS includes the asset’s technical, financial, and historical
information. These systems can vary in sophistication from simple spreadsheets that are
widely used to advanced systems that use specific models to predict future conditions [7].
Such models provide the most robust analysis and prediction capabilities [8]. However,
facility managers confront barriers that impede the implementation of these prediction
models. Insufficient information about current asset conditions causes failure in developing
these prediction models [9] and the subsequent inability to adopt a generalized approach
for assessing building sub-elements [10]. Related studies have proposed approaches to
assess infrastructure facilities components and prioritize them for maintenance [9]. How-
ever, such efforts neglect how this assessment could be rolled up to the building level
and provide more than just a simple view of the building. This highlights the need for a
generalized and simplified approach to element condition assessment that can be rolled up
to the building level.

Regarding element condition prediction, the past two decades have seen a tremen-
dous growth of interest in machine learning’s contribution to asset management [11,12].
The ordinary least squares (OLS) technique has been used as a regressor to solve prob-
lems related to prediction as it is constructed on a solid theoretical basis. It is thus used
for estimation or as a validation indicator for other estimation techniques [13]. On the
other hand, artificial neural networks (ANNs) are among the most widely used super-
vised learning techniques [14]. They are used as a tool for optimization and predic-
tion in the domain of asset condition assessment. Such a technique saves development
time as the ANN can self-learn and identify nonlinear relationships between input and
output parameters [15].

Despite many related studies, few have proposed the application of neural networks
in the deterioration prediction of buildings [9]. Most researchers have discussed their
application to other assets such as bridges, roads [16], and sewer pipes for damage detec-
tion [17]. Instead, Markov models have been used to predict building conditions [18,19].
Other studies have used neural networks to automate the visual inspection process and
defect classification. For instance, neural networks were used to classify masonry wall
cracks [20] or cracks in concrete structures using images [21]. Regarding prediction models,
only time-related input parameters were considered as an input for prediction models, thus
neglecting other proven indoor and outdoor parameters affecting the service life (e.g., the
element’s location [22], the nature of the space usage, or element usage rate). These param-
eters have a significant effect on condition degradation according to ISO 15686–1:2000 [23].
Additionally, very few studies have conducted a comprehensive comparison of ANN with
other regression techniques such as OLS.

This study contributes to the field of asset management by developing a generalized
approach for predicting an element condition index (CI) since there have been few previous
contributions in this domain. The approach can be rolled up to anticipate the building’s
condition. An ANN and OLS models were used to predict the condition of a specific
element. Then, a comprehensive comparison was conducted to determine the most reliable
model. The study’s objective was to assist decision-makers in developing short-term/long-
term proactive maintenance plans and optimally fund the related efforts.

The remainder of this paper is structured as follows: Section 2 presents the theoretical
background of asset management concepts and processes, the definition of an ANN,
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components, inner operations, and contributions in the civil domain as well as an OLS
definition and its significance. Section 3 describes the research methodology. Section 4
provides the statistical indicators used to evaluate the ANN and OLS techniques. Section 5
provides detailed results, while Section 6 provides comprehensive conclusions, research
limitations, and future directions.

2. Theoretical Background
2.1. Asset Management System (AMS)

The Federal Highway Administration defined asset management as cost-effectively
maintaining, upgrading, and operating assets [24]. This covers technical and mathematical
analysis along with good business practice and economic theory. It is goal-oriented and in-
cludes data aggregation, strategy evaluation, program selection, and feedback components.
AMS follows five main processes: (1) condition evaluation; (2) deterioration modeling;
(3) repair alternatives and strategies; (4) extent of improvement after repair; and (5) asset
prioritization and repair fund allocation [7,25,26]. These processes regularly update the
asset database for any upcoming repairs. A database comprising all relevant information
must be available to assess the asset condition correctly and in a timely fashion. This in-
formation includes, for example, asset type, quantity, age, location, asset hierarchy, design
data, and construction data, in addition to maintenance records [8,27].

2.1.1. Condition Evaluation

Condition evaluation is defined as the use of a systematic method designed to produce
proportionate, pertinent, and useful information to conduct a technical evaluation of the
physical state of an asset [10]. This database is essential for better judgment and the most
effective repair choice. It helps decision-makers to develop proactive capital planning and
schedule future maintenance interventions [28]. Inspection and data collection are crucial
in this process. The inspectors gather all possible information, which helps to evaluate the
performance and make the best decisions in different processes. Non-destructive evaluation
methods are used when fast and accurate data is needed. The most common tools used
for inspection are visual inspection and analyzing images. However, visual inspection
has problems related to time and money consumption. Previous efforts have tried to find
alternatives by applying neural networks and smart sensors to provide real-time data
collection, which is required for analysis [7,29,30].

2.1.2. Deterioration Modeling

Making decisions related to infrastructure maintenance and rehabilitation depends
not only on the current measured condition of the assets but also on their expected possible
degradation over time. Deterioration models are substantial for any asset management
system, as they are used in the future condition forecasting of an asset or its components [7].
There are multitudinous deterioration prediction techniques such as (1) deterministic
models, (2) stochastic Markovian models [29], and (3) artificial intelligence techniques
such as artificial neural networks, fuzzy logic systems, and genetic algorithms [30]. The
condition indices’ values are deterioration indicators of either the asset components or
the whole asset. For building components, the condition index scale is commonly 0% to
100% [9]. Such a scale comprises from 1 to 4, 5, 6, or 7 conditions according to asset type,
with 0% representing a critical (failure) condition and 100% describing a new condition.
This numeric scale can be translated into a linguistic representation. Some rating scales and
the corresponding linguistic expressions are illustrated in Table 1. Subsequently, when the
condition state of an element or structure meets a predefined threshold, the organization
activates the maintenance process.
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Table 1. Reference of different condition scales.

Year Ref. Asset
Type

Condition
Scale Linguistic Representation

1997 [31] Buildings 1–4 Deterioration: (1 = no; 2 = slight; 3 = moderate; and 4 = severe).

2005 [32] Buildings 0–100 Deterioration: (0–20) = no; (20–40) = slight; (40–60) = moderate;
(60–80) = sever; and (80–100) = critical.

1998 [33] Any Asset 1–7 Condition category: (1 = Failed; 2 = V. Poor; 3 = Poor; 4 = Fair;
5 = Good; 6 = V. Good; and 7= Excellent).

2021 [9] Buildings 0–100
Condition category: (0–40) = full deterioration; (40–60) = poor quality;
(60–75) = Imperial quality; (75–85) = good quality; (85–92) = accepted

quality; (92–99) = fine quality; and (99–100) = exemplary quality.

2021 [27] Buildings 1–6
Condition category: (1 = Very good condition, 2 = Good condition,

3 = Reasonable condition, 4 = Borderline condition, 5 = Bad condition,
6 = Very bad condition)

2.1.3. Repair Alternatives and Strategies

For a decision-making approach, life cycle cost analysis evaluates the total costs
accrued over the infrastructure’s life, from construction to final replacement or demolition.
It is an effective approach for an existing facility to compare the long-term effects of different
maintenance strategies and determine the best one. Four types of maintenance strategies
have been defined by [34] as follows:

• Corrective maintenance is the simplest strategy. In this strategy, the component is kept
operating until failure. So, it is not the strategy that leads to the lowest total cost.

• Time-based maintenance, or preventive maintenance, is the most widely used today. It
is most effective in preventing major failures or damage. It is usually appropriate for
cases where abrasive, erosive, or corrosive wear occurs and/or material properties are
changed due to fatigue. Timely inspections are essential. Such measures are a must so
that there is an opportunity to avoid excessive extra costs.

• Condition-based maintenance. This strategy requires additional information about
the current component status to determine the device’s status. A specific metric
describes this current state, and in condition-based maintenance, maintenance activity
is triggered when an estimated state reaches a certain threshold. This procedure
provides high availability at a reasonable maintenance cost.

• Finally, reliability-centered maintenance not only considers the condition of the system
components but also the impact on the system’s performance. This strategy is regarded
as the most accurate.

Facility managers should always be aware of checking the conditions of buildings
to avert any potential damage, which can be costly. Later, after the repair deterioration
process has started, some researchers assume that the deterioration trend parallels the
pre-correction deterioration trend [7].

2.2. Artificial Neural Networks (ANNs)

ANNs were originally inspired by the human biological nervous system [35]. A neural
network is a network of interconnected basic processing elements, units, or nodes whose
functionality is based on the human neuron [36]. These neurons are connected by synapses
that can transmit signals to each other [37]. It is a vast technological domain where one can
implement “human brain decision-making power” into computer programs based on error
and approximation [38]. The network’s processability depends on the connection weights
generated through learning from training patterns [36].

2.2.1. ANN Components

One of the most used neural networks is the multilayer perceptron [39]. It is generally
composed of an input layer, an output layer, and a hidden layer(s) that are interconnected
successively. Such feed-forward networks utilize backpropagation as a learning algorithm.
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The input layer comprises the independent variables that present the basis for a final
decision or prediction. It is simply the layer that communicates with the external envi-
ronment. The hidden layer(s) comprises a group of neurons with an activation function
and establishes a link between the input and output layers. The hidden layer’s target is to
gain and recall vital characteristics and sub-features from input patterns to anticipate the
network’s result [40]. The output layer contains the dependent variables, or the network
results, which are determined based on the values of the input layer nodes. Once the neural
network is trained, it can predict the output for unseen input data. Numerous previous
studies were used to calculate the number of neurons in the hidden layer. Some have
confirmed there is no specific way to determine their number [41]. Others have confirmed
that this could be achieved through Equation (1), where n describes the optimum number
of neurons in the hidden layer, Ip is the input layer size, and Op is the output layer size [9].
Due to the lack of a general technique, most researchers usually determine the adequate
number of processing elements for the hidden layers by conducting trials.

n =
2× (Ip + Op)

3
(1)

2.2.2. Inner Operation of ANNs

An artificial neuron consists of inputs, a summation block, an activation block, and
a single output, as shown in Figure 1. Neurons from different layers are connected, and
each connection has a weight, which changes with the learning process until it reaches the
expected target values. The role of the activation function is to introduce the nonlinearity
properties into the network. A complex nonlinear model can map the nonlinear relation-
ships between inputs and outputs. The most common activation functions in hidden
layers are rectified linear activation [42], logistic (sigmoid), and hyperbolic tangent [43].
Depending on the used function, it usually ranges between (0 to 1) or (−1 to 1). The input
of the neurons connected to the next layer will be the output of the activation function. The
role of the bias in the trigger function is to provide flexibility for the trigger function to
change. It allows for shifting the activation function by adding a constant to the input.
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2.2.3. ANNs Application in Construction Domains

ANNs have contributed to much research in civil engineering [44]. In structural en-
gineering, ANNs are applied in pattern recognition and machine learning for structural
analysis and design, design automation and optimization, structural system identifica-
tion, condition assessment, monitoring, and control. In construction engineering, ANNs
are applied in construction scheduling and management, construction cost estimation,
resource allocation and scheduling, and construction litigation. They are also applied to
other engineering fields such as environmental and water resources, traffic, highways, and
geotechnical engineering. For instance, a generic object detector trained to identify and
classify road damage from still images or real-time video was presented in [45]. Other
research has introduced automatic crack detection in concrete structures from images [21].
A bridge management system was developed to evaluate and predict bridge deck deterio-
ration conditions using ANNs [46]. A model capable of estimating the construction cost
for road projects was produced using ANNs [41]. Recent efforts have utilized ANNs for
estimating road construction costs at different stages using databases from past projects [39].
Additionally, convolutional neural networks were used for detecting key building defects
such as mold, deterioration, and stains from images [47] and ANNs were utilized to pre-
dict building energy performance [48]. To sum up, prior studies have shown that the
ANN has great potential and robust applications in prediction, optimization, classification,
decision-making, and specifically, in asset condition assessment.

2.3. Ordinary Least Squares (OLS) Technique

The ordinary least squares technique is one of the simplest and most used regres-
sion methods. OLS is a linear regression technique that has been used in much previous
research for estimating purposes such as cost estimating [13], housing price forecast-
ing [49], and building condition assessment [12]. Despite its benefits, it is inadvisable
to use OLS in cases involving nonlinear relations between the inputs and outputs [13].
Mean squared error (MSE), root mean squared error (RMSE), adjusted root mean squared
error, coefficient of multiple determination, and R-squared are used to assess its predictive
performance [12,49]. Generally, in the case of describing multiple independent variables
that affect one dependent variable, multiple linear regression analysis is used. This can be
represented by Equation (2).

Y = C + b1X1 + b2X2 + . . . + bnXn (2)

where Y is the total estimated CI, X1; X2, . . . , Xn are measures of independent variables that
may help in estimating Y, C is the estimated constant, and b1; b2 . . . , bn are the coefficients
estimated by regression analysis.

3. Methodology

This research used a simplified approach to determine a selected element CI as follow.
First, decompose the educational facility into multiple hierarchies such as floors, systems,
and zones. Second, create a coding system and develop a database of the selected element
using a Microsoft Excel sheet. Third, identify selected element components and possible
defects in each component, create a component defect/impact matrix to get the proportional
weight of each component in the element, and the data collection process is carried out
through visual inspection of the elements of the studied facility. Fourth, data acquisition
and analysis are performed to identify the input and output parameters of the neural
network and OLS models. Fifth, train and test the neural network model to validate the
model’s workability and compare the results to OLS output using statistical indicators.
Finally, choose the best model to operate. The methodology is illustrated in Figure 2.
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3.1. Decomposition of Educational Facility

An educational facility (AASTMT Portsaid branch) was chosen for this study and
divided according to the breakdown depicted in Figure 3. This breakdown includes all the
existing facility buildings for developing an approach to determine the element condition
index (CI), The data was collected from the college and some residential buildings to cover
all spectrums and variations that could affect the input parameters.

3.2. Element CI Calculation

The wooden doors were taken as the element for the study; thus, doors were divided
upon inspection into four main components that must be checked for defects during visual
inspection. These four components included the condition of the door body, the door frame,
the hinges and metal fittings, and the paint. Figure 4 represents a part of the guidelines for
the items to be checked by the inspector during the inspection process. In this approach,
Equation (3) was used to calculate the average condition index of the element [7].

CI j = 100− ∑d
i=1 Wi × Si

100
(3)
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CI j stands for the condition index for the jth (component or part), where Wi = deficiency
weight (i) (from 0 to 1); Si = severity extent for deficiency (i) (from 0 to 100); i = counter
for potentially deficient components (j). The CI is a value that ranges from 0 to 100, where
from (0 to 10) represents critical condition, from (11 to 24) represents poor condition, from
(25 to 49) represents fair condition, and from (50 to 100) represents a good condition.
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3.3. Parameters Defect/Impact Matrix

The previous elements were tabulated and given an impact factor according to the
corresponding impact area to conclude each deficiency weight, as shown in Table 2, where;
(H) high impact (0.71 to 1), (M) moderate impact (0.31 to 0.7), and (L) low impact (0 to 0.3).

Table 2. Defects/impact matrix.

Impact Area

Defect Type Corrosion or
Fractures in the

Door Body

Corrosion or
Fractures in the

Door Frame

Loss or Malfunction
of the Door Hinges or

Metal Fittings

Flaking or
Cracked Paint

Operational objective of space H M H L
Safety H H H L

Architectural objective H L L H

Weight of deficiency 0.35 0.21 0.26 0.18

3.4. Identification of Input and Output Parameters

To identify the input parameters of the network, factors from previous research [9], in
parallel with data gathered during the visual inspection revealed the main input parameters
to be used in the network modeling and training. Nine input parameters were selected
for the input layer from the analysis of experimental data to evaluate the output. The
main deterioration factor is the door’s age, which thus represents the main factor. The rest
of the factors can be classified as the physical condition of its main components and the
accessibility factors. For example, the physical factors of the door components are the body,
frame, hinges, and painting conditions. Moreover, the accessibility factors are the location
in the space, the floor, and the nature of the space (educational or administrative space).
The input and output parameters with descriptions and ranges are shown in Table 3.

Table 3. Neural network input parameters.

Input Parameter Description Range

X1 Door Body Condition (0 Worst Cond.~100 Best Cond.)
X2 Door Frame (0 Worst Cond.~100 Best Cond.)
X3 Hinges or Metal Fittings (0 Worst Cond.~100 Best Cond.)
X4 Painting Condition (0 Worst Cond.~100 Best Cond.)
X5 Floor (0, 1, 2 . . . . N)
X6 Door’s age (0, 1, 2 . . . . N)
X7 Door’s Usage rate Low, Moderate, High
X8 Location of the door in space Interior, Exterior

X9 Nature of space use Educational, Utility,
Administrative, Residential

Output Parameter Description Range

Y Condition Index (CI) (0 Worst Cond. ~100 Best Cond.)

3.5. Neural Network Topology

The design of the neural network architecture is part of the modeling step. It is a
complicated and dynamic process requiring the establishment of the internal structure and
rules (i.e., the number of hidden layers and neurons and the type of activation function).
The model is created based on the type of data and the response required by the application
as shown in Figure 5.

The model was designed to include three successive layers to identify the model’s
topology: an input layer of nine neurons corresponding to the nine input parameters; an
output layer of one neuron as the target output; and one hidden layer of several hidden
neurons (NHs) that are determined after multiple trials during the testing phase.
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The model was created with NeuroSolutions Software Version 6.0 as a multilayer
perceptron artificial neural network. In this study, Equation (1) was applied to calculate the
approximate number of NHs. The number of NHs in the hidden layer was almost 7. To
ensure the most reliable number, and due to the lack of a general technique as previously
described, an error factor of at least ±20% was cited. So, a range of trial models was set
between 5 and 15 NHs. The model with the most accurate results was the one corresponding
to 5 NHs. The model’s back-propagation rule for supervised learning was the Levenberg–
Marquardt algorithm, and the nonlinear activation function utilized in the model was
the hyperbolic tangent function [41]. The available database was divided into three sets
(Training (108 doors), Cross-Validation (13 doors), and Validation (13 doors)). The size of
each set does not rely on standard or generalized rules. However, each set should cover all
the input parameters’ spectrums and variations.

3.6. Processing Phase

The processing of the model included both a training set and a cross-validation set
with various features. Training sets were used to learn and record the correlations between
the inputs and outputs. On the other hand, the cross-validation set was used to monitor
model performance, ensure an optimal level of generalization, and avoid overtraining
issues without affecting network weight updates. The validation set was not used during
model processing and was reserved for measuring the validity and preparedness of the
processed model and handling new cases.

STATA, a commercially available statistical software for data science, was used to
develop the OLS model. Such a model determines the same input/output relationship
stated in Table 4, and helps evaluate the results obtained by the ANN.

3.7. Simplified Rolling-Up Approach

The building was divided into three main hierarchies: zones that contain multiple
spaces that share similar characteristics, physical systems and subsystems (civil systems,
architectural systems, etc.), and floors. Accordingly, analysis was done for each element
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separately based on the inspectors’ reports to calculate the condition index (CI) of each
element in the zone. Then, elements were sorted according to their corresponding systems
to obtain the average CI for each system using a proper proportional weight matrix. To
assess the building condition, each subsystem can be weighted according to a set of aspects
by following the same methodology used in the defect/impact matrix. Thus, through the
desired sorting, the average CI can be obtained per floor, system, zone, or space. Subse-
quently, the CI of the entire building could be rolled up and calculated. By obtaining the
same data for other buildings and through using the proper forecasting input parameters, it
is possible to predict the entire building condition. The aforementioned different hierarchies
have a key advantage with respect to prioritizing maintenance operations. For example,
assuming the classes and studios zone is the most important; then, by using the proper
criteria, this zone will have the higher weight. Thus, it comes first in the maintenance
schedule. The approach illustrated in Figure 6 was adopted from [50].
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4. Model Evaluation

The performance of the developed ANN and OLS models was appraised for the
interior and exterior doors. Through the evaluation process, the deviation between the
output and target data values is measured. The term “output data” refers to the data
that the models estimate. The term “target data” represents the actual data obtained from
the visual inspection during the inspection process. The statistical indicators that were
used to validate the models are the Coefficient of Determination (R2) (4), Mean Squared
Error (MSE) (5), Root Mean Squared Error (RMSE) (6), Mean Absolute Error (MAE) (7),
and Mean Absolute Error Percentage (MAEP) (8). These statistical indicators are used
to anticipate future performance or test assumptions relying upon other data and attain
optimal performance.

R2 =
∑n

i=1

(
ŷi− ∼yi

)2

∑n
i=1

(
yi− ∼yi

)2 (4)

MSE =
∑n

i=1(yi−A.i)2

n
(5)

RMSE =

√
∑n

i=1(yi−A.i)2

n
(6)

MAE =
∑n

i=1
|yi−A.i|

yi

n
(7)

MAEP =
∑n

i=1
|yi−A.i|

yi

n
× 100 (8)

where yi represents the targets, ŷi represents the network outputs,
∼
yi depicts the mean of

target values, A.i depicts the model predicted values, and n is the sample number.

5. Results and Discussion
5.1. ANN Model Predictive Performance

The artificial neural network (ANN) model results illustrated in Table 4 demonstrate
its reliable performance. The MSE, which measures the average squared difference between
the output data and target data of the training, cross-validation, and validation sets, was
1.58, 2.63, and 1.59, respectively. The RMSE of the training, cross-validation, and validation
sets was 1.26, 1.62, and 1.26, respectively, which showed the ability of the network to fit
the data. The MAEP indicates that the percent deviation of the output data from the target
data was only about 1.24, 1.56, and 1.24% for the training, cross-validation, and validation
sets. The R2 for the training, cross-validation, and testing sets was 0.99, 0.98, and 0.99,
respectively. The value of R2 represents the proportion of variance for a dependent variable
that is explained by the independent variable/s. These values indicate that nearly 99% of
the variance in the doors’ CIs can be predicted by the model. The 1% error between the
output and target data is acceptable compared to the literature [9].

Table 4. Summary ANN model results for the doors.

Set MSE RMSE MAE MAEP (%) R2

Training 1.58 1.26 0.01268 1.27 0.9953
Cross-Validation 2.63 1.62 0.01562 1.56 0.9899

Testing 1.59 1.26 0.01238 1.24 0.99

• Figure 7 shows the validation loss versus the number of epochs over the training
and cross-validation sets. The gradual decrease in loss indicates the efficiency of the
network for learning useful representations for the inputs and the desired output.
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• Figure 8 shows the comparison between the target data and the output data. The
percentage error distribution of all samples is shown in Figure 9. Figure 10 shows
the coefficient of determination plots for each set. Figure 10a represents the training
data set, Figure 10b represents the cross-validation data set, Figure 10c represents the
testing data set, and finally, Figure 10d represents the coefficient of determination plot
for all samples.
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5.2. ANN and OLS Performance Comparison

• Table 5 compares the measurements obtained from both the ANN and OLS techniques
in terms of R2 and RMSE. The values of R2 and RMSE for ANN are 0.99, and 1.26,
respectively, while those for the OLS predictor are 1.00 and 1.08 × 10−6, respectively.
The R2 of the ANN is lower than that of the OLS, which shows that the OLS model
performed better. Table 6 presents a comparison between the two techniques in terms
of the MAEP of all samples. The analysis revealed that 95.5% of samples have an
MAEP of less than 4% using ANN with no more than 0.5% using OLS.

• According to the obtained results from both models, the most significant input param-
eters affecting the condition of doors are body condition, frame condition, hinges or
metal fittings, painting condition, usage rate, and age, while location, nature of space
usage, and floor are statistically insignificant parameters.

Table 5. Comparison of measurements between ANN and OLS.

Statistical Indicator ANN OLS

R2 0.9930 1.00
RMSE 1.26 1.08 × 10−6

Table 6. Summary of all results.

Error Percentage ANN OLS

Fre. Cum. Fre. Cum.

0–0.5 43 43 134 134
0.5–1 34 77
1–2 35 112
2–3 13 125
3–4 3 128
<4 6 134

MAEP 1.29% 1.1 × 10−6 %

6. Conclusions

This research is a step forward in the field of asset management, specifically in predict-
ing the future state of the different elements inside buildings, through which it is possible
to visualize the building’s overall condition. The research aims to develop a generalized ap-
proach that identifies a condition index (CI). Such an index could be obtained at the element
level and rolled up to the building level to determine the building’s overall condition. A
case study was applied to a group of interior and exterior wooden doors of an educational
facility. The samples were taken from different locations to validate the workability of
the approach and help cover the prediction models’ input parameters’ spectrums and
variations. The approach consists of a few steps: (1) decompose the educational facility into
multiple hierarchies, such as floors, systems, zones, or spaces; (2) create a coding system
and develop a database of doors; (3) determine the wooden door components; (4) create
a component defect/impact matrix to evaluate door conditions accurately; (5) conduct a
visual inspection of doors; and (6) identify input and output parameters to develop the
artificial neural network (ANN) and the ordinary least squares (OLS) models. A back-
propagation three-layered ANN was used. The ANN was trained, tested, and compared
to the OLS model to validate the model’s forecasting accuracy. Then, the best model was
chosen. The ANN model showed a slightly lower but reliable result in predicting the
door’s future according to the inputs that were used and the approach that was followed
compared to the OLS technique. The model’s R2 values for the training, cross-validation,
and testing sets were 0.99, 0.98, and 0.99, respectively. The results show a strong correlation
between ANN output and the actual CI obtained by visual inspection. The average R2

of ANN was 0.993 compared to the OLS regression technique’s R2, which was 1.00. Both
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models revealed that some input parameters such as location, nature of space usage, and
floor were statistically insignificant. Asset conditions can be predicted, and budgets for
maintenance plans can be established by applying the proposed approach to different asset
elements. Subsequently, random maintenance can be limited to failures only.

Although this study accomplished its primary objectives, it has some limitations;
inadequate maintenance reports can be a barrier to the training and validation of a reliable
element prediction model. The different perspectives regarding defect/impact matrix
weights can reflect the selected element condition or space condition based on its composing
elements and so on. As a result, the overall condition of the building, which may involve
structural, architectural, and other elements, requires prediction models that need a large
amount of data. Therefore, the need for high computing and storage capabilities is a must,
which can cause errors to occur.

This research paper falls within a research agenda that is concerned with developing
an AI asset management system for existing buildings. The ANN prediction accuracy could
be further improved and escalated by considering other input parameters that may appear
in future work. The proposed novel approach can be extended and integrated into the
Internet of Things technology to provide real-time condition analysis and prediction. It
can be used in conjunction with BIM technology to visually present element condition. It
can also be included in an AI decentralized system using blockchain technology, a fast-
growing technology. Such technology solves information problems such as immutability
and transparency between different stakeholders, which will practically contribute to
the industry.
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