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Abstract: To explore the effects of acoustic perception on outdoor thermal comfort, acoustic perception
in five typical open spaces in a campus in China’s cold region with common soundscapes was
evaluated by using meteorological measures, sound level devices, and a questionnaire survey. Eight
adjectives were used to evaluate an individual’s acoustic perception, and the physiological equivalent
temperature (PET) was selected as a thermal index. The correlations between acoustic perception
and thermal comfort in these typical open spaces were further analyzed. We demonstrated that:
(1) Acoustic sensation and comfort varied significantly among sound types (STPs). Respondents
reported pleasant perceptions of broadcasting music, running water and birdsong, and wind (a gentle
breeze) and insects. (2) Although there was no significant difference in the thermal sensation vote
(TSV), we found large differences in the thermal comfort vote (TCV) among STPs. (3) The respondents’
neutral PET (NPET) varied among STPs. In autumn, the ranked order of NPET was machines >
running water and birdsong > crowds > broadcasting music > wind (a gentle breeze) and insects.
In winter, the order of the NPET was machines > wind (a gentle breeze) and insects > crowds >
broadcasting music > running water and birdsong. (4) When people perceived “acoustic comfort”,
their TSV improved, and vice versa.

Keywords: outdoor thermal comfort; acoustic perception; sound type (STP); physiological equivalent
temperature (PET); campus open spaces; China’s cold region

1. Introduction

Campus open spaces are conducive to improving the staff’s and students’ physical
and psychological health, relieving their pressure, and strengthening their learning and
cognitive abilities [1,2]. High-quality campus open spaces can enrich campus life, improve
the ability to adapt socially, and promote healthy growth and development. Among them,
thermally comfortable environments play an important role in promoting physical health,
altering psychology, and improving the emotional state of both staff and students [3].

The perception of human comfort is often defined as an individual’s satisfaction with
a specific environment and is influenced by factors, both psychological and physical [4]. In
addition to the significant influence of the thermal environment, the acoustic environment
is also considered to be a very important factor inhuman comfort [5,6]. An uncomfortable
acoustic environment has negative impacts on teaching, learning, and the health of staff
and students [7], while a high-quality acoustic environment may provide positive impacts
on social welfare, quality of life, and environmental health [8].

The factors influencing outdoor thermal comfort (OTC) can be divided into four levels:
physical, physiological, psychological, and social/behavioral [9]. On the physical level, air
temperature (Ta) is viewed as the primary influencer [10–14]. Moreover, solar radiation,
wind velocity (Va), relative humidity (RH), surface type, vegetation, and water bodies can
influence OTC to some extent [15–26]. On the physiological level, some studies demon-
strated that physical indices, such as skin temperature, heart rate, and sweat feeling index
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can be used as thermal comfort indices [11,27–30]. Additionally, metabolic rate and activity
type also may, to some extent, influence OTC [28,31–33]. At the social/behavioral level,
social characteristics (e.g., gender, age, socioeconomic status, and cultural background) and
thermal adaptation are all contributing factors [18,34–39].

Acoustic perception is usually defined as the “acoustic environment that an individual,
a group or a community perceives in a given scene” [40]. Existing studies generally
suggested that the subjective acoustic evaluation had a negative correlation to the sound
pressure level [41], and natural sound is more easily accepted by respondents than other
sound types (STPs) [42,43]. Moreover, age, gender, career, and the purpose of the visit of
the respondents can all affect acoustic perceptions [44,45].

Acoustic perceptions in outdoor open spaces are vital to thermal comfort. Some
scholars have conducted studies regarding this cross-modal effect on OTC. Tsai and Lin
showed that neutral thermal conditions were related to a higher Leq, and a lower Leq
was recorded under ‘hot’ to ‘very hot’ condition [46]. Under the same acoustic conditions,
individuals tended to be more tolerant in the square where the ambiance and thermal
conditions were better [47], and noise annoyance was related to thermal sensation [48,49].
Additionally, subjects felt more thermally unpleasant when the noise level increased [6]. It
suggested that the outdoor acoustic environment is associated with individuals’ thermal
perception [49–51], and the sound type and level have significant influences on thermal
comfort [52].

In addition to healthy humans, the acoustic-thermal perceptual characteristics of
atypically developed individuals in relation to the acoustic and thermal environment have
received increasing attention worldwide. Such interest deals with both the functional
and visual settings of their living spaces and other intangible aspects such as thermal and
acoustic comfort [53–59]. Previous studies showed that noise and an overload of sounds
should be avoided and that clients displaying challenging behavior should be taught how
to deal with noises and sounds. The sound environment, however, might also have relaxing,
comforting, and encouraging influences on people displaying challenging behavior [60].

To date, some studies on the acoustic–thermal correlation have been conducted in
urban squares, parks, and residential areas across many climatic zones [49,61]. However,
few studies have examined the cross-modal influence of acoustic perception on OTC for
different sound types (STPs) in campus open spaces. In our study, five typical spaces in a
campus in Xi’an, China were chosen to explore the relationship between acoustic perception
and OTC. The primary objectives of this study were to: (1) determine the influences of the
acoustic environment of typical open spaces on acoustic perception and comfort, and (2)
withstand the influencing characteristics of the acoustic perception of typical open spaces
on thermal comfort. Our results could provide theoretical references and technical guidance
to create comfortable campus open spaces concerning the combined effects of acoustic and
thermal perceptions.

2. Methods
2.1. Study Area

This study was carried out on a campus in Xi’an, a typical city in China’s cold region.
Xi’an is located on the border between the humid subtropical climate area and the tropical
and subtropical steppe climate area (Cwa to BSk) [62]. This places it in the warm temperate
sub-humid continental monsoon climate. It is warm and windy in spring, hot and rainy
in summer, cool and pleasant in autumn, and cold and dry in winter. According to
meteorological data from 2011–2021, the highest monthly average Ta is in July (27.21 ◦C)
with the highest value of 38.10 ◦C. The lowest monthly average Ta is in January (−0.92 ◦C)
and the lowest value is−11.65 ◦C. The annual average RH is between 57.58 and 79.45% [63].

Our trials were carried out on a university campus (108◦04′37” E, 34◦15′44” N). It
covers about 170 ha with diverse sound environments (broadcasting music, running water
and birdsong, and machines), landscape types, and abundant outdoor spaces; 66% of the
campus is green. Hence, it is an ideal place to study the acoustic comfort and thermal
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comfort of campus open spaces. Ta in urban spaces is influenced by the surrounding
environment within a radius of 10–150 m centered at the site [64]. A circle within a radius
of 10 m was used as the spatial scope in the experiment. Five representative outdoor spaces
were chosen on campus with consideration to the sky view factor (SVF) and seasonal
landscape that included a peony garden (PG), campus square (CS), wooded area (WA),
ecological garden (EG), and patio space (PS) (Table 1).

Table 1. Site descriptions.

Space Aerial Photograph Autumn Winter

Peony garden (PG)
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2.2. Experimental Design

The experiment was carried out in 7 days in the autumn and winter of 2020 (7, 17, 18,
and 24 October; 11–13 December). The meteorological variables during the experiments
are characteristic of the seasonality in Xi’an. When the sound pressure level (SPL) is
between 65 and 70 dBA, the acoustic comfort vote is related to the acoustic source and user
characteristics [64–68]. Therefore, the SPL was maintained to within 60–70 dBA during
trials (Leq = 60–70 dBA) [69].

The trials were carried out simultaneously at the measured points. Before the trial,
each respondent was briefed on the purpose of the experiment, methodology, and proce-
dure. The respondents were then divided into five groups, and each group was randomly
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assigned to go to a space where they listened to a random sound in each space. A sound
speaker was hidden at each measured point. Testers controlled the sound speaker so that
it was set to play before each group of respondents arrived. Upon arrival, respondents
were instructed to listen to the sounds and experience the environment for 15 min. The
respondents were then asked to fill in the subjective questionnaire for 5 min. The respon-
dents then moved to another trial site within 10 min. During the trial, the testers were
asked to keep silent and static to prevent disturbing the respondents, and respondents
were asked to stand throughout the experiment to prevent influences of different activity
metabolism. The respondents visited five spaces and the five STPs randomly in half a day,
without repetition (Figure 1). Such design controls for the order effect of an individual’s
experimental results eliminated order bias [70].
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2.2.1. Sound Selection

There is currently no fully standardized classification of sound types [71]. Axelsson
et al. proposed a five-classification system of sound sources (vehicular traffic, fans, other
noise, human sound, and natural sound) as a specification for acoustic assessment [72,73].
Other studies often classified sound types as ‘traffic’, ‘human voice’, ‘bird song’, ‘water’,
and ‘music’ [74–76]. The overall environment on campus is quiet due to the constraints
of teaching activities, and there is no traffic noise as in other outdoor experiments, with
little difference in the sound levels between the various types of sound. Based on the
previous studies [72,73,77], five types of sound (broadcasting music (Brm), running water
and birdsong (Rus), wind (a gentle breeze) and insects (Wis), crowds (Crn), and machines
(Macn) were obtained in advance using mobile phones as recording devices in real campus
scenarios (e.g., after class, by the water in the spring garden, next to a construction site being
renovated). The most representative sound clip of each sound was selected, the sound
pressure level was adjusted at 10 dB (A) intervals using the Adobe Audition software,
and each sound was edited into a 20-min sample. Each sample played one sound type
repeatedly and it was used as the sound stimulus during trials [78]. The SPL was measured
using an AWA5688 multi-functional sound level meter, and the SPL playing the sound
equipment was controlled at 60–70 dB. During trials, we conducted a pre-site selection in
advance and tried to choose some quiet sites to eliminate the influence of the background.
Additionally, the wind speed during the experiment was 2.0 m/s for the maximum and
0.3 m/s for the minimum. The effect of wind sound on the experimental results was
minimal [79]. Meanwhile, we arranged with the campus administration to ensure that
there was no collective activity with loud sounds surrounding the measured sites.

2.2.2. Meteorological Measures

Physical measurement refers to the meteorological data by installing relevant appara-
tus in measured sites. Instruments were selected with reference to ASHRAE 55 and ISO
7726 [80,81] (Table 2). Each measured space was equipped with a meteorological station
installed 1.1 m above the ground and data were recorded every 1 min. The monitored
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meteorological data include Ta, RH, Va, solar radiation (G), and the globe temperature (Tg).
The mean radiant temperature (Tmrt) was calculated by the following equation [82].

Tmrt =

[(
Tg + 273

)4
+

1.10× 108Va
0.6

εD0.4

(
Tg–Ta

)]0.25

–273 (1)

where ε refers to the black globe reflectivity (ε = 0.95 in this study). D is the diameter of the
black globe (D = 0.05 m in this study).

Table 2. Instrument information.

Instrument Parameters Range Precision

HOBO onset U23-001
Air temperature −40–70 ◦C ±0.21 ◦C

Relative humidity 0–100% ±2.5%
Kestrel 5500 Wind speed 0–40 m/s 0.1 m/s

Delta OHM HD2107.2 Globe temperature −30–120 ◦C ±0.25 ◦C
JTR05 Global radiation 0–2000 W/m2 ≤±2%

AWA5688 A weighted sound
pressure level 28 dBA–133 dBA

The respondents were required to stay in measured spaces for 20 min, during which
SPL was controlled at 60–70 dBA. Therefore, an AWA5688 multi-functional sound level
meter was used to measure the SPL every 20 min when recording meteorological parameters
in each space.

2.3. Questionnaire Survey

Part I of the questionnaire captured the general respondents’ information, including
gender, age, height, body weight, and clothing. The clothing insulation and metabolism
referred to standards in ASHRAE 55 and ISO 7726 [80,81].

Part II investigated the respondents’ acoustic perception, including acoustic sensation,
acoustic comfort, and acoustic acceptability. Eight adjectives, including eventful, exciting,
pleasant, calm, uneventful, monotonous, annoying, and chaotic, were selected to evaluate
the acoustic perception of each space [72,73,83]. A 5-level scale was applied to evaluate
respondents’ acoustic perception of each adjective: −2: strongly disagree; −1: somewhat
disagree; 0: neutral; +1, somewhat agree; +2 strongly agree. A 5-level scale was used
to evaluate acoustic comfort: −2: discomfort; −1: slight discomfort; 0: neutral; 1: slight
comfort; 2: comfort. A 3-level scale was used to evaluate the acoustic acceptability: −1:
unwilling; 0: neutral; 1: willing [76].

Part III investigated the respondents’ outdoor thermal perception, including thermal
sensation and thermal comfort. The respondents were asked about their comfort and
acceptability of the whole environment. A 7-level scale (−3: cold; −2: cool; −1: slightly
cool; 0: moderate; 1: slightly warm; 2: warm; 3: hot) was used to evaluate the thermal
perception of residents. Thermal comfort was measured by a 5-level scale (−2: discomfort;
−1: slight discomfort; 0: moderate; 1: slight comfort; 2: comfort) [84].

2.4. Statistical Analysis

In this study, physiological equivalent temperature (PET), based on the theoretical
foundation of the MEMI model (human heat balance model), has been used extensively to
predict thermal comfort in complex outdoor environments [85]. Meteorological parameters
and individual parameters (height, body weight, age, gender, clothing insulation, and
metabolic rate) were input into the Rayman to calculate the PET [86,87].

All original data were recorded and processed in Microsoft Excel. The linear regression
equation was fitted, and the corresponding diagram was plotted. The one-way analysis of
variance (ANOVA) in SPSS23.0 was used to analyze the data.
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2.5. Respondents’ Attribute

A total of 241volunteers were recruited; 137 in autumn and 104 in winter. The vol-
unteers were aged 17–27 years, with a height range of 1.52–1.90 m and a weight range of
42–96 kg (Table 3). The respondents were asked to stand during the experiment (70 W/m2).
All respondents were staff or students who had lived in Xi’anfor more than a year and had
adapted to the local climate and were able to accurately perceive temperature changes and
adjust their clothing appropriately [88]. Each participant was informed of the procedure,
requirements, and precautions prior to the trial, and they had normal hearing and were
able to forma reasonable assessment of their acoustic surroundings.

Table 3. Respondents’ attribute.

Season Age Gender Number Height (cm) Weight (kg)

autumn
18–26 male 35 177.1 ± 6.32 67.4 ± 10.42
17–25 female 102 163.9 ± 5.42 53.4 ± 5.99

winter
21–27 male 20 176.0 ± 3.5 71.6 ± 8.7
18–27 female 84 163.0 ± 4.8 54.0 ± 7.1

3. Results
3.1. Meteorological Parameters

The average Ta of spaces PG and CS was high, but the value in space PS was relatively
low, which is related to the space’s shadiness. There is relatively high SVF in both spaces,
PG and CS. Without overhead shade, the Ta in these spaces increased quickly due to
the direct sunshine. Since spaces WA and PS were completely shaded at the top, the Ta
fluctuated slightly during the day. Space WA is covered overhead by trees, but some
sunlight penetrates through the canopy. Space PS is surrounded by buildings, which makes
it difficult for sunlight to penetrate. Hence, the mean Ta of WA was higher than that of PS.
Since space EG is a square space, partially shaded by arbors, the mean Ta was lower than
those of PG and CS, but it was higher than those of WA and PS.

Spaces WA and PS showed the highest average RH, followed by EG and PG. The
average RH in space CS was the lowest, which is related to its morphology and vegetation
planting. Space WA, with its high proportion of plants, had a higher average RH. Space PS
is surrounded by high-rise buildings with small rainwater ponds, resulting in the relatively
high average RH. Although there are relatively high proportions of plants in spaces EG
and PG, these are open spaces with high Ta. Hence, the average RH of spaces EG and PG
was relatively low.

The average Va of space CS was the highest, which is related to its morphological
layout. Space CS is an open square in front of the administration building, with good
ventilation and few barriers. The average Va of PS was0.3 m/s (autumn) and0.5 m/s
(winter). Since there are tall buildings in the south and north of space PS, but good
ventilation to the east and west, the courtyard formed a wind corridor.

Space CS had the highest average G in autumn. Space WA had the lowest average G
in winter. Similar to Ta, this is related with overhead shade in these spaces. In spaces CS
and PG without overhead shade, the average G and average Tg were relatively high. The
Tg of PG was slightly lower than that of CS, which is due to its lawns. Since the plant shade
is denser than the building shade, the average G and average Tg of space PS were higher
than those of space WA in autumn (Table 4).
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Table 4. Meteorological parameters.

Season Meteorological
Factor PG CS WA EG PS

Autumn

Ta (◦C)
Max. 19.7 20.1 18.9 19.1 18.4
Min. 10.7 11.0 10.2 10.4 10.4

Mean ± SD 15.6 ± 2.6 15.8 ± 2.7 14.8 ± 2.6 15.1 ± 2.6 14.7 ± 2.4

RH (%)
Max. 82.5 81.1 87.6 87.1 87.0
Min. 40.6 36.0 43.0 42.9 42.4

Mean ± SD 59.0 ± 12.8 57.3 ± 13.2 62.7 ± 12.7 61.6 ± 12.9 62.6 ± 12.4

Va (m/s)
Max. 0.9 1.3 0.5 0.5 1.1
Min. 0.0 0.0 0.0 0.0 0.0

Mean ± SD 0.3 ± 0.3 0.6 ± 0.4 0.1 ± 0.2 0.2 ± 0.1 0.3 ± 0.3

G (W/m2)
Max. 706.7 689.4 81.2 44.0 105.6
Min. 0.4 62.9 9.1 2.2 22.3

Mean ± SD 254.4 ± 221.9 255.6 ± 160.6 26.7 ± 14.0 19.5 ± 13.6 51.6 ± 21.1

Tg (◦C)
Max. 28.4 29.6 19.7 21.2 19.4
Min. 13.5 13.4 10.5 11.5 11.1

Mean ± SD 21.5 ± 3.6 22.1 ± 3.9 15.6 ± 2.4 16.7 ± 2.5 15.8 ± 2.2

Tmrt (◦C)
Max. 50.2 59.9 21.5 24.4 21.5
Min. 13.5 17.9 10.5 11.8 12.0

Mean ± SD 28.3 ± 9.5 32.8 ± 9.5 16.1 ± 2.5 18.3 ± 2.8 17.3 ± 2.8

Winter

Ta (◦C)
Max. 11.2 11.1 10.4 10.9 10.0
Min. −0.1 −0.1 −0.2 0.1 0.4

Mean ± SD 5.4 ± 4.1 5.5 ± 4.0 5.0 ± 3.8 5.3 ± 3.9 5.0 ± 3.5

RH (%)
Max. 70.9 69.2 70.8 70.7 70.7
Min. 33.2 33.6 35.2 34.7 33.7

Mean ± SD 51.9 ± 13.2 51.7 ± 12.8 53.5 ± 12.5 53.2 ± 13.0 54.3 ± 12.6

Va (m/s)
Max. 0.8 2.0 1.2 1.0 1.4
Min. 0.0 0.0 0.0 0.0 0.1

Mean ± SD 0.1 ± 0.2 0.7 ± 0.5 0.3 ± 0.3 0.3 ± 0.2 0.5 ± 0.3

G (W/m2)
Max. 394.3 327.4 77.4 303.3 62.1
Min. 27.5 28.4 8.7 21.0 17.9

Mean ± SD 175.9 ± 124.6 157.9 ± 107.8 29.2 ± 18.0 120.9 ± 99.1 36.5 ± 11.7

Tg (◦C)
Max. 19.5 20.2 12.6 17.6 10.5
Min. 0.2 0.5 −0.1 0.6 0.7

Mean ± SD 9.7 ± 6.5 10.2 ± 6.5 5.8 ± 4.4 7.9 ± 5.5 5.6 ± 3.7

Tmrt (◦C)

Max. 25.0 40.8 18.7 30.7 12.9
Min. 0.2 1.8 0.0 0.9 0.4

Mean ± SD 10.5 ± 7.4 18.0 ± 12.4 6.8 ± 5.4 11.7 ± 9.1 6.9 ± 4.0

3.2. Thermal Perception

We calculated that the NPETautumn = 18.7 ◦C and the NPETR = 14.6−22.9 ◦C in autumn;
the NPETwinter = 11.6 ◦C and the NPETR = 7.3–15.9 ◦C in winter. The NPET in winter and
autumn, with the regression models of MTSV and PET, indicates that people can tolerate
cold more in winter than in autumn. This may be because people have adapted to the cold
environment (Figure 2).
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MTSVautumn = 0.1192 PET − 2.2343 (R2 = 0.9203) (2)

MTSVwinter = 0.1164 PET − 1.3458 (R2 = 0.9194) (3)
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Figure 2. Correlation between MTSV and PET in autumn and winter.

3.3. Acoustic Perception

ANOVA of acoustic sensation vote (ASV), acoustic comfort vote (ACV), and acoustic
unacceptable vote (AUV) showed that there were significant differences between ASV, ACV,
and AUV at different STPs (F > 1; p < 0.01).

3.3.1. Acoustic Sensation

When calculating the percentages of the ASV of different levels in the total number of
votes at different STPs, ASVs for “−3: very quiet”, “−2: quiet” and “−1: relatively quiet”
were viewed as votes for “quiet”, and ASVs for “0: moderate” were viewed as neutral
votes. ASVs for “3: very noisy”, “2: noisy” and “1: relatively noisy” were viewed as votes
for “noisy” (Figure 3).
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Figure 3. Distribution of the ASV among sound types.

Given a constant SPL, we found a significant difference in the ASVs at different STPs.
In autumn, the percentage of ASVs for “moderate” with broadcasting music was the highest
(70.1%). The percentages of ASVs for “noisy” with crowds (94.2%) and machines (89.7%)
were far higher than those with other STPs. In other words, crowds and machines made
most respondents feel their environment was “noisy”. The percentage of ASVs for “3:
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very noisy” and “2: noisy” with running water and birdsong was 0, and only 6.6% of
respondents voted for “relatively noisy”. This reflected that most respondents felt they
were in a relatively quiet environment with running water and birdsong.

In winter, the percentage of ASVs for “moderate” with broadcasting music remained
the highest (66.0%), followed by those with running water and birdsong (51.5%) and wind
(a gentle breeze) and insects (47.2%). With running water and birdsong and broadcasting
music, the percentage of ASVs for “quiet” was higher than that of votes for “noisy”. With
crowd noise, the percentage of ASVs for “−3: very quiet” and “−2: quiet” was 0. With
machines, the percentage of ASVs for “−3: very quiet”, “−2: quiet” and “−1: relatively
quiet” was 0. In other words, the respondents felt that the environment was “noisy” by the
sounds after class and machine noise. This was consistent with results in autumn. In this
study, crowds and machines were perceived as noises, and we found that noise perception
was insensitive to ambient Ta.

3.3.2. Acoustic Comfort

We calculated the percentage of ACVs from the total number of votes at different
STPs. ACVs for “−2: discomfort” and “−1: slightly discomfort” were perceived as votes
for “discomfort”. ACVs for “0: neutral” were perceived as neutral. ACVs for “1: slightly
comfort” and “2: comfort” were perceived as the votes for “comfort” (Figure 4).
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Figure 4. Distribution of the ACVs among sound types.

In autumn, the percentage of ACVs for acoustic comfort was relatively high with
broadcasting music (86.3%), running water and birdsong (53.3%), and wind (a gentle
breeze) and insects (59.7%). More than 50% of the respondents perceived a comfortable
acoustic environment. Nevertheless, ACVs for acoustic comfort provided the completely
opposite results with crowds and machines. Most respondents perceived that these two
sound types brought them acoustic discomfort. Results demonstrated that different STPs
influenced the acoustic comfort of people differently. We found no difference between
winter and autumn ACVs despite different STPs.

In winter, the percentage of ACVs for “discomfort” and “moderate” at different STPs
was higher compared to those in autumn. This appeared to be because a low Ta in winter
increased acoustic discomfort. The percentages of ACVs for “comfort” with broadcasting
music were the highest in both autumn and winter. In other words, acoustic comfort might
not be influenced by low temperatures when it is accompanied by pleasant music. However,
low Ta may increase acoustic discomfort with other STPs. Running water and birdsong
and wind (a gentle breeze) and insects are often viewed as pleasant sounds. Running water
and wind may increase the cold sensation of respondents, thus decreasing their TSV.

3.3.3. Acoustic Evaluation

The acoustic environment at each site was evaluated using eight adjectives. Specifi-
cally, “eventful, exciting, pleasant, and calm” were used as positive evaluations, whereas
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“uneventful, monotonous, annoying, and chaotic” were used as negative evaluations.
Moreover, votes for “somewhat agree” and “strongly agree” were grouped as “agree”.
Votes for “strongly disagree” and “somewhat disagree” were grouped as “disagree”. In
autumn, proportions of votes for “agree” with positive evaluations were broadcasting
music > running water and birdsong > wind (a gentle breeze) and insects >crowds > ma-
chines. The proportions of votes for “disagree” with negative evaluation were: machines
> crowds > wind (a gentle breeze) and insects (22.6%) > running water and birdsong >
broadcasting music. The adjective evaluation in winter was consistent with that in autumn.
Positive and negative evaluations represent respondent preferences for different sounds.
The respondents gave more positive evaluations of broadcasting music and running water
and birdsong, but more negative evaluations of machines and crowds. With broadcasting
music and running water and birdsong, the respondents perceived a pleasant acoustic en-
vironment with a better space landscape experience. With machines and crowd noises, the
respondents perceived a poor acoustic environment, thus influencing their space landscape
experiences. Broadcasting music achieved the highest positive evaluation and the lowest
negative evaluation (Figure 5).
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3.4. Effects of Acoustic Perception on Thermal Perception

An ANOVA of TSV and TCV was carried out on each STP. There were different TSVs
at different STPs, but such differences were not significant (F > 1; p > 0.05). There were
significant differences among STPs in terms of TCV (F > 1; p < 0.01).

3.4.1. Thermal Sensation at Different STPs

The TSV distributions at different STPs were similar in autumn and winter. In autumn,
the proportions of “TSV = 0” in broadcasting music, running water and birdsong, wind (a
gentle breeze) and insects, crowds, and machines were similar. In winter, the proportions
of “TSV = −2” (25.71%) and “TSV = −3” (5.71%) in wind (a gentle breeze) and insects were
the highest. This revealed that people preferred the colder TSV with wind (a gentle breeze)
and insects (Figure 6).
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3.4.2. Thermal Comfort at Different STPs

We calculated the percentages of TCVs at different levels in the total number of votes
at different STPs. In autumn, TCVs for “discomfort” (TCV = −2, −1) were relatively
high with machines (35.3%) and crowds (39.6%). The TCVs for “comfort” (TCV = 1, 2)
with running water and birdsong (57.7%), wind (a gentle breeze) and insects (57.0%), and
broadcasting music (56.7%) exceeded 50% and were basically equal, indicating the high
thermal comfort of respondents. In winter, the TCVs for “discomfort” at different STPs
were higher than that in autumn, which might be related to the meteorological environment
in winter. The percentage of TCVs for “discomfort” was the highest with crowds (65.0%),
but the percentage of TCVs for “comfort” was the highest with broadcasting music (45.3%).
In autumn and winter, the respondents reported high thermal comfort with broadcasting
music, but low with machines and crowd noise (Figure 7). This may be because different
STPs caused different acoustic comfort, thus influencing the respondents’ thermal comfort.
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Figure 7. Distribution of the TCVs among sound types.

3.4.3. NPET at Different STPs

We calculated the weighted mean TSV for every 1 ◦C bin of PETs at different STPs in
autumn and winter. NPETs at different STPs in autumn and winter were compared. In
autumn, machines > running water and birdsong > crowds > broadcasting music > wind
(a gentle breeze) and insects. In winter, machines > wind (a gentle breeze) and insects >
crowds > broadcasting music > running water and birdsong. The NPETs with machines
were the highest both in autumn and winter, accompanied by a higher TSV compared to
those at other STPs. The influence of STP on thermal sensation had no significant patterns
in autumn. The influences of STP on thermal sensation in winter were more significant
compared to those in autumn (Figure 8, Table 5).
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Figure 8. Correlation between PET and MTSV in different sound types: running water and birdsong
(a), wind (a gentle breeze) and insects (b), broadcasting music (c), crowds (d), and machines (e).
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Table 5. Correlation between PET and MTSV in different sound types.

Autumn Winter

Machine noise MTSV = 0.1294 PET − 2.4824
(R2 = 0.7473)

MTSV = 0.1037 PET − 1.5505
(R2 = 0.575)

Crowd noise MTSV = 0.1594 PET − 2.98
(R2 = 0.7419)

MTSV = 0.1003 PET − 1.3249
(R2 = 0.6347)

Running water and birdsong MTSV = 0.1599 PET − 3.0671
(R2 = 0.7539)

MTSV = 0.1163 PET − 1.3098
(R2 = 0.6469)

Broadcasting music MTSV = 0.1128 PET − 2.0213
(R2 = 0.7122)

MTSV = 0.146 PET − 1.6612
(R2 = 0.7254)

Wind and insects sound MTSV = 0.1198 PET − 2.1037
(R2 = 0.6948)

MTSV = 0.1156 PET − 1.6189
(R2 = 0.6554)

3.4.4. NPET at Different ACV Levels

The relationship between PET and MTSV with different acoustic comfort levels was
calculated and fitted linearly (Figure 9). With different ACV levels, the relationship between
PET and MTSV was:

ACV = 1, 2 (comfort level) MTSV = 0.0769 PET − 1.4875 (R2 = 0.7787) (4)

ACV = 0 (moderate level) MTSV = 0.0586 PET − 1.068 (R2 = 0.6195) (5)

ACV = −2, −1 (discomfort level) MTSV = 0.0767 PET − 1.1989 (R2 = 0.823) (6)
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The NPET at corresponding ACV levels were calculated: NPETcomfort = 15.6 ◦C,
NPETmoderate = 18.2 ◦C, and NPETdiscomfort = 19.3 ◦C. It shows an order of NPETcomfort ≤
NPETmoderate < NPETdiscomfort. The TSV was low in autumn and winter when the sound
was uncomfortable. The TSV was high with acoustic comfort, but the respondents’ thermal
sensation was lower when the sound was uncomfortable.

4. Discussion
4.1. Thermal Perception

We found no significant difference in the TSVs among different STPs, but a significant
difference in TCVs. This result agrees with Guan’s study [89]. Some studies found that
noise did not affect the cold sensations, but it affected thermal comfort and discomfort [90].
People were more sensitive to the perception of noise in hot environments [91]. The respon-
dents’ TCVs were higher with broadcasting music, wind (a gentle breeze) and insects, and
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running water and birdsong compared to other STPs. With crowd and machine noises,
the TCVs were relatively low, intensifying the respondents’ thermal discomfort. Yang and
Moon found that sound types had significant effects on TCVs, ACVs, and OCVs [92,93].
Generally, TCVs were higher with acoustic comfort, but it was worse when acoustic dis-
comfort was reported. Overall comfort is influenced by the interaction of SPL and Ta.
Thermal, acoustic, and total comforts in a musical environment were all better than in a
noisy environment [89]. This is similar to our results. Our experiments were conducted
in autumn and winter, when a low Ta reduced the sensitivity of the respondents’ sound
perception, resulting in differences in TSVs between sound types but not significantly. The
TCVs in different sound types are not affected by temperature. A comfortable acoustic
environment increases positive emotions, thus improving their thermal comfort.

4.2. Acoustic Perception

There were significant differences among STPs in terms of acoustic perception, acoustic
comfort, and acoustic acceptability even though the SPL was similar among trials. Broad-
casting music, running water and birdsong, and wind (a gentle breeze) and insects can
make respondents feel more pleasant, thus receiving higher scores on acoustic evalua-
tion. However, crowd and machine noises are viewed as too loud and unpleasant, thus
resulting in low scores on acoustic evaluation. When experiencing a pleasant sound, the
overall preference for the acoustic environment was higher [94]. People like street music,
tramcar sounds, and birdsong. Residents living in rural areas prefer natural sounds and
rhythms and reported a neutral attitude toward livestock sounds and communication
sounds, but strongly disliked noises from traffic and machines [95]. Similar results are
found in this study.

Independent sample t-tests were conducted on male and female subjects’ sound and
thermal evaluations. The results showed there were no significant differences between
gender on ASVs, ACVs, and TCVs, but significant differences were found in TSVs. This
agrees with the conclusions of Yang and Kang’s study [68]. Additionally, analysis of
the respondents’ TSVs under different STPs showed that male subjects that perceived
‘moderate’ (TSV = 0) were more than that of female subjects, while female subjects were
more sensitive to thermal stress under the same sound stimuli during autumn and winter.

4.3. Strategies Based on Thermal–Acoustic Effects

Based on our results, optimal design strategies to improve outdoor comfortable per-
ceptions using the combined effect of acoustic–thermal comfort were proposed. Machine
noises may decrease acoustic and thermal comfort while running water and birdsong
have positive effects on the acoustic environment. In an activity space with external noise
disturbances, a design with a fountain background wall, tall trees that attract birds, and a
large canopy will decrease acoustic discomfort (Figure 10a). In an activity space with few
external noises, uneven green land, safety exercise boundaries, and vegetation can be de-
signed to separate activity and rest zones and dampen crowd noise influences (Figure 10b).
Soundscape sketches can be designed in outdoor rest spaces. We suggest increasing the
duration and frequency of broadcasting music, designing sunken spaces and tree pool
chairs, enclosed by flowering shrubs, and creating quiet and comfortable outdoor rest
spaces (Figure 10c). Outdoor natural space provides appropriate habitats for animals like
insects and birds by providing an appropriate plant community. We suggest designing an
ecological drought stream or rainwater garden and increasing wind (a gentle breeze) and
insects and running water and birdsong sounds (Figure 10d). Squares should consider de-
signing foundations, pools, flower beds, corridors, and other landscape elements, planting
trees with large crowns and deed shade, playing pleasant music, and improving the overall
outdoor comfort and satisfaction of teachers and students (Figure 10e).
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Figure 10. Optimum design strategies: (a) design with a fountain background wall and tall trees to
attract birds and decrease acoustic discomfort; (b) design with uneven green land, safety exercise
boundaries, and vegetation to dampen crowd noise influences; (c) increase the duration and frequency
of broadcasting music to create comfortable outdoor rest space; (d) design with an ecological drought
stream or rainwater garden to increase wind (a gentle breeze) and insects and running water and
birdsong; (e) design with foundations, pools, flower beds, and corridors to improve the overall
comfort and satisfaction.

A good acoustic–thermal environment can also provide a satisfactory landscape ex-
perience for atypical persons. In our design strategy, playing pleasant music can soothe
atypical people and have a positive impact, which is similar to what we often call music
therapy, where a good mood will enhance the perceptual evaluation (including acoustic–
thermal perception); adding natural sounds by improving the natural environment, which
is beneficial for the health and therapeutic effects of atypical people; and lower noise levels
in open spaces can reduce the stress of atypical people and avoid stress levels.

4.4. Limitations

This study has some limitations. First, we investigated the influences of STPs on
acoustic and thermal perception with a fixed SPL. Future studies should explore the
influences of STPs on acoustic and thermal perception with different SPLs. Second, our
study was conducted in the cold and transition seasons. An experiment may well come to
different conclusions with a high Ta in summer. Third, the respondents were exposed to
recording sounds from speakers rather than the real sound environment, which may have
led to different findings, and the role of the acoustic–thermal interaction in real scenarios
should be further investigated in future studies. Fourth, we recruited healthy students
for our experiment, but there are also atypical populations on campus, such as depressed
and hearing-impaired people, who perceive the environment differently from healthy
people. Therefore, future research should further investigate how the acoustic–thermal
environment affects the perception of atypical populations.

5. Conclusions

In this study, five typical open spaces with five common STPs (broadcasting music,
running water and birdsong, wind (a gentle breeze) and insects, crowds, and machines)
on a campus in China’s cold region were tested. The acoustic perception in each space is
evaluated as eventful, exciting, pleasant, calm, uneventful, monotonous, annoying, and
chaotic, during which PET is selected as a thermal index to evaluate OTC. The relationship
between acoustic perception and thermal comfort among open spaces during autumn and
winter was analyzed. Some major conclusions are drawn:
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1. There are significant differences among STPs in terms of acoustic perception and
comfort and acoustic acceptability even though the SPLs are controlled. Broadcasting
music, running water and birdsong, and wind (a gentle breeze) and insects make
respondents feel more pleasant and acceptable, while crowds and machines are too
loud and unpleasant.

2. The respondents’ thermal comfort is related to STPs. Different STPs influence people’s
acoustic comfort, thus influencing their thermal comfort. With natural sounds (run-
ning water and birdsong) and meaningful sound (broadcasting), people experience
higher thermal comfort. In autumn, the thermal comfort order with different STPs
is: wind (a gentle breeze) and insects > running water and birdsong > broadcasting
music > machines > crowds. In winter, this order is: broadcasting music > wind (a
gentle breeze) and insects > running water and birdsong > machines > crowds.

3. The NPET is different for different STPs. In autumn, the NPET of machines, running
water and birdsong, crowds, broadcasting music, and wind (a gentle breeze) and
insects is 19.184 ◦C, 19.181 ◦C, 18.70 ◦C, 17.92 ◦C, and 17.56 ◦C, respectively. In winter,
the NPET of machines, wind (a gentle breeze) and insects, crowds, broadcasting
music, and running water and birdsong is 14.95 ◦C, 14.00 ◦C, 13.21 ◦C, 11.38 ◦C, and
11.26 ◦C, respectively. The NPET with machines is the highest in autumn and winter.
People perceived high thermal sensation when they are acoustically comfortable, but
low thermal sensation when in acoustic discomfort.
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Nomenclature

PG Peony garden
CS Campus square
WA Wooded area
EG Ecological garden
PS Patio space
Brm Broadcasting music
Rus Running water and birdsong
Wis Wind (a gentle breeze) and insects
Crn Crowds
Macn Machines
SVF Sky view factor
ASV Acoustic sensation vote
ACV Acoustic comfort vote
TSV Thermal sensation vote
TCV Thermal comfort vote
PET Physiological equivalent temperature
NPET Neutral PET
STP Sound type
Leq Sound pressure level
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Ta Air temperature (◦C)
RH Relative humidity (%)
Va Wind speed (m/s)
Tg Globe temperature (◦C)
Tmrt Mean radiant temperature (◦C)
G Global radiation (W/m2)
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