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Abstract: It is essential to assess the performance of a community under probable hazard scenarios
and to provide possible performance enhancements. This requires establishing performance indica-
tors, an assessment method, and an optimization technique to provide mitigation alternatives. In
this paper, multiple performance indicators are utilized to assess the performance of a community
building portfolio including loss, downtime, and environmental impact (e.g., CO2 emissions). The
performance of a community is assessed by utilizing a performance-based assessment methodology.
Then, the performance indicators are utilized as performance objectives to be optimized considering
non-dominated sorting and crowding distance evolutionary optimization techniques. The framework
utilizes retrofit alternatives for each building in a community and provides Pareto-optimal solutions
for considered performance objectives given retrofit cost. This process of performance assessment
and optimization is repeated by utilizing the Monte Carlo approach to consider uncertainties. Finally,
the Pareto-optimal solutions are utilized to evaluate the retrofit programs for community building
portfolios in terms of considered performance indicators.

Keywords: optimization; risk; sustainability; buildings; uncertainties; bi-objective; retrofit

1. Introduction

Most of the building stock is privately owned and the decision-making related to the
choices including the type of construction, upgradation, among others is partially decentral-
ized (i.e., buildings construction and upgradation related activities are not entirely centrally
planned by a government body or community stakeholders). Hence, the stakeholders
and decision-makers must work in collaboration and form an organizational structure
to reduce the hazard impacts [1]. There exist various levels of organizational structures
ranging from individuals to families, neighborhoods to communities, and communities
to states and nations [2]. Different levels of organizational structure perform different
functions. For instance, the construction of main roads and bridges is decided on a state
level, the mitigation support may be provided at a state or country level. The planning
to assess the hazards, characterize the built environment, assess the performance, and
identify possible mitigation alternatives can be performed on a community level [3]. Hence,
it is important to consider the performance of buildings on a portfolio level for possible
collective enhancements.

The performance of buildings is usually assessed in terms of engineering demand
parameters [4–7]. These parameters provide engineering information that is difficult to
comprehend for community stakeholders and decision-makers. For instance, given a
possible hazard scenario, engineering demand parameters for a particular building may
include story drifts, spectral accelerations, deflections, curvatures, among others [8–11].
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These parameters are checked against the allowable limits to verify the acceptable perfor-
mance of a building under hazards [12–15]. More recently, demand parameters that may
be more meaningful to the community stakeholders are being utilized to better assess the
performance of a community [16–18]. The utilized demand parameters may include total
casualties, total repair costs, total repair time under a given hazard scenario that gives a
meaningful performance assessment parameter which community stakeholders can under-
stand [19–21]. The demand parameters are usually correlated with the discrete damage
states of buildings via fragility functions which are lognormal cumulative distribution
functions, providing the probability of exceeding damage states given intensity measures.
Different damage states provide contributions of varying percent to the assessment of de-
mand parameters which are discussed in various methods available in literature including
FEMA, HAZUS, among others [22–24]. These demand parameters can provide an intuitive
understanding of the performance of buildings under a hazard and are utilized in this
research to assess and enhance community performance.

The collective demand parameters on a community level are assessed by utilizing
performance indicators. The performance indicators considered in the literature include
risk, resilience, and sustainability [25–27]. The risk performance indicator is related to the
immediate impact of extreme events and has been extensively utilized to assess the perfor-
mance of community building portfolios under hazard scenarios [28–30]. These immediate
impacts may include total number of casualties, total waste generated, total repair costs
on a community level, among others. The resilience performance indicator is related to
the consequences arising due to the non-functionality of a community building portfolio
such as population outmigration, business interruptions, among others [31–33]. Resilience
on a community building portfolio level has been recently utilized and is often measured
in relation to the downtime assessments of building portfolios [34–39]. The sustainability
performance indicator considers consequences on a community level which may compro-
mise the ability of future generations to meet their needs [40,41]. For instance, the release
of potential global warming gases during the repair activities from a hazard event would
impact the environment negatively and may impact future generations. These performance
indicators can cover a wide range of consequences, provide more meaningful and intuitive
information, and can be utilized to make decisions and enhance performance. Although
risk and downtime performance indicators have been utilized on a community building
portfolio under hazard scenarios, however, the environmental performance indicator has
not been considered. This research considers the sustainability performance indicator
(e.g., CO2 emissions) in the performance assessment and enhancement of community
building portfolios.

The performance assessment and enhancements considering multiple performance in-
dicators against community-level retrofit costs require a bi-objective optimization approach.
The community building portfolios consist of numerous buildings with different structural
systems, functionalities, and different retrofit strategies which cannot be selected manually
for the optimized performance. In the last two decades, the evolutionary multi-objective
optimization approach has become increasingly popular because this technique does not
require derivative information and is relatively easier to implement in variety of settings
such as optimizing dynamic response of structural systems, design optimization, life-cycle
optimization, among others in the context of structural engineering [42,43]. The method
was first proposed by Holland [44], inspired by Darwin’s evolutionary theory of origin
of species. Later, many multi-objective evolutionary algorithms were developed [45–47],
the two most widely adopted being the strength Pareto evolutionary algorithm [48] and
non-dominated sorting genetic algorithm [49]. In a community building portfolio under a
hazard scenario, few researchers have employed one of these methods on a community
level to solve optimization problem in a pre-hazard scenario. For instance, Zhang and
Nicholson [50] proposed bi-objective optimization considering risk in terms of population
dislocation and structural costs. Sutley et al. [51] considered risk and recovery-related
objectives by coupling socio-economic aspects with the engineering systems. However,
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sustainability-related indicators and uncertainties have not been explored. According to
the best of the authors’ knowledge, there have been no studies providing a performance-
based bi-objective optimization framework for community building portfolios considering
multiple performance indicators including sustainability and under uncertainties.

In this paper, a performance-based bi-objective optimization framework is proposed
to evaluate Pareto-optimal solutions for risk, downtime, and environmental performance
indicators against the retrofit costs on a community level. The proposed methodology
consists of a performance-based assessment part to evaluate the performance objectives for
all the individuals given each simulation, and the optimization part in which the population
with a given number of individuals is utilized to optimize the performance objectives. The
simulations are repeated N times to incorporate uncertainties in the damage, consequence
assessments, and optimization steps. Finally, Pareto-optimal solutions are determined and
utilized to develop retrofit programs to satisfy the required performance of community
building portfolios. The framework is illustrated in a community with residential and
commercial buildings of different structural systems, code configurations, fragility, and
consequence functions, among others. This paper is organized into six sections: (1) Section 1
outlines the introduction of the paper, (2) Section 2 proposed a bi-objective optimization
framework for community building portfolios, (3) Section 3 presents the performance-based
assessment method to assess performance objectives, (4) Section 4 highlights the bi-objective
evolutionary optimization method, (5) Section 5 presents an illustrative example, and (6) the
final section presents the conclusions of the paper.

2. Proposed Optimization Framework for Community Building Portfolios

The proposed bi-objective retrofit optimization framework can be divided into two
main parts: (1) performance assessment part, and (2) evolutionary optimization part. The
performance assessment part is utilized to evaluate performance objectives and the evolu-
tionary optimization part is utilized to evaluate the Pareto-optimal solutions by optimizing
the performance objectives given retrofit alternatives. The proposed framework is shown in
Figure 1, representing a single simulation from start to end. These simulations are repeated
N times to incorporate uncertainties by utilizing the Monte Carlo approach [52]. In each
simulation, a random value is extracted from distribution functions utilized in the frame-
work including fragility functions and functions in the consequence assessment part. At the
end of all the simulations, the results can be extracted in terms of distributions for damage
assessments, consequence assessments, and Pareto-optimal solutions, among others.

The process starts by generating an initial population consisting of a certain number
of individuals. Each individual consists of two parts: (1) chromosome, and (2) fitness
functions. The fitness functions are utilized as the performance objectives of community
building portfolios defined in terms of risk, downtime, and sustainability indicators. The
performance objectives provide information related to the performance of a community
under hazard events and can be optimized given retrofit costs on a community level. For
instance, the fitness function for a risk performance indicator can be the total number
of casualties given hazard scenario, or total repair costs of a given hazard event, among
others, and will change based on the retrofit costs implemented on a community level.
The chromosome can be considered as a scenario of community building portfolio having
different types of genes. Each gene can be considered as a building in a community building
portfolio and consists of two main parts: (1) allele, and (2) locus. The allele defines the
retrofit alternative implemented for a particular building or no-retrofit implemented in the
case of a reference building, and the locus defines the geospatial location of a particular
building in a community building portfolio. The geospatial location will help identify
the building and all the relevant assigned characteristics such as building type, structural
system, code-level, floor area, story heights, among others. These evolutionary optimization
terminologies in the context of community building portfolios are graphically presented in
Figure 2.
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Figure 1. Bi-objective retrofit optimization framework for community building portfolio considering
uncertainties.

Figure 2. Evolutionary optimization terminologies in the context of community building portfolio.

The genes of all the individuals in the initial population are randomly assigned retrofit
alternatives or no-retrofit, and fitness functions for all the individuals are determined
utilizing a performance-based assessment approach. These individuals are then optimized
by utilizing non-dominated sorting and crowding distance genetic algorithm and Pareto-
optimal solutions are determined for all the simulations to incorporate uncertainties. The
Pareto-optimal solutions are then utilized to assess the performance enhancement of a
community building portfolio by providing retrofit programs. The subsequent sections
discuss the two main parts of the framework in detail.
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3. Performance-Based Community Objectives Assessment

The optimization framework requires evaluating the performance objectives at a com-
munity portfolio level in each iteration to assess the criteria. If the performance objectives
satisfy the required criteria, the Pareto-optimal solutions can be extracted, otherwise the
process of optimization continues and the iteration is repeated. The performance-based
assessment methodology is implemented herein to provide community performance objec-
tives for optimization. The community performance objectives are evaluated in three steps:
(1) performing building-level damage assessment for all the buildings in a community
given a hazard scenario, (2) performing building-level consequence assessment for all the
buildings given the damage state of a building, and (3) accumulating the consequences
of all the buildings to determine risk, downtime, and sustainability. For illustration, the
performance objective assessment for risk performance indicator (i.e., total repair cost of a
community’s given hazard scenario) is graphically presented in Figure 3. The subsequent
sections provide further discussion related to these steps.

Figure 3. Performance objectives assessment of community building portfolio utilizing performance-
based assessment methodology.

3.1. Building-Level Damage Assessments

In the literature, there exist different methods of damage assessments including empir-
ical, analytical, numerical, and hybrid methods [53]. Different risk assessment frameworks
have been developed as a result to provide methodologies for predicting damage given seis-
mic hazards [54–56]. The most prominent ones are FEMA and HAZUS, among others, and
require defining damage states for building-level damage assessment [23,24]. In HAZUS,
for instance, five discrete damage states are defined including no damage state (DS0), slight
damage state (DS1), moderate damage state (DS2), extensive damage state (DS3), and
complete damage state (DS4). These damage states provide specific damage conditions of
a particular structural system. For instance, in the case of an unreinforced masonry bearing
walls (URM) structural system, the no damage state would indicate negligible damage to a
building after a hazard event; slight damage would indicate diagonal hairline cracks on
masonry walls, and few large cracks around the windows and doors; moderate damage
state may include diagonal cracks in almost all the masonry walls with few walls having
larger cracks; extensive damage state would indicate widespread cracking of masonry
walls along with displacement of beams and trusses; and complete damage state would
indicate structural collapse or imminent danger of collapse due to in-plane or out-of-plane
failure of masonry buildings [23,57–59].

These damage states are determined by establishing a fragility function which provides
probability of exceeding each damage state’s given intensity measure [60,61]. The intensity
measure may include peak ground accelerations, peak ground velocities, among others,
and are correlated with the intensity of hazard scenarios [62,63]. The damage states of
all the buildings in a community are determined by utilizing a probabilistic approach
in which a random number is generated from 0 to 1 and depending upon the range of
damage state it falls; a relevant damage state is assigned to a particular building as shown
in Figure 4 illustratively. The process is repeated for all the buildings in a community
building portfolio for a single simulation run. The number of simulations is repeated and
damage state distribution for each damage state given hazard scenario can be determined.
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Figure 4. Damage state assessment under seismic hazard.

3.2. Building-Level Consequence Assessments

The damage states are utilized to evaluate consequences which may include the cost
incurred to repair a building, the downtime of a building, equivalent carbon emissions
due to the damage, and recovery efforts, among others [64]. Different methods can be
employed to assess the consequences of extreme events on a given damage state of a
building [28,65,66]. This requires building information for various building types including
the fragility and consequence functions. However, even the same building types can
have different fragilities and consequence models based on age, construction materials,
geometric properties, material costs, among others, and may require calibration for use in
other communities [67].

The HAZUS consequence assessment methodology is utilized in this paper which
starts by evaluating the total material required to be replaced due to the damage of a
building. The damaged building material is a function of each damage state and is deter-
mined by utilizing percentage damage of different construction materials given the damage
state [68]. The damaged materials are then correlated with the consequences by utilizing
consequence functions [69].

The consequence functions can be uniform, normal, or lognormal cumulative distribu-
tion functions defined for each damage state [70]. The consequence functions considered
in this framework include repair costs, downtime, and equivalent carbon emissions [71].
These consequence functions are evaluated for each building in a single simulation run.
The simulations are repeated and the distribution of consequences for each building in a
community building portfolio can be evaluated.

The downtime consequence of a building consists of two parts: (1) the repair time,
and (2) the delay time. The repair time is determined by lognormal consequence function,
which is defined for each damage state, and the delay time is determined by evaluating
the additional delays due to financing, engineering mobilization, contractor mobilization,
obtaining permits, among others [72]. These additional delays are also defined in terms of
cumulative distribution functions and added with the repair time to evaluate downtime
for each building.

3.3. Portfolio-Level Performance Objectives Assessment

The consequences assessed for all the buildings in a community are accumulated into
the performance indicators. The risk performance indicator of a community will provide the
total cost required to repair a community given a hazard scenario, the downtime indicator
will provide total downtime of a community building portfolio, and the sustainability
indicator will provide total equivalent carbon dioxide emissions given the hazard scenario.
Additional socioeconomic and environmental consequences can also be considered under
these performance indicators including total casualties given the hazard, total embodied
energy, among others [73].
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4. Bi-Objective Evolutionary Optimization

The performance indicators will provide meaningful information related to the perfor-
mance of a community under considered hazard scenarios. The community stakeholders
or decision-makers may want to improve the performance of a community. This requires
implementing pre-hazard mitigation alternatives which may include retrofitting buildings
of a community. The decision-makers may identify various retrofit alternatives to imple-
ment but need to assess the number of buildings to be retrofitted, which type of retrofit
alternative to be implemented, and how to achieve maximum performance given retrofit
alternatives, among others. Briefly, the decision-makers are interested in knowing the
performance enhancement of community building portfolios and the cost of supporting
the performance enhancements.

There exist many combinations of retrofit alternatives to be implemented on a commu-
nity building portfolio. Hence, a bi-objective evolutionary approach is utilized to obtain
Pareto-optimal solutions that will provide maximized performance of community against
the minimized retrofit costs for all the individuals. The performance indicators developed
in the performance-based assessment part are utilized here as performance objectives and
are optimized utilizing non-dominated sorting and a crowding distance genetic algorithm.
It is important to highlight that the proposed performance-based bi-objective evolutionary
optimization approach utilized here is heuristic and the optimal solutions are not guaran-
teed. Nonetheless, the method is sufficient for approximating the Pareto-optimal solutions
in a bi-objective space.

The bi-objective optimization problem can be formulated as:
Given:

• The community building portfolio with different structural systems, code-conformance,
building heights, fragility, and consequence functions, among others;

• Intensity measure at building locations under a given hazard scenario;
• Probabilistic damage assessment of community building portfolio;
• Consequences of all the buildings in a community building portfolio;
• The damage and consequences of buildings for different retrofit-levels.

Find:

• The retrofit actions for all the buildings in a community building portfolio.

So that:

• The retrofit costs associated with the retrofit levels is minimized;
• The performance of a community associated with the retrofit-level is maximized.

The first step is to generate an initial population consisting of certain number of in-
dividuals. Each individual is a scenario of a community building portfolio where all the
buildings are randomly given one of the retrofit alternatives or no-retrofit. In the next step,
the individuals are extracted, and the performance objectives are evaluated by utilizing
the performance-based assessment method presented in the previous section. The perfor-
mance objectives are then checked against the optimization criteria and Pareto-optimal
solutions are extracted if the optimization criteria are satisfied, or else the individuals are
optimized by utilizing three main steps: performing (1) a fast non-dominated sorting and
crowding distances; implementing (2) selection, crossover, and mutation strategies; and
finally (3) generating a new population. The process is repeated until the optimization
criteria are satisfied and the Pareto-optimal solutions providing performance indicators
given retrofit programs can be extracted. The optimization criteria can be the number of al-
lowed generations which may be based on computational costs and accuracy requirements.
Subsequent subsections provide more information on the highlighted optimization steps.

4.1. Fast Non-Dominated Sorting and Crowding Distances

The individuals in the population have varying performance values against retrofit
costs. The fast non-dominated sorting and crowding distances approach is utilized to select
the best solutions in the given population. The best solutions are extracted by utilizing two
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methods: (1) the dominance depth method to determine the non-dominated and dominated
solutions, and (2) crowding distance algorithm to ensure diversity among the selected
solutions. The dominance depth method ranks the individuals based on which front a
particular individual lies. For instance, the individuals on a Front-1 would be given highest
rank since they are non-dominated solutions that are not dominated by other individuals.
Additionally, the crowding distance algorithm is utilized to measure the relative distances
with other individuals lying on the same front. The individuals lying further apart are
preferred to ensure the individuals are distributed over the considered Front and are not
congested over a localized area. The non-dominated solutions with high diversity are
the optimal solutions for a particular generation since these individuals provide the best
performance against the least retrofit cost. The dominance depth method and crowding
distance assessment given an initial population are shown illustratively in Figure 5.

Figure 5. Illustration of fast non-dominated sorting and crowding distances.

4.2. Selection, Crossover, and Mutation

Once the ranking of all individuals is determined based on dominance depth method
and crowding distance algorithm, the next step is to perform selection, crossover, and
mutation to generate new individuals. The purpose of selection is to identify above-average
individuals from the population-based on the rank and crowding distances. The crowded
binary tournament selection method is utilized to select the parents from the population.
This method starts by randomly selecting two individuals from the population and choosing
an individual with the better rank to become parent. In the case of two selected individuals
having same rank, then the selection is based on the crowding distances, and in the case
that both rank and crowding distances are same, then the selection is performed randomly.
This method of selection increases the chance of better individuals being selected from the
population.

After selecting parents, the crossover operator is utilized to create new solutions
referred as offspring. These offspring are generated by performing crossover of the two ran-
domly selected parents which helps explore the search in space. In this paper, a simulated
binary crossover operator is utilized to explore the discrete search space. The probability
density function of the simulated crossover binary operator is presented as:

p(βi) =

 0.5(ηc + 1)β
ηc
i , i f βi ≤ 1

0.5(ηc+1)
β

ηc+2
i

, else
(1)

where βi is the spread factor and ηc is the control parameter that defines the spread of
the distribution function. A vector of βi is determined by integrating the area under the
probability distribution curve equal to a random number ui ε [0, 1], evaluated as:

βi =


(2ui)

1
ηc+1 i f ui ≤ 0.5(

1
2(1−ui)

) 1
ηc+1 else

(2)
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The vector βi is utilized to change the allele of the genes. If the βi is greater than 1,
the first child gene is altered to a higher retrofit level as compared to the first parent the
and second child gene is altered to a lower retrofit level to that of the parent. Contrarily, if
the βi is lower than 1, the first child gene is altered to a lower retrofit level as compared to
the first parent and the second child gene is altered to a higher retrofit level to that of the
parent. This process helps to produce fitter offspring from above-average parent population
exploring the search space further for optimal solutions.

The mutation operator is adopted with low probability pm to avoid non-convergence
issues. In this paper, a polynomial distribution operator is utilized for obtaining a solution.
The polynomial probability distribution function is presented as:

p(δ) = 0.5(ηm + 1)(1− |δ|)ηm (3)

where δ is the median value and ηm is the factor controlling the spread of the distribu-
tion function. A vector of δ is determined by integrating the area under the probability
distribution curve equal to a random number ri ε [0, 1], evaluated as:

δ =

 (2ri)
1

ηm+1 − 1 i f ri < 0.5

1–[2(1− ui)]
1

ηm+1 else
(4)

The polynomial mutation operator works in such a way that if the mutation probability
randomly selects a locus where mutation is required, then the gene is altered to a lower
retrofit level if δ is less than zero, or else the gene is altered to a higher retrofit level.

4.3. New Population Generation

The resulting solutions include the parent population and the offspring popula-
tion. The offspring population comprises new individuals extracted by utilizing selection,
crossover, and mutation strategies and the parent population comprises previous individu-
als. The best solutions with the original population size are then selected from the parent
and offspring populations such that the total population size is retained at its original size.
The best-selected solutions of original population size are referred to as new population
or survival population. The next step is to evaluate the performance objectives for all the
individuals in a new population, and the process of selection, crossover, mutation, and sur-
vival and elimination is repeated until the optimization criteria are satisfied. The resulting
Pareto-optimal solutions after the optimization criteria are met are the optimal solutions of
the bi-objective optimization problem for a single simulation run. The number of simula-
tions are performed using the Monte Carlo approach and the probability distributions of
performance indicators can be extracted. The subsequent section implements the proposed
framework on a community building portfolio for illustration of the proposed framework.

5. Illustrative Example

The framework is illustrated on a community consisting of residential and commercial
buildings. The structural systems consist of unreinforced masonry bearing walls (URM),
concrete frames with unreinforced masonry infill walls (C3), and concrete frames (C1).
The residential building portfolio is dominated by low-rise (L) construction with story
heights ranging from 1–3 stories, and commercial buildings are mid-rise (M) with story
heights ranging from 4–7 stories. The building portfolio is a mix of pre-code, low-code, and
moderate-code construction with most of the building comprising low-code construction.
The building portfolio is divided into seven different types of buildings depending upon
structural system, height, and code configurations as shown in Figure 6. The classification
of building types follows HAZUS [68] classification system i.e., (1) structural system is
highlighted first, (2) followed by story type, and (3) the last symbol denotes the code level.
For instance, a URM building with a low-rise story and pre-code configuration is denoted
as URML-P. Further details can be found in Appendix A.
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Figure 6. Illustrative community consisting of building communities.

To measure the performance of a community building portfolio under an earthquake
hazard, three performance indicators are selected: (1) total repair cost incurred on a com-
munity because of an earthquake referred herein as risk performance indicator, (2) total
downtime of a community as a measure of how long it will take to recover from a hazard,
referred herein as downtime performance indicator, and (3) total equivalent carbon emis-
sions emitted as a result of damage to the community and recovery efforts, referred herein
as sustainability performance indicator.

In this illustrative example, a design hazard scenario is selected with a return period of
475 years, having 10% probability of occurrence in 50 years’ service life. The selected hazard
scenario will generate a peak ground acceleration of 0.33 g and is considered herein to assess
the performance of a community. It is important to note that considering a complete hazard
curve along with relevant mean annual frequency of exceedances for hazard scenarios
would provide better evaluation of retrofit interventions on a community-level. However,
only a design hazard scenario is considered in this case study to illustrate the proposed
framework which can be extended to consider a complete hazard curve. The next section
highlights the performance of a community building portfolio under given hazard without
considering any mitigation measures.

5.1. Performance-Based Assessment

The first step is to assess the damage states of all the buildings in a community. A total
of 4000 simulations are performed to determine the discrete damage states of a community
building portfolio considering a probabilistic approach formulated in the methodology
section. The resulting damage state distributions under a design hazard scenario are shown
in Figure 7. Four statistical moments are also extracted from the distributions, presented in
Table 1. As shown, the mean value for buildings having negligible damage is 187.13, and
complete damage is 981.57. It is noted that the damage states have low skewness values
and kurtosis values of around 3. The positive kurtosis values around 3 indicate that the
damage state distributions are close to the normal distributions.
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Figure 7. Damage states distributions of community building portfolio under given hazard.

Table 1. Statistical moments of damage states of community building portfolio given hazard.

Damage States Mean
(Buildings)

Standard
Deviation Skewness Kurtosis

No-damage 187.13 13.11 0.023 2.996
Slight damage 251.05 14.79 0.051 2.877

Moderate
damage 614.41 21.84 −0.012 3.058

Extensive
damage 685.84 22.36 0.046 3.045

Complete
damage 981.57 24.53 0.078 3.126

The geospatial distribution of damage states of a community building portfolio for a
random simulation is shown in Figure 8 for illustrative purposes. In the given simulation,
the number of buildings having no damage are 206, and buildings with complete damage
are 954 in number. These simulations are repeated and distributions of considered damage
states are extracted accordingly as shown in Figure 7.

Figure 8. Damage states of community building portfolio under a given hazard.
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The damage states are then correlated with the consequences to evaluate risk, down-
time, and sustainability performance indicators. The consequences in terms of repair cost,
downtime, and equivalent tons of kgCO2 emissions are determined for each building in
each simulation. For illustration, the geospatial distribution of consequences in terms
of three performance indicators is shown in Figure 9 for a random simulation. In this
simulation, the number of buildings having repair costs up to US$15,000 is 1616, from
US$15,000–50,000 is 707, and from US$50,000–200,000 is 397. The repair cost for the majority
of the buildings is under US$50,000 per building. Similar observations can be extracted for
downtime and equivalent tons of carbon dioxide emissions.

Figure 9. Performance indicators of community building portfolio under a given hazard scenario.

The number of simulations is repeated and distributions for three performance in-
dicators on a community level are determined as shown in Figure 10. The mean value
for risk under a design hazard scenario is US$63.3 million with a standard deviation of
US$1.42 million, the mean value for downtime is 1.05 million days with a standard devi-
ation of 12,400 days, and the mean value for sustainability is 2.15 million tons of kgCO2
emissions with a standard deviation of 73,700 tons of kgCO2. The sustainability perfor-
mance indicator has a positive skewness of 0.12 and the rest of the performance indicators
have negligible skewness. However, all the performance indicators show positive kurtosis
values ranging from 2.89–3.10 which shows the performance indicator values are almost
normally distributed.

Figure 10. Performance indicator distributions of community building portfolio given hazard scenario
for (a) Risk, (b) Downtime, and (c) Sustainability.
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5.2. Bi-Objective Evolutionary Optimization

The performance indicators provide total repair costs, an estimation of community
recovery time, and total equivalent carbon dioxide emissions under an earthquake haz-
ard scenario. Mitigation alternatives can be implemented to improve the performance
of a community building portfolio under given hazard. The decision-makers are mostly
interested in the question related to how much cost is required to improve the required per-
formance of a community. The bi-objective evolutionary optimization technique is utilized
to determine retrofit programs which will provide information related to the investment
costs needed for retrofitting a community to improve performance to a certain level. Note
that the retrofitting buildings can give different performance levels depending upon the
type of retrofit implemented and on how many buildings are retrofitted. This optimization
technique can provide optimal performance improvements that can be achieved for given
retrofit programs in terms of Pareto-optimal solutions.

The performance indicators are utilized as objectives to be optimized for given retrofit
alternatives. The initial population with population size of 20 individuals is selected
with an optimization criterion of 20 maximum generations. The higher the number of
individuals selected, the more data points will be generated in the Pareto-optimal solutions
but as a result, the computational costs would increase. The selection criteria of individuals
is based on generating enough data points to appropriately assess the Pareto-optimal
solutions at reasonable computational costs. The search space consists of five options for
each building which are randomly assigned to all the buildings in the initial population.
Option one includes assigning a building with no-retrofit alternative (i.e., building is
not retrofitted), and options two to five consist of an increasing level of retrofit. The
increasing level of retrofit would provide increasing performance and would also incur an
increasing level of retrofit cost. The fragility functions for all the buildings are extracted
from HAZUS [23], and the damage state and retrofit cost factors are selected based on
the literature review [23,74–76]. The damage state factors are multiplied by the mean
values of fragility functions to update the fragility functions for different retrofit levels
and retrofit cost factors are multiplied with the construction costs to evaluate retrofit costs.
The considered damage state factors for five retrofit levels are 1, 1.27, 1.55, 2.11, and 2.79.
Similarly, the considered retrofit cost factors for five retrofit levels are 1, 1.1, 1.15, 1.2, and
1.25. The selection criteria for the damage state factors and retrofit cost factors are based
on previous studies conducted on seismic retrofit of buildings [19,76]. Nonetheless, the
damage state factors and retrofit cost factors are utilized here for illustrative purposes only.

The next step is to evaluate the performance objectives of all the individuals and
generate a new population by non-dominated sorting and crowding distances, and through
selection, crossover, and mutation strategies discussed in the methodology section. The
process is repeated for a new population until the optimization criterion is satisfied. At each
generation, the performance of individuals keeps on improving given total retrofit costs
and Pareto-optimal solutions can be extracted after the optimization criterion is satisfied.

The Pareto-optimal solutions for a random simulation number are shown in Figure 11
for considered performance indicators. As shown, the performance indicators show high
risk, downtime, and sustainability values for a reference community with no mitigation
alternative implemented. For instance, in this simulation, if all the buildings are given
retrofit level one (i.e., if no mitigation alternative is applied), the risk, downtime, and
sustainability values are US$63.1 million, 1.06 million days, and 2.13 million tons of kgCO2.
Similarly, if all the buildings are retrofitted with the retrofit level five, the maximum
performance of US$9.33 million, 0.41 million days, and 0.3 million tons of kgCO2 can be
achieved. The retrofit costs to achieve this maximum performance level is US$34.1 million.
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Figure 11. Pareto-optimal solutions of performance indicators against retrofit costs for (a) Risk,
(b) Downtime, and (c) Sustainability.

Various combinations of retrofit levels on a community building portfolio would result
in different levels of performance, and the bi-objective optimization approach is utilized
to determine the retrofit-level combinations to achieve optimal performance given the
least retrofit costs. For instance, an individual 12 in a population provides risk, downtime,
and sustainability values of US$35.8 million, 0.727 million days, and 1.2 million tons of
kgCO2 with a given retrofit cost of US$17.5 million, as shown in Figure 11. This level of
performance is achieved by retrofitting buildings with different retrofit levels including
retrofit level 1 (RL1) having 518 buildings, retrofit level 2 (RL2) having 583 buildings,
retrofit level 3 (RL3) having 536 buildings, retrofit level 4 (RL4) having 553 buildings, and
retrofit level 5 (RL5) having 530 buildings, accordingly. The determined Pareto-optimal
solutions provide an increasing level of performance given increasing retrofit costs for
different individuals.

The uncertainties in the performance enhancement are considered by performing
4000 evolutionary optimization simulations and extracting information including buildings
in different retrofit levels, performance indicators, and the required retrofit costs for an
optimized population. The mean values of buildings in different retrofit levels for an
optimized population are shown in Figure 12. Individual 1 refers to a case scenario
of a community building portfolio where all the buildings are at retrofit level one, and
individual 20 refers to a case scenario where all the buildings are at retrofit level five.
The individuals in between refer to the buildings with different retrofit levels optimized
to provide maximized performance objectives at a minimized retrofit cost. Finally, the
community stakeholders and decision-makers can utilize the Pareto-optimal solutions
and develop retrofit programs to satisfy the required performance of a community under
given hazard.

For illustration purposes, four retrofit programs (RPs) are extracted ranging from
retrofit costs of US$5–20 million. For instance, retrofit package 1 (i.e., US$5 million cost
for retrofitting community building portfolio) requires mean values of 1786 buildings in
RL1 (i.e., no-retrofit required), 773 buildings in RL2, and 161 buildings in RL3. Similar
observations for other retrofit programs can be made from Figure 12. The RLs represent
mean value of buildings in different retrofit-levels averaged over N simulations.

The distribution of performance indicators under four selected retrofit programs is
shown in Figures 13–15. For illustration, the statistical moments for the risk performance
indicator under four retrofit programs are shown in Table 2. As shown, the total repair
cost under a design hazard scenario without considering any mitigation alternative is
US$63.3 million which can be reduced to US$56.78 million by applying a retrofit cost of
US$5 million. Similarly, the retrofit programs costing US$10, 15, and 20 million would
reduce the risk to US$49.10, 41.74, and 32.34 million. The standard deviation for the
risk performance indicator ranges between US$1.04–1.42 million. In addition, negligible
skewness is observed, and the kurtosis values are close to 3 which indicates the distribution
is almost normally distributed.



Buildings 2022, 12, 85 15 of 22

Figure 12. Mean values of buildings at different retrofit levels in a population along with considered
four retrofit programs.

Figure 13. Distributions of risk performance indicator under four retrofit programs.

Figure 14. Distributions of downtime performance indicator under four retrofit programs.
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Figure 15. Distributions of sustainability performance indicator under four retrofit programs.

Table 2. Statistical moments of risk performance indicator under considered retrofit programs.

Risk Performance
Indicator

Mean
(Million USD)

Standard Deviation
(Million USD) Skewness Kurtosis

Without a retrofit program 63.30 1.42 0.057 3.03
Retrofit of 5 million USD 56.78 1.33 0.043 2.93
Retrofit of 10 million USD 49.10 1.22 −0.065 2.98
Retrofit of 15 million USD 41.74 1.44 −0.026 2.86
Retrofit of 20 million USD 32.34 1.04 0.211 3.23

Similar observations can be extracted for downtime and sustainability performance
indicators given retrofit programs. For instance, implementing the considered four retrofit
programs would result in improving mean downtime values from 1.05 million days to 0.977,
0.893, 0.816, and 0.705 million days, and mean sustainability values would improve from
2.15 million tons kgCO2 to 1.92, 1.65, 1.40, and 1.07 million tons of kgCO2. The standard
deviation for downtime ranges from 11,420–16,930 days and for sustainability ranges from
47,850–73,690 tons of kgCO2. The kurtosis values for downtime and sustainability range
from 2.89–3.26, indicating nearly normal distributions.

6. Conclusions

This paper proposed a performance-based bi-objective optimization framework for
community building portfolios considering multiple performance indicators. In addition,
the uncertainties in the process were incorporated by utilizing the Monte Carlo approach.
Performance-based assessment methodology was utilized to assess performance objectives
in terms of risk, downtime, and sustainability. Then, the performance objectives were
optimized by utilizing an evolutionary optimization approach for given retrofit levels
for each building in a community. The proposed methodology was implemented on an
illustrative community and Pareto-optimal solutions were developed. Finally, the Pareto-
optimal solutions were utilized to assess four different retrofit programs to enhance the
community performance.

The following conclusions can be drawn based on the proposed framework and
illustrative example.

1. The proposed bi-objective retrofit optimization framework considered risk, down-
time, and sustainability performance indicators for assessment and enhancement of
community performance under a designed seismic hazard scenario. The proposed
framework optimized the performance objectives for given pre-hazard mitigation
alternatives considering uncertainties and provided the decision-makers with retrofit
programs to enhance community performance for given retrofit costs.
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2. The distributions of discrete damage states and the performance indicators showed
negligible skewness with kurtosis values close to three. This showed the distri-
butions were almost normally distributed. The normal distributions were also
observed for the retrofit programs extracted after performing performance-based
evolutionary optimization.

3. Pareto-optimal solutions were determined by utilizing bi-objective optimization which
provided optimal solutions for the considered performance indicators against the
retrofit cost. The number of buildings required to be retrofitted at different retrofit
levels to achieve performance enhancements for given retrofit costs were also de-
termined. For instance, in a random simulation, to achieve risk, downtime, and
sustainability performance of US$35.8 million, 0.727 million days, and 1.2 million tons
of kgCO2 emissions, a retrofit cost of US$17.5 million is required. To achieve this level
of performance, the number of buildings needed to be retrofitted in the five retrofit
levels ranging from 1–5 were 518, 583, 536, 553, and 530.

4. For an illustration of the proposed framework, four retrofit programs were extracted
ranging from US$5–20 million and the resulting performance enhancements along
with the number of buildings required to be retrofitted at different retrofit levels
were determined. For instance, by applying a retrofit program of US$20 million, the
mean risk, downtime, and sustainability performance values were reduced to 48.91%,
32.59%, and 50%. Furthermore, to achieve this level of performance enhancement, the
mean number of buildings required to be retrofitted ranging from retrofit levels 1–5
were 105, 721, 799, 834, and 261.

In summary, the proposed framework considered pre-hazard retrofit alternatives to
enhance the performance of community building portfolios under an earthquake scenario
and can be extended to other extreme events. The methodology can be extended to optimize
the post-hazard scenarios and during the recovery phase after an earthquake event. The
study can also be extended to other physical infrastructure systems and new performance
indicators can be added including total casualties, and embodied energy consumption,
among others.
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Appendix A. Inputs Related to the Fragility and Consequence Functions Utilized in
the Illustrative Example

The mean values of considered fragility functions for the archetype buildings is shown
in Table A1.

The total construction material is evaluated by utilizing data provided in Table A2
extracted from HAZUS [22].

The total cost and emissions in terms of kgCO2 per building is extracted by utilizing
the information provided in Table A3.
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Table A1. Fragility functions utilized for different building types.

ID Building Type Code Level Damage State Fragility
Function (g)

URML-P

Low-Rise
Unreinforced
Masonry Bearing
Walls

Pre-code

Slight
Moderate
Extensive
Complete

0.13
0.17
0.26
0.37

URML-L

Low-Rise
Unreinforced
Masonry Bearing
Walls

Low code

Slight
Moderate
Extensive
Complete

0.14
0.20
0.32
0.46

URMM-L

Mid-Rise
Unreinforced
Masonry Bearing
Walls

Low code

Slight
Moderate
Extensive
Complete

0.10
0.16
0.27
0.46

C3L-L

Low-Rise Concrete
Frame with
Unreinforced
Masonry Infill Walls

Low code

Slight
Moderate
Extensive
Complete

0.12
0.17
0.26
0.44

C3M-L

Mid-Rise Concrete
Frame with
Unreinforced
Masonry Infill Walls

Low code

Slight
Moderate
Extensive
Complete

0.11
0.17
0.32
0.51

C1M-L Mid-Rise Concrete
Moment Frame Low code

Slight
Moderate
Extensive
Complete

0.12
0.17
0.32
0.54

C1M-M Mid-Rise Concrete
Moment Frame Moderate code

Slight
Moderate
Extensive
Complete

0.13
0.21
0.49
0.89

The mean values are expressed in terms of PGA (g) with coefficient of variation of 0.64.

Table A2. Construction material composition for different building types.

ID Construction Materials Tons kg/Thousand Sft

URML-P,
URML-L,
URMM-L

Brick
Wood
Concrete
Steel

35
10.5
41
4

C3L-L,
C3M-L,
C1M-L,
C1M-M

Brick
Wood
Concrete
Steel

20
5.3
90
4

The considered distribution is lognormal with coefficient of variation 0.2.

Table A3. Costs and emissions data for considered construction materials.

Construction Materials Cost in USD per kg Tons Tons kgCO2 Emissions per
kg Tons

Brick
Wood
Concrete
Steel

28
140
20
650

0.2–0.6
0.75–1.35
0.05–5.15
1.72–2.82

The considered distribution is uniform.

The cost and emissions data for damaged buildings is determined by utilizing percent-
age of total material damaged given damage state provided in Table A4.
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Table A4. Percentage of total material damaged given damage state for different building types.

ID Damage
State Percentage of Total Material Damaged

Brick Wood Concrete Steel

URML-P,
URML-L,
URMM-L

Slight
Moderate
Extensive
Complete

3.5
18.5
50
100

3.5
18.5
50
100

0
6
27
100

0
6
27
100

C3L-L,
C3M-L

Slight
Moderate
Extensive
Complete

3
16
47.5
100

3
16
47.5
100

0.05
7
31
100

0.05
7
31
100

C1M-L,
C1M-M

Slight
Moderate
Extensive
Complete

0.5
3.5
17.5
100

0.5
3.5
17.5
100

0.05
6.5
30.5
100

0.05
6.5
30.5
100

The repair time for different building types given damage state is determined from
the data provided in Table A5.

Table A5. Repair time estimation for different building types given damage state.

ID Damage State Repair Time in Days

URML-P,
URML-L,
URMM-L
C3L-L

Slight
Moderate
Extensive
Complete

2
30
90
180

C3M-L,
C1M-L
C1M-M

Slight
Moderate
Extensive
Complete

5
30
120
240

The considered distribution is lognormal with coefficient of variation 0.4.

The downtime assessment of a building is determined by utilizing delay time statistics
shown in Table A6.

Table A6. Delay time statistics.

Component Building Condition Delay Time in Days Coefficient of
Variation

Inspection Slight
other

0
5

0
0.54

Engineering
mobilization

Slight
Moderate
Extensive
Complete

6
12
12
50

0.4
0.4
0.4
0.32

Financing

Insurance
Private loans
SBA-backed loans
Not covered

6
15
48
48

1.11
0.68
0.57
0.65

Contractor
mobilization

Slight
other

7
19

0.6
0.38

Permitting Slight
other

1
8

0.86
0.32



Buildings 2022, 12, 85 20 of 22

References
1. Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [CrossRef]
2. McAllister, T.P. Community Resilience Planning Guide for Buildings and Infrastructure Systems; NIST: Gaithersburg, MD, USA, 2015;

Volume I.
3. Koliou, M.; van de Lindt, J.W.; McAllister, T.P.; Ellingwood, B.R.; Dillard, M.; Cutler, H. State of the research in community

resilience: Progress and challenges. Sustain. Resilient Infrastruct. 2017, 5, 131–151. [CrossRef]
4. Huang, Y.-N.; Whittaker, A.S.; Hamburger, R.O. A simplified analysis procedure for performance-based earthquake engineering

of buildings. Eng. Struct. 2017, 150, 719–735. [CrossRef]
5. Fajfar, P. A nonlinear analysis method for performance-based seismic design. Earthq. Spectra 2000, 16, 573–592. [CrossRef]
6. Ghobarah, A. Performance-based design in earthquake engineering: State of development. Eng. Struct. 2001, 23, 878–884.

[CrossRef]
7. Guo, H.; Dong, Y.; Bastidas-Arteaga, E.; Gu, X.-L. Probabilistic failure analysis, performance assessment, and sensitivity analysis

of corroded reinforced concrete structures. Eng. Fail. Anal. 2021, 124, 105328. [CrossRef]
8. Moehle, J.P. Seismic analysis, design, and review for tall buildings. Struct. Des. Tall Spec. Build. 2006, 15, 495–513. [CrossRef]
9. Jeong, S.-H.; Mwafy, A.M.; Elnashai, A.S. Probabilistic seismic performance assessment of code-compliant multi-story RC

buildings. Eng. Struct. 2012, 34, 527–537. [CrossRef]
10. Qian, J.; Dong, Y. Uncertainty and multi-criteria global sensitivity analysis of structural systems using acceleration algorithm and

sparse polynomial chaos expansion. Mech. Syst. Signal Processing 2022, 163, 108120. [CrossRef]
11. Lemma, M.; Rebelo, C.; Silva, L. Seismic Design and Performance Assessment of Steel Frames Considering Joints’Behaviour.

ce/papers 2021, 4, 1965–1973. [CrossRef]
12. FEMA 440. Improvement of Nonlinear Static Seismic Analysis Procedures; FEMA 440: Redwood City, CA, USA, 2005.
13. Jalayer, F.; Ebrahimian, H.; Miano, A. Record-to-record variability and code-compatible seismic safety-checking with limited

number of records. Bull. Earthq. Eng. 2021, 19, 6361–6396. [CrossRef]
14. Guan, M.; EERI, X.; Burton, M.; EERI, H.; Shokrabadi, M. A database of seismic designs, nonlinear models, and seismic responses

for steel moment-resisting frame buildings. Earthq. Spectra 2021, 37, 1199–1222. [CrossRef]
15. Zheng, Y.; Dong, Y.; Chen, B.; Anwar, G.A. Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings.

Smart Struct. Syst. 2019, 24, 127–139.
16. Chen, L.; Qian, J.; Tu, B.; Frangopol, D.M.; Dong, Y. Performance-based risk assessment of reinforced concrete bridge piers

subjected to vehicle collision. Eng. Struct. 2021, 229, 111640. [CrossRef]
17. Giouvanidis, A.I.; Dong, Y. Seismic loss and resilience assessment of single-column rocking bridges. Bull. Earthq. Eng. 2020,

4481–4513. [CrossRef]
18. Anwar, G.A.; Dong, Y.; Zhai, C. Performance-based probabilistic framework for seismic risk, resilience, and sustainability

assessment of reinforced concrete structures. Adv. Struct. Eng. 2020, 23, 1454–1472. [CrossRef]
19. Anwar, G.A.; Dong, Y.; Li, Y. Performance-based decision-making of buildings under seismic hazard considering long-term loss,

sustainability, and resilience. Struct. Infrastruct. Eng. 2020, 17, 454–470. [CrossRef]
20. Hashemi, M.J.; Al-Attraqchi, A.Y.; Kalfat, R.; Al-Mahaidi, R. Linking seismic resilience into sustainability assessment of limited-

ductility RC buildings. Eng. Struct. 2019, 188, 121–136. [CrossRef]
21. Dong, Y.; Frangopol, D.M. Performance-based seismic assessment of conventional and base-isolated steel buildings including

environmental impact and resilience. Earthq. Eng. Struct. Dyn. 2016, 45, 739–756. [CrossRef]
22. Vettore, M.; Donà, M.; Carpanese, P.; Follador, V.; da Porto, F.; Valluzzi, M.R. A multilevel procedure at urban scale to assess the

vulnerability and the exposure of residential masonry buildings: The case study of Pordenone, Northeast Italy. Heritage 2020,
3, 80. [CrossRef]

23. HAZUS. Multi-Hazard Loss Estimation Methodology, Earthquake Model; FEMA: Washington, DC, USA, 2003.
24. FEMA-P-58. Seismic Performance Assessment of Buildings: Volume 1–Methodology; ATC: Camarillo, CA, USA, 2012.
25. Yang, D.Y.; Frangopol, D.M. Chapter 23 in Routledge Handbook of Sustainable and Resilient Infrastructure. In Bridging the

Gap between Sustainability and Resilience of Civil Infrastructure Using Lifetime Resilience; Routledge: Abingdon-on-Thames, UK,
2018; pp. 419–442.

26. McAllister, T.P.; Moddemeyer, S. Aligning community resilience and sustainability. In Routledge Handbook of Sustainable and
Resilient Infrastructure; Routledge: Abingdon-on-Thames, UK, 2018; pp. 15–27.

27. Rodriguez-Nikl, T. Linking disaster resilience and sustainability. Civ. Eng. Environ. Syst. 2015, 32, 157–169. [CrossRef]
28. Erdik, M. Earthquake risk assessment. Bull. Earthq. Eng. 2017, 15, 5055–5092. [CrossRef]
29. Battarra, M.; Balcik, B.; Xu, H. Disaster preparedness using risk-assessment methods from earthquake engineering. Eur. J. Oper.

Res. 2018, 269, 423–435. [CrossRef]
30. Barbat, A.H.; Carreño, M.L.; Pujades, L.G.; Lantada, N.; Cardona, O.D.; Marulanda, M.C. Seismic vulnerability and risk evaluation

methods for urban areas. A review with application to a pilot area. Struct. Infrastruct. Eng. 2010, 6, 17–38. [CrossRef]
31. Miles, S.B.; Burton, H.V.; Kang, H. Community of Practice for Modeling Disaster Recovery. Nat. Hazards Rev. 2018, 20, 04018023.

[CrossRef]
32. Miles, S.B.; Chang, S.E. Modeling community recovery from earthquakes. Earthq. Spectra 2006, 22, 439–458. [CrossRef]

http://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)
http://doi.org/10.1080/23789689.2017.1418547
http://doi.org/10.1016/j.engstruct.2017.07.048
http://doi.org/10.1193/1.1586128
http://doi.org/10.1016/S0141-0296(01)00036-0
http://doi.org/10.1016/j.engfailanal.2021.105328
http://doi.org/10.1002/tal.378
http://doi.org/10.1016/j.engstruct.2011.10.019
http://doi.org/10.1016/j.ymssp.2021.108120
http://doi.org/10.1002/cepa.1510
http://doi.org/10.1007/s10518-020-01024-6
http://doi.org/10.1177/8755293020971209
http://doi.org/10.1016/j.engstruct.2020.111640
http://doi.org/10.1007/s10518-020-00865-5
http://doi.org/10.1177/1369433219895363
http://doi.org/10.1080/15732479.2020.1845751
http://doi.org/10.1016/j.engstruct.2019.03.021
http://doi.org/10.1002/eqe.2682
http://doi.org/10.3390/heritage3040080
http://doi.org/10.1080/10286608.2015.1025386
http://doi.org/10.1007/s10518-017-0235-2
http://doi.org/10.1016/j.ejor.2018.02.014
http://doi.org/10.1080/15732470802663763
http://doi.org/10.1061/(ASCE)NH.1527-6996.0000313
http://doi.org/10.1193/1.2192847


Buildings 2022, 12, 85 21 of 22

33. Donà, M.; Bizzaro, L.; Carturan, F.; da Porto, F. Effects of business recovery strategies on seismic risk and cost-effectiveness of
structural retrofitting for business enterprises. Earthq. Spectra 2019, 35, 1795–1819. [CrossRef]

34. Sen, M.K.; Dutta, S.; Kabir, G.; Pujari, N.N.; Laskar, S.A. An integrated approach for modelling and quantifying housing
infrastructure resilience against flood hazard. J. Clean. Prod. 2021, 288, 125526. [CrossRef]

35. Masoomi, H.; van de Lindt, J.W. Community-Resilience-Based Design of the Built Environment. ASCE-ASME J. Risk Uncertain.
Eng. Syst. Part A Civ. Eng. 2018, 5, 04018044. [CrossRef]

36. Feng, K.; Wang, N.; Li, Q.; Lin, P. Measuring and enhancing resilience of building portfolios considering the functional
interdependence among community sectors. Struct. Saf. 2017, 66, 118–126. [CrossRef]

37. Burton, H.V.; Deierlein, G.; Lallemant, D.; Singh, Y. Measuring the Impact of Enhanced Building Performance on the Seismic
Resilience of a Residential Community. Earthq. Spectra 2017, 33, 1347–1367. [CrossRef]

38. Lin, P.; Wang, N. Stochastic post-disaster functionality recovery of community building portfolios I: Modeling. Struct. Saf. 2017,
69, 96–105. [CrossRef]

39. Hassan, E.M.; Mahmoud, H. An integrated socio-technical approach for post-earthquake recovery of interdependent healthcare
system. Reliab. Eng. Syst. Saf. 2020, 201, 106953. [CrossRef]

40. Zinke, T.; Bocchini, P.; Frangopol, D.; Ummenhofer, T. Combining resilience and sustainability in infrastructure projects. In
Life-Cycle and Sustainability of Civil Infrastructure Systems; Taylor & Francis Group: London, UK, 2013; p. 473.

41. Asprone, D.; Manfredi, G. Linking disaster resilience and urban sustainability: A glocal approach for future cities. Disasters 2015,
39, s96–s111. [CrossRef]

42. Dong, Y.; Frangopol, D.M.; Saydam, D. Pre-earthquake multi-objective probabilistic retrofit optimization of bridge networks
based on sustainability. J. Bridge Eng. 2014, 19, 04014018. [CrossRef]

43. Dong, Y.; Frangopol, D.M. Adaptation optimization of residential buildings under hurricane threat considering climate change in
a lifecycle context. J. Perform. Constr. Facil. 2017, 31, 04017099. [CrossRef]

44. Holland, J. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.
45. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the first International

Conference on Genetic Algorithms and Their Applications, Pittsburg, PA, USA, 24–26 July 1985.
46. Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the

first IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, Orlando, FL, USA, 27–29
June 1994; pp. 82–87.

47. Konak, A.; Coit, D.W.; Smith, A.E. Multi-objective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006,
91, 992–1007. [CrossRef]

48. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Report 2001, 1–13.
49. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.

Comput. 2002, 6, 182–197. [CrossRef]
50. Zhang, W.; Nicholson, C. A multi-objective optimization model for retrofit strategies to mitigate direct economic loss and

population dislocation. Sustain. Resilient Infrastruct. 2016, 1, 123–136. [CrossRef]
51. Sutley, E.J.; van de Lindt, J.W.; Peek, L. Multihazard analysis: Integrated engineering and social science approach. J. Struct. Eng.

2017, 143, 04017107. [CrossRef]
52. Hammersley, J. Monte Carlo Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
53. Donà, M.; Carpanese, P.; Follador, V.; Sbrogiò, L.; da Porto, F. Mechanics-based fragility curves for Italian residential URM

buildings. Bull. Earthq. Eng. 2021, 19, 3099–3127. [CrossRef]
54. Šipoš, T.K.; Hadzima-Nyarko, M. Rapid seismic risk assessment. Int. J. Disaster Risk Reduct. 2017, 24, 348–360. [CrossRef]
55. Carreño, M.L.; Cardona, O.D.; Barbat, A.H. New methodology for urban seismic risk assessment from a holistic perspective. Bull.

Earthq. Eng. 2012, 10, 547–565. [CrossRef]
56. Zentner, I.; Gündel, M.; Bonfils, N. Fragility analysis methods: Review of existing approaches and application. Nucl. Eng. Des.

2017, 323, 245–258. [CrossRef]
57. Crowley, H.; Pinho, R.; van Elk, J.; Uilenreef, J. Probabilistic damage assessment of buildings due to induced seismicity. Bull.

Earthq. Eng. 2019, 17, 4495–4516. [CrossRef]
58. Da Porto, F.; Donà, M.; Rosti, A.; Rota, M.; Lagomarsino, S.; Cattari, S.; Borzi, B.; Onida, M.; De Gregorio, D.; Perelli, F.L.

Comparative analysis of the fragility curves for Italian residential masonry and RC buildings. Bull. Earthq. Eng. 2021, 19,
3209–3252. [CrossRef]

59. Park, J.; Towashiraporn, P.; Craig, J.I.; Goodno, B.J. Seismic fragility analysis of low-rise unreinforced masonry structures. Eng.
Struct. 2009, 31, 125–137. [CrossRef]

60. Farhan, M.; Bousias, S. Seismic fragility analysis of LNG sub-plant accounting for component dynamic interaction. Bull. Earthq.
Eng. 2020, 18, 5063–5085. [CrossRef]

61. Qian, J.; Dong, Y. Multi-criteria decision making for seismic intensity measure selection considering uncertainty. Earthq. Eng.
Struct. Dyn. 2020, 49, 1095–1114. [CrossRef]

62. Wang, X.; Shahzad, M.M.; Wang, T. Research on dynamic response characteristics and control effect of mega-sub con-
trolled structural system under long-period ground motions. In Structures; Elsevier: Amsterdam, The Netherlands, 2021;
Volume 29, pp. 225–234.

http://doi.org/10.1193/041918EQS098M
http://doi.org/10.1016/j.jclepro.2020.125526
http://doi.org/10.1061/AJRUA6.0000998
http://doi.org/10.1016/j.strusafe.2017.02.006
http://doi.org/10.1193/040916eqs057m
http://doi.org/10.1016/j.strusafe.2017.05.002
http://doi.org/10.1016/j.ress.2020.106953
http://doi.org/10.1111/disa.12106
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000586
http://doi.org/10.1061/(ASCE)CF.1943-5509.0001088
http://doi.org/10.1016/j.ress.2005.11.018
http://doi.org/10.1109/4235.996017
http://doi.org/10.1080/23789689.2016.1254995
http://doi.org/10.1061/(ASCE)ST.1943-541X.0001846
http://doi.org/10.1007/s10518-020-00928-7
http://doi.org/10.1016/j.ijdrr.2017.06.025
http://doi.org/10.1007/s10518-011-9302-2
http://doi.org/10.1016/j.nucengdes.2016.12.021
http://doi.org/10.1007/s10518-018-0462-1
http://doi.org/10.1007/s10518-021-01120-1
http://doi.org/10.1016/j.engstruct.2008.07.021
http://doi.org/10.1007/s10518-020-00896-y
http://doi.org/10.1002/eqe.3280


Buildings 2022, 12, 85 22 of 22

63. Zhang, N.; Gu, Q.; Dong, Y.; Qian, J.; Zheng, Y. Seismic performance of bridges with ECC-reinforced piers. Soil Dyn. Earthq. Eng.
2021, 146, 106753. [CrossRef]

64. Li, Y.; Dong, Y.; Frangopol, D.M.; Gautam, D. Long-term resilience and loss assessment of highway bridges under multiple
natural hazards. Struct. Infrastruct. Eng. 2020, 16, 626–641. [CrossRef]

65. Silva, V. Critical issues on probabilistic earthquake loss assessment. J. Earthq. Eng. 2018, 22, 1683–1709. [CrossRef]
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