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Abstract: The determination of shear strength and the identification of potential failure modes are
the crucial steps in designing and evaluating the structural performance of reinforced concrete (RC)
columns. However, the current design codes and guidelines do not clearly provide a detailed
procedure for governing failure types of RC columns. This study predicted the shear strength and
identified the failure modes of rectangular RC columns using various Machine Learning (ML) models.
Six ML models, including Multivariate Adaptive Regression Splines (MARSs), Naïve Bayes (NBs),
K-nearest Neighbors (KNNs), Decision Tree (DT), Support Vector Machine (SVM), and Artificial
Neural Network (ANN), were developed to calculate the shear strength and to classify the failure
modes of rectangular RC columns. A total of 541 experimental data samples were collected from
literature and utilized for developing the ML models. The results reveal that the ANN and KNNs
models outperformed other ML models in predicting the shear strength of rectangular RC columns
with the R2 value larger than 0.99. Additionally, the KNNs model achieved the highest accuracy,
mostly 100%, for identifying the failure modes of rectangular RC columns. Based on the superior
performance of the ANN and KNNs models, a graphical user interface was also developed to rapidly
predict the shear strength and failure modes of rectangular RC columns.

Keywords: rectangular reinforced concrete column; failure mode; shear strength; machine learning
model; graphical user interface

1. Introduction

Rectangular reinforced concrete (RC) columns have been widely used in civil engi-
neering structures. The columns are key components in ensuring the global safety of
the structures. Calculating the shear strength and identifying the failure modes of such
columns are crucial problems in the design process and structural analyses. Numerous
experimental studies reported that the RC column could be failed in flexure, shear, or
combined flexure–shear, depending on input design parameters.

Practical formulas for calculating the shear strength of RC columns were specified
in design codes, such as ASCE/SEI-41-06 [1], ACI 318 [2], Eurocode-8 (EC-8) [3], CSA [4],
and FEMA 273 [5]. Furthermore, many studies proposed equations for estimating the
shear strength of RC columns [6–12]. However, a discrepancy was observed in comparing
experimental tests and equations in the codes and published studies [13–16]. Additionally,
several proposed formulas in previous works were limited in specific cases, such as short
rectangular RC columns [17] and low transversal reinforcement [12]. Few models were
even difficult in application practices since they contain many coefficients [18].

To overcome these drawbacks, Machine Learning (ML) techniques have been em-
ployed. Various studies applied ML models for predicting structural capacity and response
of RC columns and beams [19–31]. Inel [19] estimated the ultimate flexure deformation
of rectangular RC columns using Artificial Neural Networks (ANNs). A total of 237 data
samples were used to construct the ANN model, which showed superior performance
to other empirical equations. The flexure moment capacity of spiral RC columns was
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predicted using an Adaptive Fuzzy Inference System (ANFIS) model [20] and neural net-
works combined with particle swarm and Harris Hawks optimization techniques [21].
They proved that those ML models estimated the moment capacity with high precision.
Recently, Feng et al. [22] employed the adaptive boosting model to predict the plastic
hinge length of RC columns, in which 133 data sets were utilized. Lee et al. [23] collected
210 experimental tests to propose empirical equations for estimating the lumped plasticity
model of circular RC columns using regression techniques. Aldabagh et al. [24] proposed
simplified equations for predicting drift limits of circular RC bridge columns based on
ML-based symbolic regression. Recently, Quaranta et al. [32] developed hybrid models
combining mechanical concepts with machine learning-calibrated coefficients for improv-
ing shear strength equations of reinforced concrete members. They demonstrated that
the accuracy of updated equations was significantly enhanced. Moreover, some studies
utilized ML models to estimate the shear strength of circular [13–15,25] and rectangular RC
columns [16,17,25,26]. However, they stated that a wide range of ML algorithms should
be investigated and the number of data samples should be increased. Additionally, the
previously developed ML models were not transferred to practical tools (e.g., mathematical
formulas or graphical user interface), which can be used in design problems. Therefore, it
will be very challenging to apply those ML models for practice. In addition, the influence
of input variables on the predicted shear strength was not investigated systematically.

Normally, three typical failure modes of RC columns are observed under
seismic loading [26,33]:

(1) Flexure failure: degradation of lateral load capacity occurred due to flexural
deformation after yielding of the longitudinal reinforcing bar. This is the ductile failure,
and it has a visible warning before losing capacity. In other words, it is the expected failure
type in the design of the columns.

(2) Shear failure: degradation of lateral load capacity occurred due to shear distress
(diagonal cracks) before yielding of the longitudinal reinforcing bar. This is the brittle
failure and an unexpected type. It should be avoided in the design procedure.

(3) Flexure–shear failure: degradation of lateral load capacity occurred after yielding
of the longitudinal reinforcing bar but results from shear distress.

In the last decades, the identification of the failure modes of RC columns has used
conventional methods, such as the shear aspect ratio, shear strength ratio, and ductility
factor. A very simplified indicator is the column aspect ratio, a/d (i.e., shear span—to-
effective depth ratio) [34]. If a/d ≥ 4, the column fails in flexure; if 2 < a/d < 4, a
flexure–shear failure is governed; otherwise, the shear failure is dominated if a/d ≤ 2.
Nevertheless, this approach does not consider the influence of material properties and
reinforcement details [26]. Another parameter, the shear strength ratio (Vr), which is defined
as the ratio of the shear demand to shear capacity, has also been utilized for estimating the
failure modes of rectangular RC columns [34,35]. The column fails in shear if Vr > 1; the
column suffers a flexure failure if Vr ≤ 0.6; otherwise, a flexure–shear failure is governed.
However, it was stated that this method predicted failure modes of RC columns less
accurately [34,36]. Moreover, Ghee et al. [37] employed the displacement ductility factor (µ)
to classify failure types of circular RC columns. If µ ≥ 6, the column fails in flexure; a
ductile–shear failure can be experienced if 2 < µ < 6, and otherwise if µ ≤ 2, a shear failure
is dominated. Nevertheless, a small data set was used; this approach is not suggested to
apply for a wide range of columns. Additionally, the variation of calculated capacity and
predicted failure is significant due to the complexity of mechanism.

To improve the prediction, Qi et al. [37] classified failure models of RC columns
using the Fisher discriminant analysis. They gathered 111 tests of circular RC columns
to derive the statistic method. However, a limited accuracy was shown for the flexure–
shear failure mode. Ning and Feng [38] developed a probabilistic indicator to classify
the failure mode of solid rectangular RC columns. For that, an explicit expression was
derived using the simplified truss-and-arch model accounting for flexural and shear models,
in which five unknown parameters were involved. However, given the complexity of
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failure mechanisms, prevailing uncertainties, and subjective definition of thresholds in the
proposed modeling [38], the predicted failure modes were not perfectly consistent with the
experimental data provided by Berry et al. [39] and Zhu et al. [33].

So far, several studies have applied ML techniques to identify the failure modes of
RC columns. Mangalathu and Jeon [40] predicted failure modes of circular RC bridge
piers based on six ML models, which were established based on 311 experimental results.
They pointed out that ANN was the optimal approach among the investigated ML models.
Feng et al. [26] applied various single and ensemble learning algorithms to classify failure
modes and to predict the bearing capacity of rectangular RC columns using 254 test data
samples. As a result, the adaptive boosting algorithm demonstrated better performance for
classifying failures than other single learning techniques. Mangalathu et al. [41] employed
the random forest model and the SHapley Additive exPlanation (SHAP) method [42] to predict
failure modes of spiral RC columns. They concluded that the used methods provided an
accuracy of 84% in identifying failure modes of the columns. Recently, Naderpour et al. [43]
utilized ANN and Decision Tree (DT) models to predict failure modes of RC columns,
in which 163 and 253 data sets were considered for spiral and rectangular RC columns,
respectively. The aforesaid studies emphasized the high precision of ML techniques in
identifying failure modes of RC columns. However, practical tools, such as mathematical
equations or the graphical user interface, were not developed for design purposes.

This study employs six ML models to predict the shear strength and identify failure
modes of rectangular RC columns. A total of 541 experimental data samples were selected
to train the ML models. Six used ML models include Multivariate Adaptive Regression
Splines (MARSs), DT, K-Nearest Neighbors (KNNs), Support Vector Machine (SVM), ANN,
and Naïve Bayes (NBs). Among these, the MARSs, KNNs, DT, SVM, and ANN models were
used for predicting the shear strength; meanwhile, the NBs, KNNs, DT, and SVM models
are used for classifying failure modes. The optimal ML model was recognized, and then
practical tools (i.e., mathematical equation and the graphical user interface) were developed
for convenient design purposes of rectangular RC columns. Additionally, the effects of
input parameters on the shear strength of RC columns are investigated in this study.

2. Data Collection

A significant database should be used in developing ML models to cover a wide range
of input parameters of RC columns, such as geometric dimensions, material properties, and
axial load effects. Additionally, the large enough sample size also enables the accuracy of
prediction. A total of 541 experimental data sets of rectangular RC columns were extensively
collected from the study of Ghannoum et al. [44] and other studies [45–103]. Ten input
parameters, including geometric dimensions, reinforcing bar details, material properties,
and axial load, need to be provided to estimate the shear strength and identify the failure
mode of the RC columns. Geometric dimensions include the height of the column (L), the
width of the cross-section (B), and the length of the cross-section (H). It is worth noting
that the aspect ratio of columns (L/B) is varied from 1.1 to 15.3, covering short and slender
RC columns. Reinforcement details contain the longitudinal reinforcement ratio (ρl), the
transversal reinforcing bar ratio (ρh), and the spacing of the transversal reinforcements (s).
Material properties comprise the yield strength of the longitudinal ( fyl) and transversal
( fyh) reinforcing bars and the compressive strength of the concrete ( f ′c). The values of f ′c are
ranged from 20 MPa to a high compressive strength of 140 MPa. Moreover, the effects of
the centric axial load (P) are considered in the data sets, in which the axial compression
ratio is varied from zero to 90%.

Figure 1 depicts the configurations and reinforcement properties of the rectangular
RC column. The statistical properties of the experimental results are described in Table 1.
In this table, ten input parameters, numbered as variables from X1 to X10, are involved
in training machine learning models. The frequency histograms of input parameters and
failure modes of the 541 data samples are shown in Figure 2. For this database, the number
of columns that failed in flexure (F), flexure–shear combination (FS), and shear (S) is 335, 91,
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and 115, respectively. Figure 3 shows the correlation matrix of input and output parameters
of the collected data. Based on this figure, it can be found that some parameters had
a strong correlation, such as B and H. In addition, the shear strength (V) is strongly
correlated with the cross-section dimensions (B and H). Meanwhile, some others were
poorly correlated, such as s and ρh, B or H, and f ′c since their physical meanings have no
connection. Moreover, the correlation among axial load (P), column height (L), and the
output (V) showed to be medium.

Figure 1. Configurations and properties of rectangular RC columns.

Table 1. Summary of input parameters of database.

Input
Parameter

L
(mm)

B
(mm)

H
(mm)

s
(mm)

f’
c

(MPa)
fyl

(MPa)
fyh

(MPa)
ρl

(%)
ρh

(%)
P

(kN)

(Variable) (X1) (X2) (X3) (X4) (X5) (X6) (X7) (X8) (X9) (X10)

Min 225 150 100 20 20 313 215 0.20 0.01 0.0
Mean 1286 284 301 101 49 448 496 2.15 0.94 1130
Max 3000 610 610 457 141 745 1470 4.50 4.00 5492
SD 647 109 115 77 27 77 222 0.69 0.94 1069

COV 0.53 0.38 0.38 0.76 0.55 0.17 0.45 0.32 0.99 0.95
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Figure 2. Frequency of input parameters and observed failure modes of database.

Figure 3. Correlation matrix of input and output parameters.



Buildings 2022, 12, 1493 6 of 27

3. Background of Machine Learning Models

So far, there are numerous ML models, which can be applied for regression and
classification problems in structural engineering. Each algorithm contains advantages and
limitations. In this study, the authors selected some typical single ML models for predicting
shear strength and classifying failure modes of rectangular RC columns, in which NBs,
MARSs, KNNs, DT, SVM, and ANN were used. A brief description of the investigated ML
models is provided as follows.

3.1. Naïve Bayes

NBs classifiers are a set of supervised ML algorithms based on the Bayes theorem.
The NBs algorithm works very fast and can easily predict the class of a test data set. NBs
methods assume that the value of a given class is independent of the feature vector. The
Bayes theorem can be expressed as

P(y|x1, . . . , xn) =
P(y)P(x1, . . . , xn|y)

P(x1, . . . , xn)
(1)

where y is the given class variable; xi is the dependent feature vector; P(y) is the prior
probability (i.e., the class probability); P(xi|y) is the conditional probability, and P(xi) is
the evidence. The various Naïve Bayes classifiers differ mostly due to the assumptions
of the distribution of P(xi|y). In this study, we used Gaussian naïve Bayes for classifying
failure modes of rectangular RC columns. However, it should be noted that if the data sets
have a categorical variable of a category that is not included in the training data set, the
NBs model will assign it zero probability and will not be able to make any predictions in
this regard. Thus, a smoothing technique is required to solve this problem.

3.2. K-Nearest Neighbors

KNNs, a nonparametric supervised ML method, classifies data based on K samples
that are nearest to it. The K parameter is determined as the square root of the number of
the training data set. This algorithm does not make any assumption about the data, and
it can be applied both for classification and regression problems Additionally, KNNs is
very simple to perform for multiclass problems. However, the KNNs algorithm is very
sensitive to outliers as it simply chooses the neighbors based on distance criteria. Moreover,
the KNNs model does not perform well on imbalanced data.

To apply KNNs for classification, it can be implemented through three main steps:

• Firstly, the KNNs determines the distance between a new data point to all other points
of training data. This space can be calculated using Euclidean distance,

i.e.,

√
K
∑
i
(xi − yi)

2 or Manhattan distance, i.e.,
K
∑
i
|xi − yi|, where xi and yi are coor-

dinates of data points.
• Next, the KNNs algorithm randomly selects the K nearest data points (K is an integer).

The selection is based on the proximity to other data points regardless of what feature
the values.

• Finally, the algorithm allocates the data point to the class where similar data points
lie down.

3.3. Decision Tree

DT, a supervised ML algorithm, is known as one of the most effective techniques for
prediction and classification [104]. This ML technique is a tree-like flowchart, in which
each nonleaf node (i.e., internal node) represents a test on a feature. The training data
from the root node are recursively partitioned into subsets or branches using the Gini or
entropy index criterion [105]. Each branch denotes an output of the test, and each leaf node
(i.e., terminal node) indicates a classification. The advantages of DT are easy to understand
and interpret, and it has no assumptions about data sets. Additionally, this algorithm can
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operate with numerical and categorical features. However, this model can easily create the
overfitting problem during training process.

3.4. Support Vector Machine

SVM is a supervised ML algorithm, which is popularly used in performing classifi-
cation and regression [106]. SVM is also a fast and dependable classification technique. It
is effective in high dimensional spaces and works well with a clear margin of separation.
SVM can perform very well with a limited amount of used data. However, SVM does not
work well when the database is large and has more noise, i.e., target classes are overlap-
ping. Normally, the procedure for classification using SVM can be implemented by the
following steps:

• Creating a hyperplane or decision boundary that separates the features (i.e., classes). It
can be a linear or nonlinear hyperplane. A good decision boundary is achieved when
it contains the largest space to the adjacent training data point of classes.

• Using a kernel function, K(x, y), to facilitate the computation of dot products of
pairs of input data vectors, which are designed by mapping from the original finite-
dimensional space to a higher-dimensional space.

Kernel functions play a crucial role in SVM to connect from linearity to nonlinearity.
Three typical kernel functions, which are Linear, Gaussian, and Polynomial, can be em-
ployed to evaluate the classification performance. Those functions defined on Euclidean
space, Rd, are expressed as

Linear kernel function : K(x, y) = xTy,
(

x, y ∈ Rd
)

(2)

Gaussian kernel function : K(x, y) = e−
‖x−y2‖

2σ2 , (x, y ∈ Rd, σ > 0) (3)

Polynomial kernel function : K(x, y) =
(

xTy + r
)n

,
(

x, y ∈ Rd, r ≥ 0, n ≥ 1
)

(4)

3.5. Artificial Neural Networks

ANNs are flexible and can be used for both regression and classification problems. It
is good to work with nonlinear data containing a large number of inputs. Neural networks
can be trained with any number of inputs and layers, and the predictions are obtained very
fast. However, ANNs depend on training data significantly, and sometimes this can create
an overfitting problem.

An ANN model comprises three components:

• Input layer, where input parameters are entered;
• Hidden layer(s);
• Output layer, where the predicted result is obtained.

The neurons in the network are bridged in some forms, in which the signal is trans-
ferred from neurons to other neurons. These connections hold a weight, and each neuron
has a bias and an activation. The input vector (i.e., signal) of the neuron is represented by
x = [x1, x2, . . . , xm], while the weighted sum of the input vector is determined by z ∈ R
as follows:

z =
d

∑
i=1

wixi = wTx + b (5)

where w = [w1, w2, . . . , wd] ∈ Rd denotes the weight vector in the d-dimension; b ∈ R is
the bias. To consider the nonlinear relationship between the input and output vectors, a
nonlinear processing with respect to z is performed in the form of

y = f (z) (6)
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where f represents the activation function; y denotes the activation value of the neuron. In
this study, the tansig and purelin functions were employed for making a smooth transition
during training the network [107], expressed by Equations (7) and (8). This approach is
also consistent with studies elsewhere [108–117].

y = tansig(x) =
2

1 + e−2x − 1 (7)

y = purelin(x) = x (8)

To perform the ANN algorithm, the following processes are required:

• Firstly, the input signals (i.e., data) are entered to the input layer, and the signals are
transferred from one node (neuron) to another through the connections in the network.
This is called the forward pass.

• Secondly, after obtaining the output from the forward pass, it is required to evaluate
this output by comparing it with the target using the Mean Squared Error (MSE), as
expressed in Equation (9). This is called the backward pass.

• Moreover, it is needed to minimize the error by iteratively updating those processes
until the MSE is converged.

MSE =
1
N

N

∑
i=1

(pi − ti)
2 (9)

where N is the number of samples; ti and pi are the target and predicted values of the
ith sample, respectively.

3.6. Multivariate Adaptive Regression Splines

MARSs is a flexible nonparametric regression method, which was proposed by Fried-
man [118]. This model is more flexible than linear regression ones. In addition, it is simple
to understand and interpret. Moreover, MARSs can deal with both numerical and cat-
egorical databases. However, the disadvantage of MARSs is that the fitting function is
not smooth. The general expression of nonparametric regression is represented by the
following form:

yi = f (xi1, xi2, . . . , xij) + εi = f (X) + εi (10)

where X = (xi1, xi2, . . . , xij) is an i× j matrix of j input variables and i samples; εi is the
error of the ith sample. A MARSs model is constructed using basis functions to approximate
the f (X), expressed by

f (X) = c0 +
N

∑
n=1

cnBn(x) (11)

where c0 is a constant; cn is the coefficients of basis functions Bn(x); N is the number of basis
functions. Basic functions are splines, which normally have piece-wise linear functions. A
a basis function can be one of the three forms: (1) a constant, (2) a hinge function, which
yields the kink, and (3) a product of two or more hinge functions. A hinge function is
expressed in the forms of max(0, x− c) or max(0, c− x), in which c is a constant, the
so-called knot or cutpoint value. Generally, to perform MARSs, the following steps are
conducted [119]:

• Construct a forward stepwise algorithm to select spline basis functions.
• Develop a backward stepwise algorithm to delete unnecessary basis functions until

the optimal set is obtained.

4. Prediction of Shear Strength of Rectangular RC Columns
4.1. Existing Formulas for Calculating Shear Strength of RC Columns

So far, numerous studies have proposed equations for calculating the shear strength
of RC columns [1–10]. In this study, we employed six typical equations for calculating the
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shear strength of RC columns, in which equations in current design codes and well-known
previous studies are considered. Six formulas included ACI 318 [2], Eurocode-8 (EC-8) [3],
CSA [4], FEMA 273 [5], Ascheim and Moehle [6], and Sezen and Moehle [9] (ASCE/SEI
41-06 [1]), as described in Table 2.

Table 2. Formulas for calculating shear strength of rectangular RC columns.

ID Model Expression Equation

1 ACI 318 [2] V1 = 0.166
(

1 + P
13.8Ag

)
bwd

√
f ′c +

Ash fyhd
s

(12)

2 CSA [4] V2 = min
(

βbwdν

√
f ′c +

Ash fyhd
s cot θ; 0.25 f ′cbd

)
dν = 0.9d

(13)

3 FEMA 273 [5]
V3 = 0.29λ

(
k + P

13.8Ag

)
bd
√

f ′c +
Ash fyhd

s
k = 1.0 for low ductility demand.
k = 0 for moderate and high ductility demand.

(14)

4 EC8 [3]

V4 = k(Vc + Vw) + VP
Vc = 0.16max(0.5; 100ρl

(
1− 0.16min

(
5; a

d
))

Ac
√

f ′c
Vw = Asw

s (d− d′) fyw

VP = (D−x)
2a min(N; 0.55Ac f ′c)

(15)

5 Ascheim and Moehle [6]
V5 = 0.3

(
k + P

13.8Ag

)
0.8Ag

√
f ′c +

Ash fyhd
s tan(300)

k = 4−µ
3 , µ is the displacement ductility

d = 0.8H

(16)

6 Sezen and Moehle [9]
(ASCE/SEI 41-06 [1])

V6 = k

(
0.5
√

f ′c
a/d

√
1 + P

0.5Ag
√

f ′c

)
0.8Ag + k Ash fyhd

s ;

d = D− cover
k = 1 for µ < 2.0; k = 0.7 for µ > 6.0;
0.7 ≤ k = 1.15− 0.075µ ≤ 1.0 for 2.0 ≤ µ ≤ 6.0
a is the shear span, (i.e., the distance from loading point to the boundary).

(17)

4.2. Performance of ML Models

Five ML models, which are MARSs, DT, KNNs, SVM, and ANN, were employed to
predict the shear strength of RC columns. For each ML model, large and wide-ranging
training–testing ratios were tested to identify the optimal model. The ratios include 0.6–0.4,
0.65–0.35, 0.7–0.3, 0.75–0.25, 0.8–0.2, 0.85–0.15, and 0.9–0.1. In the current study, we used
three statistical parameters, which are the coefficient of determination (R2), root-mean-
square error (RMSE), and a20− index, to evaluate the performance of the ML models. The
definitions of these indicators are expressed by following equations:

R2 = 1−
(

∑N
i=1(ti − oi)

2

∑N
i=1(ti − o)2

)
(18)

RMSE =

√√√√( 1
N

) N

∑
i=1

(ti − oi)
2 (19)

a20− index =
n20
N

(20)

where ti and oi represent the target and output of ith data point, respectively; o is the
mean of output data samples; N is the total number of data set; n20 is the number of data
statisfied 0.8 ≤

∣∣∣ Vexp
Vpredict

∣∣∣ ≤ 1.2, in which Vexp and Vpredict are the shear strengths obtained
from experiments and predictions, respectively.

Figures 4–8 show the performance of ML models, in which R2, RMSE, and a20− index
are measured for various scenarios in training ML models. It should be noted that 210 cases,
which combine 7 training ratios (i.e., 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, and 0.9) and 30 values of
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the model parameter, were trained for each ML model. The ranking of 210 training–testing
ratios in each ML model is shown in Figure 9. For MARSs, 30 basis functions were tested,
and the best model was obtained with 29 basis functions and a training data ratio of 0.8.
For DT, the minimum leaf size ranged from 1 to 30, and the best model was achieved
at a leaf size of 1, and the training data ratio was 0.7. For KNNs, the number of nearest
neighbors were tested up to 30, and the best model was found with 1-nearest neighbor
and a training data ratio of 0.85. For SVM, the ε-insensitive zone, which determines the
deviation margin of the predicted point, ranged from 0.01 to 0.3 with an interval of 0.01. As
a result, the optimum SVM model achieved at ε was 0.01, and the training data ratio was
0.8. Meanwhile, the best ANN model was obtained when the number of neurons in the
hidden layer were 27 and the training data ratio was 0.9. Figures 4–8 also demonstrate that
the accuracy of the ANN and MARSs models is improved as the number of key parameters
of ML models increased. By contrast, the predicting performance of the other ML models
was lessened as the number of key parameters increased.

Figure 4. The performance of 210 MARSs models.

Figure 5. Cont.
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Figure 5. The performance of 210 DT models.

Figure 6. The performance of 210 KNNs models.

Figure 7. Cont.
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Figure 7. The performance of 210 SVM models.

Figure 8. The performance of 210 ANN models.

Figure 9. Cont.
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Figure 9. The ranking of ML models with 210 training-testing ratios.

4.3. Comparison of Performance between ML Models and Existing Equations

The comparisons of predictive models (i.e., existing equations and ML models) and
experimental results are shown in Figure 10. In this figure, the horizontal axis represents the
shear strength provided by the experiments, while the calculated and predicted values are
shown in the vertical axis. It was obviously demonstrated that the ML models outperformed
the empirical equations, which are proposed by design codes and previous studies. The
data scattering of ML models is significantly smaller than that obtained by existing formulas.
Among these, the ANN and KNNs models showed to be the best options in predicting the
shear strength of rectangular RC columns, followed by the SVM and DT models.

Table 3 shows the calculated statistical indicators (R2, a20− index, RMSE) from eleven
predicted models in this study. It should be noted that the values in parentheses are for the
testing data. The values of R2 and a20− index obtained from the ML models showed to be
noticeably higher than those from existing equations. Both the ANN and KNNs models had
a superior performance among the used ML models with an R2 of 0.998 and 1.0 for training
data, respectively, and an R2 of 0.938 and 0.876 for testing data, respectively. Additionally,
the RMSE values calculated from the ML techniques were significantly smaller compared
to those from empirical equations, specifically ANN and KNNs had the smallest errors.
This again implies that ANN and KNNs are the efficient models in predicting the shear
strength of RC columns.
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Figure 10. Comparison of shear strengths between experiments and various predicted models.
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Table 3. Statistical indicators of different predictive models.

Model R2 a20−Index RMSE (kN)

ACI 318 [2] 0.254 0.197 133.8
CSA [4] 0.463 0.211 136.9

FEMA 273 [5] 0.180 0.187 149.0
EC8 [3] 0.627 0.174 128.3

Ascheim and Moehle [6] 0.186 0.194 208.5
Sezen and Moehle [9] 0.529 0.338 108.5

MARSs 0.897 (0.845) 0.503 (0.537) 54.65 (71.99)
DT 0.962 (0.847) 0.855 (0.660) 33.59 (70.18)

KNNs 1.000 (0.876) 1.000 (0.765) 0.000 (51.54)
SVM 0.982 (0.874) 0.894 (0.602) 22.78 (63.86)
ANN 0.998 (0.938) 0.976 (0.830) 8.08 (36.00)

5. Failure Mode Classification Using Machine Learning Models

Four ML techniques including NBs, DT, KNNs, and SVM were applied for classifying
the failure modes of rectangular RC columns. Ten input parameters in Table 1 were used for
implementing those ML algorithms. All ML algorithms in this study were developed using
MATLAB. For that, the trial-and-error method was also employed for training models.
Again, it is noted that the number of experimental columns that failed in flexure (F), flexure–
shear combination (FS), and shear (S) was 335, 115, and 91, respectively. Figure 11a shows
the distribution of failure modes in the collected data set. It can be found that the data points
of three failure modes were not balanced, in which the number of flexural failure modes
predominated in the data samples. The imbalanced data set affects the decision boundary of
ML models during the learning process. To overcome this problem, the synthetic minority
oversampling technique (SMOTE) [120] was employed to balance the distribution of classes
by replicating samples of the minority classes. As a result, the instances of failure modes
were equal after balancing, as shown in Figure 11b. The duplicating process was conducted
using Scikit-learn module with following steps:

(1) Randomly select a data point (i.e., sample) from the minority class.
(2) Determine the nearest neighbors (e.g., 5 data points) of the selected sample.
(3) Create synthetic samples between two data points in the feature space.

Figure 11. Distribution of failure modes in the database (a) before and (b) after performing SMOTE.

To evaluate the performance of the ML techniques, typical measures consisting of
accuracy, sensitivity, specificity, and area under the curve (AUC) were used.

• Accuracy is expressed as the ratio of the sum of correct classifications to the total
number of classes.

• Specificity represents the proportion of the negative class correctly classified.
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• Sensitivity (i.e., recall) is measured as the ratio of the number of accurately predicted
failure modes to the total number of failure modes considered in the data.

• AUC is the indicator for measuring the ability of an ML model to distinguish between
classes. AUC is the area under the Receiver Operating Characteristic (ROC) curve,
which is plotted by Sensitivity in the y-axis against 1− Speci f icity in the x-axis. The
higher the AUC, the better the performance of an ML model.

Figure 12 depicts the concept of the confusion matrix and how to calculate those
measuring indicators. It should be noted that the higher values of accuracy, sensitivity,
specificity, F1-score, and AUC, the better the performance of the machine learning tech-
niques. However, the sensitivity and specificity should be simultaneously going up to
indicate the good performance of the models.

Figure 12. Concept of confusion matrix and definition of measuring indicators.

Figures 13–16 show the performance of four classifying ML models, in which 210 cases
were investigated for each model. It should be noted that the key parameter for optimizing
NBs is the equal bin width value. Meanwhile, the minimum leaf size was used for DT;
the number of nearest neighbors was for KNNs; the kernel scale was for SVM, and the
number of neurons in the hidden layer was for ANN. It can be observed that the highest
accuracy of the NBs, DT, and KNNs models was obtained at the smallest value of the model
parameters, whereas SVM was optimized at the kernel scale of 0.12 and the training data
ratio of 0.8.

Figure 13. Cont.
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Figure 13. Performance of 210 NBs models for classifying failure modes.

Figure 14. Performance of 210 DT models for classifying failure modes.
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Figure 15. Performance of 210 KNNs models for classifying failure modes.

Figure 16. Cont.
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Figure 16. Performance of 210 SVM models for classifying failure modes.

The ranking of 210 cases in each classifying model is shown in Figure 17. For NBs,
30 bin width values were tested, and the best model was obtained with 0.4 and at a training
data ratio of 0.85. For DT, the minimum leaf size ranged from 1 to 30, and the best model
was achieved at the leaf size of 1, and the training data ratio was 0.9. For KNNs, the number
of nearest neighbors was tested up to 30, and the best model was found with 1-nearest
neighbor and a training data ratio of 0.9. For SVM, the kernel scale ranged from 0.01 to
0.3 with an interval of 0.01. As a result, the optimum SVM model was achieved at a scale
of 0.12 and a training ratio of 0.8.

Figure 18 shows the performance of the best ML models in terms of confusion matrices
for identifying failure modes of rectangular RC columns after performing SMOTE. The
confusion matrix represents the number of correctly and incorrectly predicted classes for
each class and based on observed experiment results (i.e., true class) are plotted versus the
predicted failure modes (i.e., predicted class) in the confusion matrix. Each element in the
matrix, Aij, expresses the number of true classes i, but predicted to class j. As a result, the
diagonal elements of the matrix (from the upper left to the lower right) are failure modes,
which were accurately predicted by the ML techniques. In other words, the off-diagonal
elements denote failure modes, which were misclassified. Among the investigated ML
techniques, KNNs showed to be the best model for classifying failure modes of rectangular
RC columns with a very high accuracy, mostly reaching 100%. Furthermore, the SVM and
DT models also demonstrated a good prediction of failure modes with an accuracy greater
than 87%. Meanwhile, the NBs model was not a good option for identifying failure modes
of rectangular RC columns.

Figure 17. Cont.
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Figure 17. The ranking of 210 cases in each ML model for classifying failure modes.

Table 4 summarizes the calculated indicators for measuring the performance of dif-
ferent ML models in identifying the failure modes of RC columns. Noting that the values
outside parentheses were for the training phase, while the values in parentheses were for
the testing phase. Once again, it can be observed that the KNNs model showed to be the
optimal technique with the accuracy, sensitivity, specificity, and AUC mostly close to 1.0.
Additionally, SVM was also a good model for identifying failure modes of the columns.

Table 4. Measuring indicators of classifying models.

Model Accuracy Sensitivity Specificity AUC

NBs 0.667 (0.653) 0.838 (0.940) 0.754 (0.710) 0.666 (0.807)
DT 0.954 (0.890) 0.957 (0.909) 0.986 (0.955) 0.954 (0.966)

KNNs 1.000 (0.980) 1.000 (1.000) 1.000 (1.000) 1.000 (0.970)
SVM 1.000 (0.905) 1.000 (0.970) 1.000 (0.940) 1.000 (0.951)
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Figure 18. Confusion matrix of classified failure modes using different models.
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6. GUI Tool for Predicting Shear Strength and Failure Modes of Rectangular RC Columns

To apply the proposed ML models in specific problems, a convenient tool needs to be
established. We developed a Graphical User Interface (GUI) in MATLAB for facilitating
failure mode identification as well as for the prediction of the shear strength of rectangular
RC columns, as shown in Figure 19. Ten input parameters need to be provided. The
shear strength and failure modes of the column are readily obtained by clicking on the
‘Start Predict’ button after entering the input parameters. It takes a few seconds to achieve
the predictive results. It should be noted that the GUI tool is provided freely at the link:
https://github.com/duyduan1304/GUI_RC_Columns (accessed on 12 July 2022).

Figure 19. GUI for predicting the shear strength and identifying failure modes of rectangular
RC columns.

7. Conclusions

The shear strength and failure modes of rectangular reinforced concrete (RC) columns
were predicted using six novel Machine Learning (ML) techniques, which were developed
based on a set of 541 experimental results. The six used ML models included Multivariate
Adaptive Regression Splines (MARSs), Naïve Bayes (NBs), K-nearest Neighbors (KNNs),
Decision Tree (DT), and Support Vector Machine (SVM), and Artificial Neural Network
(ANN). Among these, the MARSs, KNN, DT, SVM, and ANN models were employed
to predict the shear strength, while the NBs, KNNs, DT, and SVM models were used for
classifying failure modes. The following conclusions are drawn:

• The ANN and KNNs models predicted the shear strength of rectangular RC columns
more accurately than that of existing formulas with an R2 value larger than 0.99.

• Used ML models in this study identified the failure modes of rectangular RC columns
precisely. Among them, the KNNs algorithm showed to be the optimal method
in classifying the failure modes of rectangular RC column with a high accuracy of
almost 100%.

• A practical GUI tool was developed and readily applied for predicting the shear
strength and identifying failure modes of rectangular RC columns in the design
process and structural performance evaluation.

It should be noted that the findings of this study focus on the rectangular columns. A
consideration of circular columns should be conducted in a future work.

https://github.com/duyduan1304/GUI_RC_Columns
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