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Abstract: The application of AAC has increased considerably in Malaysia since the 1990s. The usage
of AAC has some advantages, but it also has negative environmental impacts since rejected concrete
will become landfill. This study aimed to use AAC waste powder as a material that would partially
replace the sand content to produce a new form of Autoclaved Aerated Concrete (AAC). The physical
and mechanical properties of the newly developed AAC were investigated. This paper presents
improved mechanical and physical properties of the new form of recycled AAC concrete. Besides
these improvements, using recycled AAC could lower production costs. Furthermore, the usage of
this recycled waste powder is both economically and environmentally advantageous. This study
found that when recycled AAC was substituted for sand, AAC with a fine recycled powder content
of 30% had a compressive strength that was around 16% higher than conventional AAC and between
29% and 156% higher than any value attained utilizing an industrial waste product. This study
also confirmed that the greater strength could be identical to a higher tobermorite phase and that the
recycled AAC surface showed a finer crystalline morphology.

Keywords: lightweight concrete; autoclaved aerated concrete (AAC); physical properties; mechanical
properties; recycled AAC

1. Introduction

Malaysia’s largest electricity consumers are the commercial and residential sectors,
which accounted for approximately 49.5% of the total electricity consumption in 2018 [1].
Space cooling is the feature that consumes the most energy in the commercial sector and
the second most energy in the residential sector. In addition, according to a survey reported
by the Japan Refrigeration and Air Conditioning Industry Association in 2017, the average
annual growth in demand for air conditioners in Malaysia and Thailand from 2011 to 2016
was about 3% and 11%, respectively [2]. These figures indicate that cooling demand is
increasing, so reducing the cooling loads would reduce the total electricity demand.

It is common to reduce the cooling loads by installing insulation layers on walls and
roofs. However, wall insulation is less significant in reducing cooling loads in the Malaysian
climate, particularly for commercial buildings, which are air conditioned during the day [3].
Buildings with insulated walls will be able to reduce the peak cooling loads in the middle
of the day. However, insulation layers may also have adverse effects, in which heat is
trapped in the room when the air conditioning system is switched off in the evening. This
heat needs to be removed the following day, which creates a high energy demand for space
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cooling. Meanwhile, in buildings without an insulation layer, the indoor temperature is
higher than the outdoor night temperature, so the heat from the room will be conducted
outwards through the wall.

Therefore, autoclaved aerated concrete (AAC) blocks with low thermal conductivity
and high heat resistance can serve simultaneously as the building’s wall and insulation
(without an additional insulation layer). This may be one solution to reduce the cooling peak
without trapping heat inside the building. These advantages mean that AAC applications
in the construction industry are growing, which increases the amount of waste [4]. This
could be reduced by recycling AAC waste; however, recycling it into useful products
remains a challenge for various reasons. One way to recycle AAC wastes is to use them as
a raw material to produce a new form of AAC.

This paper presents the physical and mechanical properties of a newly developed
AAC that utilizes recycled AAC (referred to as AAC-R) waste powder to replace the fine
sand. The weight ratios of the AAC-R powder to the overall AAC-R and fine sand content
were varied to optimize the composition. According to previous research, the substitution
of AAC-R waste powder for fine sand would increase the crystalline tobermorite phase of
AAC, which would contribute to the enhancement of its mechanical properties [5]. The
results from all the samples are provided in this paper, including their microstructure, me-
chanical characteristics, and physical properties. Compressive strength, water absorption,
density, humidity, and flexural strength tests were conducted. These tests were designed
to determine if AAC was compatible with commercial AAC and ASTM C1555-03a, the
Standard Practice for Autoclaved Aerated Concrete Masonry [6]. This study aimed to
evaluate whether this new formulated AAC, which utilized AAC-R powder as a replace-
ment for fine sand and could meet the standard for AAC, allowing it to be used in the
construction industry. Meanwhile, this study makes a significant contribution to conserving
the environment because recycling AAC waste would reduce landfilling. It would also help
to reduce sand mining by partially replacing the fine sand content in AAC manufacturing.

2. AAC Application in Malaysia

AAC is a lightweight concrete with an approximate porosity of 80%. It has lower
shrinkage and lower thermal conductivity than traditional concrete, and the construction
procedure is easier and faster [7]. The raw materials for producing AAC are silica or
quartz sand, lime, cement, and aluminum powder. Silica sand has the highest composition
percentage, with a weight ratio of up to 60–70% [8]. In the manufacturing process, the fine
sand needs to be ground in a ball mill to become powder. This step is one of the most
energy-intensive processes in AAC manufacturing. Depending on the roughness of the
raw sand, it can take up to 10 h [9]. In terms of energy demand, manufacturing of concrete
and bricks, which are classified as non-metallic mineral products, is the second-largest
consumer of industrial energy in Malaysia, accounting for 21% of total energy consumption
in the industrial sector [10]. Apart from the energy demand, sourcing sand is also a
significant factor that results in high material costs. According to the Malaysia Competition
Commission (MyCC) report [11], from 2008 to 2015, Malaysia was a net importer of sand
(except in 2013). Hence, reducing sand consumption in construction is part of a sustainable
approach to resource management.

The economic sector in Malaysia is growing continuously, leading to national devel-
opment. Based on a 2016 report, the country’s GDP increased by 4.2% in the first quarter
(Q1) [12]. This growth indirectly reflected the external growth in construction. The GDP
from construction increased in the first quarter of 2016 to MYR 12,558 million, up from MYR
11,992 million in the fourth quarter of 2015 [13]. In the construction field, AAC applications
are becoming popular and are increasingly being used as building materials in Malaysia
and Thailand. Many AAC production facilities have been established since 1996 [14]. AAC
wastes are also produced during the manufacturing process at construction sites, whereby
cracked end products will be rejected. As a result, plenty of AAC wastes become avail-
able during construction. Moreover, Construction and Demolition (C&D) waste is often
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regarded as the major solid waste contributor to landfill, and about 40% of this waste is
concrete [15]. With about 40% of solid wastes being construction wastes [16], recycling of
concrete wastes is an excellent way to reduce the amount of material in landfills.

3. Recycling AAC

Many AAC studies have utilized different wastes to replace the sand content or silica-
based material in AAC production. For example, expanded perlite waste (EPW) was
used to substitute ground quartz sand, and the results showed that adding EPW could
reduce thermal conductivity [17]. However, increasing the weight percentage reduces
thermal conductivity even more, and only compositions with up to 10% can maintain
compressive strength. Similarly, substitutions such as iron tailing [18] and desulfurization
slag [19] also negatively affected the compressive strength when these substitutions were
increased to more than 15% by weight. Other researchers used municipal solid waste
incineration bottom ash (IBA) to replace silica flour/fly ash. The uniform pore structure
and smaller pore size of IBAAACs enhanced the compressive strength for a given density,
compared to the use of conventional AAC. However, no thermal conductivity results were
reported [20]. Meanwhile, glassy waste was used to replace a small proportion of sand,
with the results showing that this could produce a similar compressive strength to the
reference AAC sample [21]. Thongtha et al. also developed AAC by replacing sand and
lime with waste sugar sediment to investigate three essential features of concrete that could
improve its weight, compressive strength, and thermal resistance. It was discovered that
as the weight was reduced, the compressive strength increased considerably, resulting in
adequate resistance that could be used as building blocks without the need for an insulation
layer [22].

On the other hand, research using AAC-R waste powder to replace the fine sand
content in raw materials has been conducted on AAC in floor applications and other
applications [23]. However, this process has not been undertaken for building walls, and the
percentage of AAC-R used has not been reported to enhance its mechanical properties [9,24].
With AAC wastes available in abundance from production plants and construction sites,
this would reduce the production costs of using fine sand. Reducing construction wastes
by recycling AAC wastes to produce a new form of AAC product is an economical method
and would reduce the volume of waste sent for landfilling; thus, the negative impacts on
the environment would be reduced.

Changes in the sand composition will change the porosity of the AAC. This will
affect the density, compressive strength, and thermal conductivity, and hence the heat
gain between the building wall and the environment. This study prepared AAC samples
using different weight ratios of AAC-R waste powder to replace the fine sand content. The
investigation focused on mechanical properties in order to examine the developed AAC’s
effectiveness when used in building blocks. In addition, other mechanical properties such
as the flexural strength, density, and water absorption of the samples were discussed and
compared to commercial AACs in terms of how they might reduce cooling loads in hot
and humid climate conditions.

4. Methodology for AAC-R Substitution
4.1. AAC Production and Preparation of Raw Materials

The materials used in AAC manufacturing are lime (CaO), Portland cement, aluminum
(Al), anhydrite (CaSO4), and fine sand, all of which are commercially and readily available.
Lime (17.167% by weight), Portland cement (17.870% by weight), aluminum (0.094% by
weight), anhydrite (2.352% by weight), and fine sand are comprised in the AAC mixture
(62.517% by weight).

In this study, the investigation was undertaken with various combinations of fine
sand and AAC-R. The fine sand content was substituted with AAC-R at 0%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, and 50% by weight, while the content of the other raw materials
was fixed at the values stated in Table 1. The ingredients were combined with water
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in a 20 cm × 20 cm × 100 cm mold for these compositions, as shown in Figure 1a,b.
The preparation process was performed by combining fine sand and AAC-R, cement,
lime, water, and an expansion agent (aluminum powder) and pouring the mixture into a
mold. The pouring and mixing cycle took about 5.5 min. Generally, in the manufacturing
process, after being added to the concrete, the aluminum powder reacts with the silica,
resulting in the formation of millions of microscopic hydrogen bubbles [24]. The hydrogen
subsequently evaporates, leaving highly closed-cell aerated concrete. The final product
was aerated concrete, which was cut into blocks before being steam- and pressure-cured in
an autoclave. All the samples underwent the autoclaving process at a pressure of 12 bars
and at a temperature of 180–190 degrees Celsius for 8 h.

Table 1. Content of raw materials in AAC, showing the variations between the fine wet sand and the
recycling powder (AAC-R).

Raw Materials Content of Raw Materials (Weight%)

AAC-R0 AAC-R15 AAC-R20 AAC-R25 AAC-R30 AAC-R35 AAC-R40 AAC-R45 AAC-R50

Lime Held constant at 17.167
Cement Held constant at 17.870

Anhydride Held constant at 2.352
Aluminum Held constant at 0.094
Fine sand
AAC-R

62.517
0.000

53.139
9.378

50.014
12.503

46.888
15.629

43.762
18.755

40.636
21.881

37.510
25.007

34.384
28.133

31.259
31.259

Note: Recycled AAC is presented as AAC-R with the respective composition percentage used to replace the fine
sand. For example, if the newly developed AAC-R consists of 30% recycled content, it will be called AAC-R30,
which means 30% AAC-R and 70% fine sand.
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4.2. Mechanical and Physical Measurement

After undergoing the autoclaving process in the autoclaving machine, the samples
were evaluated for compressive strength and flexural strength, following the ASTM C1555-
03a standard. All the newly generated AAC-R samples were cut to a minimum size of
7.5 cm × 7.5 cm × 7.5 cm before the mechanical tests were undertaken, as shown in
Figure 2a–f. For density and water absorption testing, the samples were dried at 105 ◦C
for 24 h and then tested following the ASTM C642-97 standard. The microstructure of the
AAC composition, which was mixed with other compositions, was photographed using
FE scanning electron microscopy (FESEM). The formation and character of the tobermorite
phase were determined using X-ray diffraction (XRD).
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5. Discussion of Results
5.1. Compressive and Flexural Strength

Figure 3 depicts the compressive strength of the AAC compositions with various
amounts of fine AAC-R wastes. The AAC-R30 sample had the highest compressive strength
of 5.85 N/mm2. This value was higher than those of the other forms of lightweight concrete,
which contained copper tailings and blast furnace slag (4.00 N/mm2) [25], coal bottom ash
(2.78 N/mm2) [26], and high-calcium fly ash and natural zeolite (4.51 N/mm2) [27]. The
value for the recycled waste AAC-R30 was higher than the value found in previous studies
due to the presence of more crystalline tobermorite in this composition [7]. As indicated
in Figure 3, the compressive strength of the commercial autoclaved aerated concrete was
around 5.04 N/mm2, while that of the ASTM C1692-18 is 5.00 N/mm2, as shown by the
red line [6].
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The compressive strength of the AAC-R30 was roughly 16% higher than that of com-
mercial AAC. It was between 29% and 156% higher than any figure recorded in earlier
research using industrial waste in AAC mixtures. This increment clearly shows that replac-
ing sand with AAC-R30 results in AAC with great compressive strength. The substitution
of AAC-R30 for fine sand increased the crystalline tobermorite phase, whereby this phase
could enhance both the mechanical and thermal properties of the AAC [28]. Furthermore,
the ideal compositions in each procedure that resulted in the highest compressive strength
complied with ASTM C 1555-03a. These findings clearly show that AAC-R could be utilized
as an alternative raw material in the manufacturing of AAC. Despite its lower compres-
sive strength, recycled AAC is also a lighter concrete. AAC weighs up to 78% less than
traditional concrete [29]. Although the lighter AAC does not fit all and every structure, its
light weight would not be a deterrent to using it in many construction situations. It is more
cost-effective and allows for speedier construction. This material is indisputably a construc-
tion material suitable for a variety of constructions circumstances, being both economically
advantageous and entirely sufficient in strength to be used in the correct circumstances.

Meanwhile, as shown in Figure 4, flexural strength peaked with the AAC-R35 sample
and then dropped with the AAC-R20 sample. All the samples met the minimum flexural
strength requirement of at least 30% of compressive strength, around 1.77 N/mm2. Addi-
tionally, this outstanding performance means that walls containing AAC-R30 could display
improved displacement capacity and reduce the damage caused by horizontal actions. The
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higher compressive strength could improve the cracking resistance and provide a higher
capacity to resist horizontal action and displacement [30,31].
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5.2. Density and Humidity

While lowering the manufacturing costs, the partial substitution with waste materials
improves the properties of AAC [32–36]. The microstructure and density of the AAC
represent its physical properties, and the density of AAC determines most of its attributes,
including its compressive strength, thermal performance, and drying shrinkage.

The density of AAC typically ranges between 0.30 and 1.8 g/cm3 [29]. The density of
the new AAC blocks ranged from 0.53 to 0.61 g/cm3. AAC humidity was also explored
to determine the AAC density values. Figures 5 and 6 show that the higher the density
(from the AAC-R20, AAC-R25, and AAC-R30 samples), the lower the humidity, which
is excellent and could prevent mold growth in such building materials. Furthermore,
the materials produced by the autoclaved method could weigh between 15% and 25%
more than the materials produced by dry ovens [37]. Additionally, a more prolonged
autoclaved treatment (>8 h) could improve the density by contributing to the development
of additional hydration [38].

As shown in Figure 5, AAC has a minimum density of 0.50 g/cm3 and a maximum
density of 0.80 g/cm3. When the AAC-R component was doubled, the density remained
relatively steady. When the AAC-R component was between 0% and 50% by weight, the
density was between 0.53 g/cm3 and 0.62 g/cm3. A higher volume of Autoclaved Aerated
Concrete corresponded to a lower density. As shown by the red line, the minimum and
maximum requirements of the ASTM Standard were 0.5 g/cm3 and 0.8 g/cm3, respectively.
All the samples met the ASTM Standard’s minimum density criterion for AAC.

Figure 6 depicts the humidity as the AAC-R content varied. The humidity of the
autoclaved aerated concrete showed an inconsistent trend, ranging between 20.3% and
32.7% when the recycling powder concentration was between 0% and 50% by weight. The
humidity values of all the samples were within the acceptable range, which is less than 50%,
as outlined by the ASTM C642-97 [6]. The inconsistency of the humidity content might be
caused by the porosity of the cement matrix [39].
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5.3. Water Absorption

AAC absorbs a large volume of water because of its high porosity and large drainage
channel [38]. Water absorption is divided into two routes, one through the capillary hole
(pore diameter 1 m) and the other through the many ventilation ports. Although all the
matrix’s capillaries are saturated with water, the ventilation apertures generate twisting
routes for extending water absorption [40]. Even as the recycling powder content increased,
the water absorption of AAC-R remained steady. The water absorption range was between
0.38–0.47 g/cm3 when the recycling powder concentration was between 0% and 50% by
weight, as illustrated in Figure 7. This means that the water absorption tendency and
density were identical. In this study, the maximum water absorption of the AAC was
around 0.45 g/cm3 at a 50% recycling powder concentration. Water was absorbed at a rate
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of less than 0.5 g/cm3, as per the ASTM Standard requirements, as shown by the red line.
The 50% samples had the most extensive water absorption, implying that the higher the
recycled content in the AAC, the higher the water absorption. However, the compressive
strength would be lower.
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5.4. AAC Microstructure

Replacing the sand content with AAC-R waste powder improves the crystalline
tobermorite content and increases the AAC’s strength. The tobermorite phase formation and
quality were discovered and analyzed using FE scanning electron microscopy (FESEM).
X-ray diffraction (XRD) tests were performed on the AAC microstructure composition
and mixes of different compositions. According to a literature review, previous studies by
Narayanan et al. and Kus et al. only indicated that the tobermorite structure in AAC affects
the compressive strength [29,41,42]. Cong et al. also showed that the increased crystallinity
of the tobermorite phases in the AAC samples improved the compressive strength [31].

However, previous research has not established the consequences of increasing the
tobermorite phase proportion, as attained by Autoclaved Aerated Concrete [7,25–27,32,43–45].
To investigate and demonstrate that increasing the proportion of tobermorite crystals increases
the compressive strength of Autoclaved Aerated Concrete, the ideal composition for each
process was analyzed, and the phase development in each AAC mixture was compared.
This was accomplished using X-ray diffraction (XRD). Figure 8 depicts the X-ray diffraction
patterns of the AAC-R30, AAC-R50, and traditional AAC. All the samples contained calcite,
quartz, and tobermorite phases, while AAC-R30 showed less calcite phase, which was nearly
uncountable. The phase ratios in each sample were determined using Equations (1)–(3),
which are well-known formulae and frequently used in conjunction with the fabrication of
complex structure materials. The intensities of the highest calcite, quartz, and tobermorite
peaks were referred to as Icalcite, Iquartz, and Itobermorite, respectively.

% ratio o f the calcite phase =
Icalcite

(Iquartz + Itobermorite + Icalcite)
× 100 (1)

% ratio o f the quartz phase =
Iquartz

(Iquartz + Itobermorite + Icalcite)
× 100 (2)
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% ratio o f the tobermorite phase =
Itobermorite

(Iquartz + Itobermorite + Icalcite)
× 100 (3)

In the AAC-R30, AAC-R50, and traditional AAC samples, the calcite, quartz, and
tobermorite phase ratios were calculated, and these are listed in Table 2. Table 2 shows that
a higher proportion of tobermorite and calcite phases and a smaller proportion of quartz
phases corresponded to higher compressive strength. The AAC-R30 samples showed the
highest ratios of tobermorite phases, with values of roughly 71.3% and 28.7% of quartz
phases. This illustrated the phase ratio changes in the AAC that occurred when the usual
raw material, sand, was replaced with AAC-R waste powder. This finding supports the
idea that increasing the tobermorite phase improves the mechanical properties of AAC.
Importantly, this outcome agrees strongly with earlier research [7,43].

Table 2. Ratios of recycled AAC phase formation.

Composition Ratios of Phase Formation (%)

Calcite Quartz Tobermorite

Traditional AAC 24.1 47.5 28.4
AAC-R30 0 28.7 71.3
AAC-R50 7.5 42.8 35.6

XRD analysis also validated the crystal structure of the samples. Figure 8 displays
the XRD patterns formed when comparing the AAC-R30, AAC-R50, and traditional AAC
samples, showing that the AAC-R50 samples were mostly calcite and quartz, with little
tobermorite. Meanwhile, the AAC-R30 samples were classified as crystalline due to the
tobermorite and quartz, while traditional AAC consisted of all phases but had less tobermorite
phase than AAC-R30. The presence of tobermorite phase in AAC is crucial as it suggests
many promising exceptional features. The findings of this experiment show that the
newly developed AAC-R30 can control the generation of microporosity in the cement
matrix while also accelerating the phase transformation of calcite to tobermorite. Microscopic
analysis verified the presence of a crystalline tobermorite phase in AAC, enhancing its
mechanical characteristics. Samples with higher levels of tobermorite phase contributed to
the mechanical parameters of the AAC, such as compressive strength, as shown in Table 2.

Figure 9a–c depict the morphology of the AAC-R30, AAC-R50, and traditional AAC
surfaces to show the microstructure of each composition by FESEM examination. The
surface of the AAC-R30 blocks showed finer pores with more thick pores than the AAC-R50
block, which contains more large pores. In contrast, AAC-R30 also had a smoother surface
with significantly fewer pores than traditional AAC.
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Figure 9. FESEM micrographs of AAC-R30 (a), AAC-R50 (b), and traditional AAC (c) at 200 µm.

Figure 9 shows that no cracks appeared on any samples, indicating greater mechanical
strength and smoother and more refined surfaces. Greatly enlarged FESEM micrographs
were also produced 5000 times for further investigation into the crystallinity of all the
samples. The AAC sample crystallization image resulting from the characterization of
FESEM with increased crystallization is shown in Figure 10a–c. Tobermorite crystals were
found in every AAC sample. Based on the crystalline structure, AAC-R30 (Figure 10a)
had more crystal than traditional AAC (Figure 10c), while AAC-R50 (Figure 10b) had finer
pores. As a result, AAC had a lower specific density due to the many smaller porosities
inside the matrix of microscopic particles.
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The microstructure of AAC-R30 could be distinguished by its more refined needle-like
crystalline structures and porous combination shape. The sub-micron needle crystals of
AAC-R30 overlapped, forming a solid skeleton and obliterating the spaces between the
layers, as opposed to AAC-R50, which contained less needle-like characteristics. This
indicates that the samples’ microstructures possessed high compressive strength. Thin
tobermorite platelets made up the visible particle matrix. The platelets had a consistent
thickness of a few tens of nanometers or less and a width of 5 to 10 microns. Tobermorite
crystals appear intermingled in the pore structure, generating a sharp-angled corner cell
network [46].

6. Ecological and Economic Benefits

The use of AAC-R can be regarded as necessary for three main reasons. First, it is
an industrial waste product; second, it is available in significant quantities; and third, it
currently involves substantial environmental and economic costs when it is not used, as it
is disposed of in landfill sites. Applying recycled AAC-R in Autoclaved Aerated Concrete
fabrication could become an alternative method of disposing of AAC-R waste, which could
bring about simultaneous environmental benefits. It could become a more widely used
alternative raw material in the future. Furthermore, the substitution of AAC-R could also
reduce operational costs. Based on a previous study by Thongtha et al., replacing fine sand
with waste sugar sediment could reduce operational costs by up to 36% [22]. As AAC-R
is also categorized as a waste material, this study could also contribute to reducing the
fabrication costs and the environmental effects.

7. Conclusions

To summarize the current research, replacing sand content with AAC-R waste powder
increased the strength of the newly developed Autoclaved Aerated Concrete. The optimal
composition (AAC-R30) demonstrated the highest compressive strength (5.85 N/mm2) and
the highest proportion of tobermorite phase (71.3%), both of which were significantly higher
than the values identified in the other AAC mixes tested, which contained a variety of
industrial by-products. Depending on the comparison mix, the compressive strength was
between 29% and 156% higher. In the future, AAC with the optimal AAC-R composition
could be considered an alternative material to traditional concrete for use in non-structural
(non-load bearing) walls and masonry. Because AAC-R is a by-product with a notable
negative environmental effect, using it in such large amounts could also reduce the envi-
ronmental and human impacts of waste disposal. We therefore recommend that these new
recycled AAC block samples be commercialized. Depending on the findings of further
studies, this newly developed AAC may be used as a concrete wall-building material.
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