
����������
�������

Citation: Lee, H.; Han, S.; Seo, J.

Light Shelf Development Using

Folding Technology and Photovoltaic

Modules to Increase Energy

Efficiency in Building. Buildings 2022,

12, 81. https://doi.org/10.3390/

buildings12010081

Academic Editors: Zhenjun Ma,

Alessandro Cannavale and

Jianhui Hu

Received: 29 November 2021

Accepted: 13 January 2022

Published: 15 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

Light Shelf Development Using Folding Technology and
Photovoltaic Modules to Increase Energy Efficiency in Building
Heangwoo Lee 1 , Sowon Han 1 and Janghoo Seo 2,*

1 College of Design, Sangmyung University, Cheonan-si 31066, Korea; 2hw@smu.ac.kr (H.L.);
hkghkdfyd123@naver.com (S.H.)

2 School of Architecture, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
* Correspondence: seojh@kookmin.ac.kr; Tel.: +82-02-910-4593

Abstract: Some recent research in the area of light shelves has been focused on applying photovoltaic
modules to light shelves to save building energy. However, due to the modules installed on the
light shelf reflectors, most such light shelves have failed to improve both daylighting and gener-
ation efficiency. This study proposes a folding technology to improve light shelves’ daylighting
and generation efficiency that uses photovoltaic modules and validates their performance using a
testbed. The major obtained findings are as follows: (1) The proposed folding technology has a struc-
ture in which reflectors and photovoltaic modules fold alternately by modularizing the light shelf.
The reflector and photovoltaic modules are controlled by adjusting the degree of folding. (2) Because
light shelf angles for improving daylighting and generation differed depending on the application of
the photovoltaic module, the optimal light shelf specifications differed. (3) Compared to previous
light shelf technologies, the light shelf with folding technology and a photovoltaic module reduced
energy use by 31.3% to 38.2%. This demonstrates the efficacy of the proposed system. (4) Applying
a photovoltaic module can lower the indoor uniformity ratio, which means that the daylighting
performance of the light shelf is degraded due to the reduction of the area occupied by the reflector.

Keywords: light shelf; photovoltaic module; folding technology; performance evaluation; energy efficiency

1. Introduction

Recently, research on daylighting and shading systems such as light shelves, light pipes,
blinds, louvers, and awnings has been increasing to reduce the consumption of light-
ing energy in indoor spaces and create a comfortable indoor light environment [1–5].
Among these systems, a light shelf is a type of reflector that contributes to lighting energy
savings by reflecting and introducing natural light deep into a room [6–9]. It can also
increase daylighting efficiency by responding to external environmental factors like solar
altitude [10] by controlling the angle of the reflector. Several studies on light shelves have
been conducted, indicating that their efficiency is widely recognized. Recent studies on
light shelves [11,12] have discovered that applying photovoltaic modules that convert
sunlight into electricity to the light shelf can increase building energy savings. However,
most of the approaches studied [12] have involved the application of photovoltaic modules
to part of the light shelf reflector. When photovoltaic modules are attached to the light
shelf reflector, the two components end up having the same angle, which is not suitable
for maximizing daylighting and generation performance at the same time. This is because
light shelves and photovoltaic modules require different angles to maximize daylighting
and generation performance.

As a result, this study proposes and validates a method for simultaneously improving
the daylighting and generation efficiency of light shelves that use photovoltaic modules
using a full-scale testbed.
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1.1. The Light Shelves Concept and Operation Technologies

As shown in Figure 1, a light shelf is one of the most prevailing daylighting systems
installed on windows (inside or outside) that saves lighting energy by introducing natural
light inside a building (room) by reflecting sunlight through the light shelf reflector [8–10].
Light shelves can also help to solve indoor illuminance imbalances caused by differences
in illuminance between areas near and far from windows by preventing entry of some of
the excessive natural light from the window. On the other hand, it can introduce natural
light deeper into an indoor space by reflecting natural light from the ceiling, and reflector,
so reflections from the reflector and ceiling surface are typically considered. The variables
such as angle, height, reflectance, and width of light shelves determine its performance.
Similarly, the light shelf angle is a primary variable to respond to external environmental
factors such as the solar altitude, as shown in Figure 1 [10,12].
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Figure 1. Light shelf concept and operation: (a) Concept and variables, (b) Inflow of the natural light
by manipulating angle of the light shelf.

Several studies have been conducted on light shelves to improve their daylighting per-
formance, and some of these are listed in Table 1. Researchers have attempted to enhance the
light shelf reflectors’ shape and also used multiple building envelope component technolo-
gies such as blinds and awnings to improve light shelf daylighting performance [8,9,11–21].
Some recent studies, in particular, have concentrated on movable light shelves using in-
formation technologies such as user recognition and location awareness [10,22]. However,
these studies controlled the light shelf angle using a rotating shaft (see Figure 1). Previous
studies on light shelves with photovoltaic modules [11,12] have attached photovoltaic
modules to the front or part of the light shelf reflector. Installing photovoltaic modules
on the part of the light shelf reflector was more advantageous in saving building energy
than applying them to the front due to enabling daylighting and concentrating light at
the same time [12]. Previous studies that used photovoltaic modules on light shelves [12]
encountered difficulties in maximizing daylighting and generation at the same time because
the reflector that reflects natural light and the photovoltaic module that concentrates light
maintain the same angle.
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Table 1. Previous studies on light shelves.

Author Purpose Photovoltaic Module
Application

Consideration of
Operation Technologies

Lim and Heng [8]
Proposal and performance

evaluation of dynamic internal light
shelf in high-rise office buildings

No

Not considered
(Fixed light shelf)Claros and Soler [13] Performance evaluation according

to light shelf reflectance

Warrier and Raphael [14]
Indoor visual comfort analysis

according to the presence of
light shelves

Lee [9]
Performance evaluation of

perforated light shelves in response
to external wind pressure

Light shelf angle control by
a single rotating shaft

Lee et al. [15] Performance evaluation of light
shelves with diffusion sheets

Lee and Seo [16]
Proposal of a prism sheet

application method for improving
light shelf performance

Mangkuto et al. [17]
Parametric design study of light

shelves for application to
hospital buildings

Lee et al. [18] Performance evaluation of light
shelves by applying curvature

Meresi [19]
Evaluation of the light shelf
performance based on the

application of the external blinds

Lee [20]
Development and performance

evaluation of a light shelf that can
change the reflectivity

AmirEbrahimi-Moghadam
et al. [21]

Performance evaluation of interior
light shelves

Kim et al. [10]
Development and performance

evaluation of light shelves based on
user-awareness technology

Lee et al. [22]
Performance evaluation of light

shelves with
location-awareness technology

Light shelf and light shelf
angle control by multiple

rotating shafts

Hwang et al. [11]
Performance evaluation of

photovoltaic-integrated light
shelf systems

Yes

Not considered
(Fixed light shelf)

Lee [12]
Performance evaluation of light

shelves according to photovoltaic
module attachment ratio

Light shelf angle control by
a single rotating shaft

1.2. Concept and Power Generation Principle of Photovoltaic Modules

As shown in Figure 2, a photovoltaic module is a structure of photovoltaic cells
connected by a ribbon to generate the required energy [23,24]. A photovoltaic cell is the
smallest unit that converts solar energy into electrical energy and has p-n semiconductor
junction structures. When photovoltaic cells absorb photons from the outside, electrons
and holes are generated inside the photovoltaic cells, as shown in Figure 2. These electrons
and holes migrate to n-type and p-type semiconductors. This movement drives the load
of the photovoltaic cells, generating electrical energy. The generation process allows the
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photovoltaic cell to transform the solar energy into electrical energy. Temperature is a
factor that has a significant impact on the power generation efficiency of photovoltaic cells.
This efficiency decreases as the temperature rises [25–30]. In addition, the photovoltaic
cells should be perpendicular to the sun to increase power generation efficiency, and the
efficiency decreases as the sunlight deviates from a vertical angle [31–33].
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Figure 2. Photovoltaic module concept and power generation principle of photovoltaic cells:
(a) Photovoltaic module concept, (b) Principle of the power generation.

1.3. Indoor Illuminance Standards for Lighting Control

Maintaining optimal indoor illuminance can increase the efficiency of visual work
by creating a comfortable light environment for occupants and saving building energy by
preventing unnecessary lighting control [34]. The optimal range of indoor illuminance is
determined by the type of workplace or the level of visual work. This study considered the
optimal illuminance standards in the United States [35], Japan [36], and Korea [37] based on
the grade of visual work, as shown in Table 2. The illuminance standards in these countries,
however, differ. As a result, this study established the optimal indoor illuminance standard
at 500 lx based on the intersection for general visual work in the United States, Japan,
and Korea and used this standard to assess the performance of light shelves.

Table 2. Indoor illuminance standards for visual work in the US, Korea, and Japan.

Country Optimal Indoor
Illuminance Standards Task Grade

Illuminance Range (lx)

Minimum-Standard-
Maximum

USA IES [35]
General 500-750-1000

Simple 200-300-500

Japan JIS Z 9110 [36]
General 300-500-600

Simple 150-200-300

Republic of Korea KS A 3011 [37]
General 300-400-600

Simple 150-200-300

2. Methods
2.1. Proposal of Light Shelf That Applies Folding Technology and Photovoltaic Modules

This study adopted folding technology to propose a way to simultaneously improve
the daylighting and generation performance of light shelves that apply photovoltaic mod-
ules, and the details are as follows.

First, the light shelf was designed with a folding structure to improve daylighting
and generation performance, as shown in Figure 3. The light shelf was divided and
modularized in a horizontal direction with the daylighting window to implement such a
folding structure, and a hinge structure connected the divided light shelf modules. Second,
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reflectors and photovoltaic modules were installed alternately from the window side of
the light shelf, which applies a folding technology and photovoltaic modules. As a result,
folding the light shelf made the reflector angle symmetrical with the photovoltaic module
angle (see Figure 3). This principle enables the proposed system to outperform conventional
flat light shelves in terms of daylighting and generation. Third, the proposed system folds
and unfolds the light shelf by moving along a rail, unlike previous methods in which the
light shelf rotates around a rotating shaft.
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modules: (a) Structure of proposed system, (b) Daylighting and generation by the proposed system.

2.2. Environment for Performance Evaluation

A full-scale testbed including an artificial climate chamber was built to evaluate the
performance of the proposed light shelf that applies folding technology and photovoltaic
modules, and the details are as follows.

First, as shown in Figures 4 and 5, the dimensions of the internal space of the testbed
were 4.9 m × 6.6 m × 2.5 m (W × D × H). The reflectance of the floor, wall, and ceiling was
set to 25%, 46%, and 86%, respectively. The window used to install the light shelf measured
1.9 m × 1.7 m (W × H) and was made of 24 mm thick pair glass with an 80 percent
transmittance. Second, eight illuminance sensors were installed to measure the change
in illuminance of the indoor space caused by the light shelf. Because of the height of the
work surface, they were placed 0.85 m from the floor. Third, four lights were installed in
the testbed using the IES 4-point method [35]. These LED lights were capable of 8-level
dimming control (excluding lights off). Fourth, the testbed had an artificial climate chamber
installed adjacent to the outside of the window. An artificial solar irradiation apparatus
was installed in the chamber that would stimulate the brightness and altitude of the sun
by regulating the intensity and angle of the natural light. The performance evaluation
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was carried out in an artificial environment due to its advantages in implementing a
consistent external environment. The Grade-A artificial solar irradiation apparatus also
ensured measurement uniformity following ASTM E927-85, resulting in valid results across
performance evaluations. Due to mechanical limitations, this apparatus could not simulate
the sun’s azimuth. The temperature range of the artificial climate chamber was also
adjustable in light of the findings of related works [25–27] that the generation efficiency
of photovoltaic modules was significantly affected by temperature. Fifth, the current
study develops an energy monitoring system to more precisely estimate lighting energy
consumption (see Figure 4 for more detail).
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Apparatus, (c) Chamber thermostat, (d) Chamber temperature controller, (e) Light dimming controller,
(f) Energy monitoring system.

2.3. Methods of Performance Appraisal

The performance appraisal was conducted to prove the effectiveness of the daylight-
ing and generation performance of the light shelf that applies folding technology and
photovoltaic modules.

First, as shown in Table 3, this study set up three scenarios based on whether or
not photovoltaic modules were used and how they worked. Case 1 was a standard
light shelf that did not include a photovoltaic module. Case 2 was a light shelf with
a photovoltaic module attached to the reflector, resulting in the photovoltaic module and
reflector having the same angle. However, the area where the photovoltaic module was
attached in Case 2 had the same size as the reflector where reflection occurs, considering
the previous study findings [12], in which installing photovoltaic modules on the part of
the light shelf reflector was found to provide advantages in terms of saving building energy
by enabling daylighting and generation at the same time. As shown in Figure 1, a single
rotating shaft was used to change the angles of the light shelves in Cases 1 and 2. In Case 2,
the light shelf angle increased from −70◦ to 30◦ in 10◦ increments while considering the
photovoltaic module’s generation function. Case 3 was designed around a light shelf that
employs folding technology as well as photovoltaic modules. As shown in Table 4, the light
shelf is folded in stages. Each stage of folding changed the light shelf width, reflector angle,
and photovoltaic module angle. The photovoltaic cells used in the photovoltaic module
are specified in Table 5. Finally, as shown in Figure 6, this study used a profile to make the
light shelf for a performance evaluation.

Table 3. Case settings for performance evaluation.

Case

Light Shelf Photovoltaic Module
Application

(# of Photovoltaic Cells
Applied)

Folding
Technology
Application

Operation
Method

Light Shelf Angle
Width Angle

1

0.6 m

−10◦, 0◦, 10◦,
20◦, 30◦ Not applied (0)

Not applied Rotation by a
rotating shaft
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* The efficiency decreases at rate of 6.1% when the Photovoltaic module was applied using 33 photovoltaic cells.
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Table 4. Folding shape, light shelf angle, and photovoltaic module angle according to the width of
Case 3.

Folding Stage Light Shelf
Width (W)

Reflector Module
Angle (α)

Photovoltaic
Module Angle (β)

1 (Straight, no folding) 0.60 m 0◦ 180◦

2 0.58 m 14.8◦ 165.2◦

3 0.56 m 21.0◦ 159◦

4 0.54 m 25.8◦ 154.2◦

5 0.52 m 29.9◦ 150.1◦

6 0.50 m 33.6◦ 146.4◦
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Secondly, monitored the distribution of indoor illuminance according to the cases
set for performance evaluation to derive the minimum illuminance, average illuminance,
and uniformity ratio. The uniformity ratio was the ratio of the minimum illuminance to
the average.

Thirdly, the study determined the dimming level and lighting energy consumption for
each case to achieve optimal indoor illuminance, and the details are as follows. As shown
in Figure 7, dimming control was only used when the minimum value measured by
the eight illuminance sensors was less than 500 lx. If the minimum value measured
by the illuminance sensors was greater than 500 lx, all lights were turned off without
dimming control. The system monitored the values measured by the illuminance sensors
while increasing the dimming levels sequentially from the light closest to the illuminance
sensor with the minimum value. During this process, dimming control ended when all
measurements by the illuminance sensors reached 500 lx. Finally, the performance of each
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case was compared by calculating the lighting energy consumption based on the level of
dimming control.
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Fourth, the energy produced by the photovoltaic module’s generation performance
was measured in this study. The photovoltaic module’s energy was calculated by multiply-
ing the module’s maximum voltage (Vmp) and maximum current (Imp) while producing
power. Table 6 shows the specifications of the photovoltaic module used for performance
evaluation and the equipment used to measure the voltage and current.

Table 6. Specifications of the voltage and current measuring device (Equipment name:
MULLER 3201).

Item Specifications Image

Measurement item
(measurement capacity)

DC Voltage (0~600 V),
DC Current (0~60 A)

Buildings 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 
Figure 7. Lighting dimming control flow chart for performance evaluation. 

Fourth, the energy produced by the photovoltaic module’s generation performance 
was measured in this study. The photovoltaic module’s energy was calculated by multi-
plying the module’s maximum voltage (Vmp) and maximum current (Imp) while produc-
ing power. Table 6 shows the specifications of the photovoltaic module used for perfor-
mance evaluation and the equipment used to measure the voltage and current. 

Table 6. Specifications of the voltage and current measuring device (Equipment name: MULLER 
3201). 

Item Specifications Image 

Measurement item (measurement 
capacity) 

DC Voltage (0 V ~ 600 V), DC Current (0 A 
~ 60 A) 

 

Error rate ±(0.5% + 3) 

Fifth, the artificial climate chamber of the testbed created the external environment 
of the outdoor space, where the performance evaluation was conducted for summer, mid-
season, and winter, as shown in Table 7. The experiment was performed under three ex-
ternal conditions based on seasonal variation (i.e., summer, middle season, and winter). 
More specifically, each condition was controlled hour by hour to reflect potential change 
in external illuminance and solar radiation during a 5 h session between 10 am and 3 pm. 
The external environment’s characteristics were specifically based on Seoul, Korea, which 
has four distinct seasons. The outdoor temperature for each season was determined by 
considering the Korea Meteorological Administration’s average climate data for the past 
thirty years [38]. However, the solar irradiation for each season was determined by 

Error rate ±(0.5% + 3)

Fifth, the artificial climate chamber of the testbed created the external environment
of the outdoor space, where the performance evaluation was conducted for summer, mid-
season, and winter, as shown in Table 7. The experiment was performed under three
external conditions based on seasonal variation (i.e., summer, middle season, and winter).
More specifically, each condition was controlled hour by hour to reflect potential change
in external illuminance and solar radiation during a 5 h session between 10 am and
3 pm. The external environment’s characteristics were specifically based on Seoul, Korea,
which has four distinct seasons. The outdoor temperature for each season was determined
by considering the Korea Meteorological Administration’s average climate data for the past
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thirty years [38]. However, the solar irradiation for each season was determined by varying
the intensity of the artificial solar irradiation apparatus rather than by observing actual
climate data. This limitation was due to the performance evaluation being conducted in an
artificial environment.

Table 7. Climatic settings for performance evaluation based on geographical specification.

Season Meridian
Altitude

External Illuminance (lx)/Solar Radiation (W/m2) Outdoor
Temperature10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00

Summer 76.5 70,000/530 80,000/638 80,000/638 80,000/638 70,000/530 27.1 ◦C
Middle
season 52.5 50,000/414 50,000/414 60,000/476 60,000/476 50,000/414 17.2 ◦C

Winter 29.5 20,000/289 30,000/332 30,000/332 30,000/332 20,000/289 −3.2 ◦C

Sixth, the optimal specifications (optimal angle and folding stage) were derived for
each case. These were derived by considering lighting energy saving as a priority. When
multiple specifications saved the same amount of energy, the one with the highest unifor-
mity was deemed to be optimal. Conditions that would result in the glare as a result of
introducing natural light directly into the room via the light shelf without bouncing it off
the ceiling, on the other hand, were excluded from the optimal specifications.

3. Results and Discussion
3.1. Performance Evaluation Results

This study conducted a performance evaluation to validate the effectiveness of the
light shelf that applies folding technology and photovoltaic modules. The results are
as follows.

Firstly, Figure 8 illustrates the performance evaluation results of Case 1 (light shelf
with no photovoltaic module), which shows that light shelf angle affects the daylighting
performance. Increasing the light shelf angle during the summer was beneficial in saving
lighting energy and improving the indoor uniformity ratio. Increasing the light shelf angle
was also helpful during the middle season, but the uniformity ratio deteriorated when
the light shelf angle was 30◦. As shown in Figure 9, setting the angle at 30◦ allows high
illuminance light to reach a specific area only by reflecting off the light shelf, resulting
in an illuminance imbalance in the indoor space. In winter, the increment in the light
shelf angle was suitable for saving lighting energy by increasing the amount of natural
light entering the room through light shelf reflection, but adjusting the light shelf angle
to 30◦ was inappropriate for saving lighting energy and improving the indoor uniformity
ratio. This is because the solar altitude is lower in the summer compared to the winter
and middle seasons, allowing natural light to enter deep into the indoor space through the
daylighting window. Furthermore, during the winter, the solar altitude is 27.5◦, so when
the light shelf angle is 30◦, the light shelf only acts as a shade, as shown in Figure 9. A light
shelf angle of 20◦ was also excluded from the optimal specifications during the winter
because, like using a 30◦ angle during the middle season, it could reduce the uniformity
ratio and cause glare. As a result, the optimal light shelf angles for Case 1 during the
summer, mid-season, and winter were 30◦, 20◦, and 10◦, respectively, with lighting energy
consumption of 0.471 kWh, 0.309 kWh, and 0.134 kWh.
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Secondly, Figure 10 shows the output of a performance evaluation of Case 2 (light
shelf applying photovoltaic module). In terms of saving lighting energy, the optimal
specifications during summer, mid-season, and winter were 30◦, 20◦, and 10◦, respectively,
the same as Case 1. However, in Case 2, the area of the reflector used for daylighting was
reduced by 50% compared to Case 1, reducing the amount of natural light entering the room
through light shelf reflection and deteriorating uniformity, as shown in Figure 11. Case 2
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also has a higher lighting energy consumption than Case 1. Meanwhile, the photovoltaic
module in Case 2 generated the most power at light shelf angles of −10◦, −40◦, and −60◦,
which proves that the closer the incident angle of natural light is to vertical, the higher
the power generation efficiency. However, it is difficult to maximize both the daylighting
and generation performance at the same time in Case 2 because it controls the reflector
for daylighting and the photovoltaic module for concentrating light at the same angle.
Therefore, the optimal specifications for Case 2 during summer, mid-season, and winter
were 10◦, −10◦, and 20◦, respectively, and the lighting energy consumption was 0.406 kWh,
0.314 kWh, and 0.100 kWh, respectively.
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Thirdly, Figure 12 shows the results of a performance appraisal of Case 3 (light shelf
applying folding technology and photovoltaic module). The optimal specifications for
Case 3, considering only lighting energy savings and improving indoor light uniformity
during summer, mid-season, and winter were folding stages 6, 4, and 3(4), respectively.
During the winter, however, as shown in Table 4, folding stages 3 and 4 reduce the light
shelf angle to 21◦ and 25.8◦, respectively. These angles, like a light shelf angle of 20◦ in
the winter, cause glare by allowing the direct flow of natural light into the interior space



Buildings 2022, 12, 81 14 of 18

by reflecting off the light shelf, so they were excluded from the optimal specifications.
Taking these factors into account, the best specifications for saving lighting energy and
improving indoor uniformity in Case 3 were folding stages 6, 4, and 2 for summer, mid-
season, and winter, respectively. The optimal specifications for generating power by the
photovoltaic module in Case 3 were folding stages 3, 6, and 6 for summer, mid-season,
and winter, respectively. Therefore, the optimal specifications for Case 3 during summer,
mid-season, and winter were folding stages 6, 4, and 4, respectively, and the lighting energy
consumption was 0.307 kWh, 0.224 kWh, and 0.034 kWh, respectively.
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3.2. Performance Evaluation Discussion

This study proposed a folding technology to improve light shelves’ daylighting and
generation efficiency that incorporates photovoltaic modules and validated its effectiveness
through a performance evaluation. A discussion of the results follows.

First, the optimal specifications for Cases 1, 2, and 3 were derived through evaluating
their performance. Figure 13 shows the energy consumption based on these results. Case 2
reduced energy consumption by 10.3% compared to Case 1, demonstrating the effectiveness
of the photovoltaic module used on light shelves. Case 3 reduced energy consumption by
31.3% compared to Case 2, due to improved daylighting and generation efficiency achieved
by adjusting the reflector and photovoltaic module angles through folding. In particular,
although the proposed light shelf that applies folding technology and photovoltaic modules
(Case 3) had an operating range of only 0.1 m, it reduced building energy by a significant
amount compared to the conventional light shelf. These results prove the effectiveness of
the proposed system (Case 3).
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Second, Case 3 uses folding technology to cope with external wind pressure and snow
load by completely folding the light shelf. For example, if you are concerned about the
damage caused by wind pressure exceeding a certain level, you can fold the light shelf
to avoid any damage caused by protruding outside. Case 3, in particular, connects each
module with a hinge structure, resulting in gaps between each module. Compared to
conventional movable light shelves, this structural feature responds quickly to external
environmental factors such as wind pressure.

Third, installing photovoltaic modules on light shelves reduces the area occupied by
reflectors to perform daylighting, which reduces the amount of natural light flowing indoors
through light shelf reflection. In this context, the light shelf with a photovoltaic module
may cause issues, such as increasing the amount of lighting energy required to maintain
optimal indoor illuminance and reducing indoor uniformity. Therefore, further research
should be conducted on adjusting the width of the light shelf according to the area occupied
by the photovoltaic module in the light shelf.

4. Conclusions

A folding technology was proposed to improve the daylighting and generation perfor-
mance of light shelves that apply photovoltaic modules, and its performance was evaluated
through a full-scale testbed. The main findings are as follows.

First, the proposed light shelf that employs folding technology and photovoltaic mod-
ules has a structure in which reflectors and photovoltaic modules are installed alternately
by modularizing the light shelf. A hinge structure connects each module, allowing the
system to be folded. This structure enables the reflector module and photovoltaic module to
be symmetrical and operate at different angles depending on the degree of folding. Due to
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such structural features, the proposed light shelf that applies folding technology and pho-
tovoltaic modules can improve both daylighting and generation efficiency. This system
also employs a novel operation method based on rails instead of conventional light shelves,
which control the light shelf angle via a rotating shaft.

Second, the optimal light shelf angle for each case was derived. The optimal light shelf
angles were based on the lighting energy consumption and uniformity ratio to maintain
the optimal indoor illuminance. Angles that may cause glare were excluded, even if they
were excellent in terms of saving energy. The optimal angles for a light shelf without a
photovoltaic module during the summer, mid-season, and winter were 30◦, 20◦, and 10◦,
respectively, indicating that the angles must be controlled by operating or moving the
light shelf to improve performance. In contrast, the optimal angles for a light shelf with a
photovoltaic module during the summer, mid-season, and winter were 10◦, −10◦, and 20◦,
respectively, compared to a light shelf without a photovoltaic module. The photovoltaic
module and light reflector module require different angles to increase power generation
efficiency and daylighting efficiency.

Third, the light shelf that applies folding technology and photovoltaic modules can
reduce energy consumption by 38.2% and 31.3%, respectively, compared to light shelves
with no photovoltaic modules and light shelves with photovoltaic modules but no folding
technology. These results validate the effectiveness of the application of photovoltaic mod-
ules to light shelves and prove that the folding technology can improve both daylighting
and generation efficiency.

Fourth, the light shelf that applies a photovoltaic module was unsuitable in terms of
improving the indoor uniformity compared to the light shelf with no photovoltaic module
because the area occupied by the reflector decreases due to installing the photovoltaic
module, which leads to reducing the amount of natural light flowing into the room through
the light shelf. This aspect should be considered when designing light shelves that apply
photovoltaic modules.

This study is significant because it proposes and validates a new technology related to
light shelves to save building energy, a primary current concern. However, due to the use of
a testbed, the performance evaluation was carried out in a restricted external environment.
Other limitations include the fact that various other light shelf variables, such as width and
height, were not considered. As a result, additional in-depth studies should be conducted
in further research in this sector.
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