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Abstract: This paper first analyzes the climate characteristics of five typical cities in China, including 
Harbin, Beijing, Shanghai, Shenzhen and Kunming. Then, based on Grasshopper, Ladybug and 
Honeybee analysis software, according to the indoor layout of typical residential buildings, this 
research extracts design parameters such as the depth and width of different rooms and their 
window-to-wall ratios etc., to establish a climate responsive optimization design process with 
indoor lighting environment comfort, with heating and cooling demand as the objective functions. 
Meanwhile, based on Monte Carlo simulation data, ANN (Artificial Neural Network) is used to 
establish a prediction model to analyze the sensitivity of interior design parameters under different 
typical cities’ climatic conditions. The study results show that the recommended values for the total 
width and total depth of indoor units under the climatic conditions of each city are both 
approximately 14.97 m and 7.88 m. Among them, under the climatic conditions of Harbin and 
Shenzhen, the design parameters of residential interiors can take the recommended value of UDI 
optimal or nZEB optimal. While the recommended values of window-to-wall ratios for the north 
bedroom, master bedroom and living room in Shanghai residential interiors are 0.26, 0.32 and 0.33, 
respectively. The recommended value of the window-to-wall ratio of the master bedroom in 
Kunming residences is 0.36, and that of the remaining rooms is between 0.15 and 0.18. The 
recommended values of window-to-wall ratios for the master bedroom and living room in Beijing 
residences are 0.41 and 0.59, respectively, and that for the remaining rooms are 0.15. The multi-
objective optimization process based on parametric performance simulation used in the study can 
effectively assist architects in making energy-saving design decisions in the preliminary stage, 
allowing architects to have a case to follow in the actual design operation process. 

Keywords: climate responsive optimization design; lighting environment comfort; heating and 
cooling demand; ANN 

 

1. Introduction 
Energy consumption of the construction industry accounts for 40% of the total 

energy consumption of most countries, and the related emissions account for 40% of the 
total greenhouse gas emissions [1]. This energy use will potentially grow by more than 
50% by 2050 without energy-efficiency improvements in the building sector [2]. In the 
past two decades (1984–2004), major energy consumption has increased by 49%, carbon 
dioxide emissions have increased by 43%, and the average annual growth rate is 2% and 
1.8% [3]. This speed of resource and energy consumption will affect every aspect of 
people’s daily lives around the world. According to the energy use forecast of different 
countries and major developed countries, the speed of building energy consumption will 
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continue to increase, bringing immeasurable serious consequences to nature and ecology. 
In order to cope with environmental problems, it is necessary to improve the energy 
efficiency of buildings and promote the use of renewable energy. The research of near-
zero energy building (nZEB) has been rapidly developed in this context. Near-zero energy 
buildings refer to buildings that adapt themselves to climate characteristics and natural 
conditions. Through adopting envelopes with high thermal insulation and better airtight 
performance, as well as high-efficiency fresh air heat recovery technology, nZEB aims to 
minimize the heating and cooling needs of buildings and make full use of renewable 
energy to provide a comfortable indoor environment with less energy consumption and 
meets the basic requirements of green building [4]. On 18 June 2010, the European Union 
issued the “Energy Performance of Buildings Directive” (Agenda 2030), which stipulated 
that all of the new buildings in the members of EU countries should be near-zero energy 
buildings since 31 December 2020 [5]. Moreover, EPBD2010 also required that since 31 
December 2018, buildings used or owned by the government should be near-zero energy 
buildings [6]. In 2016, China also released the “Chinese Near-Zero Energy Building Best 
Practice Cases Collection” to summarize and sort out the technology and construction 
methods of Chinese existing near-zero energy building projects. 

A large number of existing studies have shown that the design phase is of great 
significance to the realization of near-zero energy buildings, and most building designers 
lack effective means to evaluate and predict building energy efficiency in the early design 
stage of the project, which has greatly limited the development of near-zero energy 
consumption buildings. The focus of energy conservation design in the design phase and 
subsequent phases is different. The early design phase focuses more on the interaction 
and influence between the building and the environmental factors. As the design process 
advances, the subsequent phases will gradually shift focus to the internal mechanical 
system level. Therefore, the earlier the design phase, the easier to adjust the design factors 
of the building-environment interaction, and the adjustment of each factor will make a 
huge difference in the environmental benefits of the building. Therefore, the decision at 
the schematic stage is an extremely important part of the building energy-saving design 
process, which largely determines the direction of the subsequent design process. 

EPBD pointed out that the building’s energy-saving goals cannot be achieved at the 
expense of indoor comfort. Based on Chinese typical cities in different climatic 
environments, the research builds a multi-variable and multi-objective optimization 
design framework, proposes optimal design guidelines for each typical city and 
summarizes the design rules of residential buildings under different climatic conditions. 
Using digital tools, professional simulation software widely used internationally and 
multi-objective optimization algorithm, this study creates a set of systematic parametric 
analysis processes, which can effectively carry out building climate responsive design in 
the schematic design stage. Based on the perspective of architects, this paper establishes 
the relationship between architectural design strategy, building lighting environment and 
building energy demand, in order to providing architects with low energy demand and 
high lighting comfort design basis for building climate responsive design. In addition, 
through the analysis of simulation data, and the comparison of the optimization results 
with the performance indicators of reference buildings in various cities, it provides a 
quantitative analysis method for the design decision-making from multiple perspectives 
of public sector and private residents. Meanwhile, the energy-saving design rules of 
residential buildings in typical cities under different climate conditions are summarized. 
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2. Background and Literature 
2.1. Literature Review 
2.1.1. Building Climate Responsive Design 

The design strategy of building climate responsive aims to study the climate control 
method suitable for building comfort space. By considering the climate differences in 
different places, appropriate strategies are used to improve the indoor comfort of 
residents. The building provides a comfortable indoor environment for human daily 
activities by adjusting the microclimate of the natural environment. In this method, the 
selection of technology is based on the relationship between external climate conditions 
and human needs. In the building climate responsive design, architects need to make full 
use of the potential of natural climate while adapting to the natural environment, and 
actively and reasonably use various technical measures such as heat preservation, heat 
insulation, ventilation, shading and daylighting to adapt to the climate characteristics of 
the region. Table 1 illustrates the literature review of building climate responsive design. 

Table 1. Literature review of building climate responsive design. 

Authors Time Main Work Reference 

V. Olgyay 1953 
He first proposed the building climate analysis method which 

recommended architects to use passive means to adjust the building 
microclimate in architectural design.  

[7] 

V. Olgyay 1963 

He published “Design with Climate” which proposed to adopt a 
passive design method to maximize the use of renewable energy such 

as solar energy and wind energy, as well as reduce building energy 
consumption. 

[8] 

Baruch  
Givioni 

1976 

He improved Olgyay’s bioclimatic chart and proposed architectural 
bioclimatic design method based on climate environment and 

distinguished it from Olgyay’s method. Architectural bioclimate 
design requires that, in the process of architectural design, solve the 
problems of the architectural environment by making use of natural 
conditions as much as possible, propose corresponding architectural 
technical means and control methods, and create a more comfortable 

and healthier environment that meets the requirements of modern 
society on the basis of respecting the nature environment.  

[9] 

Alsousi et al. 2005 

They studied the climate responsive design of buildings in Gaza and 
investigated 12 high-rise residential buildings in terms of thermal 

comfort and energy consumption. The researchers finally found that 
most of the building energy consumption in summer is caused by the 

heat generated by the walls, windows and roof. In addition, the 
occupants, daily life facilities and air infiltration will also increase the 
building energy consumption, while the effect of them on the thermal 

performance and occupants’ comfort are relatively small. 

[10] 

Enedri et al. 2007 

They tested the thermal performance of a multi-story residential 
building in southern Brazil. They recorded the thermal performance of 
eight bedrooms on two floors and four directions. Different variables 

are used to examine various factors, such as surface color, window 
shadow and thermal properties of walls and windows. Finally, it is 
concluded that the heating transmittance and area of the building 

envelope have the greatest influence on the maximum temperature, 
and it needs to be minimized to improve the indoor thermal 

environment in summer. While heat capacity and thermal time lag 
have the strongest correlation with the minimum temperature, so they 

[11] 
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should be maximized to improve the thermal environment comfort in 
winter.  

Jürgen 
schnieders et al. 2015 

They used the same typical analysis model to analyze and compare the 
design strategies of passive housing, including envelope design, air 

tightness, operation of cooling coil, heat recovery equipment and 
supply air temperature, etc., taking Yeka-Tlinburg, Tokyo, Shanghai, 

Las Vegas, Abu Dhabi and Singapore as examples, to propose the 
corresponding design guidelines for passive buildings. 

[12] 

Letizia  
Martinelli et al. 2017 

They selected six Italian cities as representatives, including Aosta, 
Milan, Campobasso, Florence, Lecce and Catania. Based on the climate 

data of each city in the past 30 years, the influence of courtyard-type 
parameters such as the ratio of height to width on the humidity and 

thermal comfort of the courtyards of various cities in different climate 
zones is analyzed. 

[13] 

Fatima 
Harkooss et al. 

2018 

They selected 25 typical cities in different climate regions to simulate 
and optimize the passive design of residential buildings according to 

the Kӧppen climate zoning. He compared the performance of 
residential buildings in different cities by taking the life cycle cost 
(LCC) and building cooling and heating consumption as objective 

functions, to obtain the corresponding energy-saving design strategy. 

[14,15] 

Fabrizio Ascione 
et al. 

2019 

They used MATLAB, EnergyPlus and genetic algorithm to compare 
the multi-objective optimization of residential buildings in typical 

cities in different climates in Italy and obtained the envelope design 
strategy for each climate zone. 

[16] 

Julià Coma et al. 2019 

Based on the European residential building database compiled by the 
TABULA/EPISCOPE project, they analyzed and compared the energy-

saving strategies of many European countries with building energy 
consumption and carbon dioxide emissions as indicators. They also 

evaluated the feasibility of using new energy technologies in different 
cities in hot, warm and cold climate zones in Europe. 

[17] 

Virgilio Ciancio 
et al. 

2020 

They discussed the impact of climate warming on residential buildings 
in 19 different cities in Europe based on the Kӧppen climate zoning. 

They concluded that the gradual increase of average climate 
temperature from 2050 to 2080 will lead to the decrease of heating 
energy consumption of residential buildings, and the increase of 
cooling energy consumption and carbon dioxide concentration. 

Moreover, cities in the Mediterranean climate zone are more affected 
by global heating than inland cities in Europe. This trend can be 

alleviated by improving the buildings’ energy efficiency. 

[18] 
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2.1.2. Multi-Objective Optimization 
As mentioned above, this study proposes the use of optimized search methods based 

on building environment simulation. Optimization is the process of finding the best 
combination of different solutions when the given constraints are met [19]. The execution 
of optimization requires decision variables, objective functions and constraints. Equation 
(1) expresses the general mathematical optimization process: 

minx∈Rnƒ(X) 

Subject to: gi(X) ≤ 0, i = 1, 2, ..., m 

Kj(X) = 0, j = 1, 2, ..., p 

(1) 

where X represents different decision variables, ƒ(X) are objective functions, constraints 
are gi(X) ≤ 0, i = 1, 2, ..., m and Kj(X) = 0, j = 1, 2, ..., p. Determining decision variables, 
objective functions and constraints are the most important parts of the optimization 
process, and different optimization algorithms can be selected based on the classification 
of different objective functions and constraints. 

According to Kheiri [20], the most widely used optimization method for building 
energy performance problems is the genetic algorithm (GA) [21]. John Holland has 
developed genetic algorithms (GAs) based on evolutionary biology, which perform 
optimization operations by simulating genetics, mutation, selection and crossover. [22] 
The evolution of genetic forms is based on the rules of the defined “genetic code”. 
Mutations are achieved through the “reproduction” process of gene crossover and 
mutation. Information interaction and changes control the process of morphogenesis. The 
use of genetic algorithms in the first step is to define a set of generation rules and define 
their evolution and development so that they can be mapped to a specific design 
environment, and candidate forms can be evaluated based on their performance in a 
simulated environment. After a lot of tests, researchers believe that genetic algorithms are 
suitable for searching research problems in large spaces, while also avoiding local 
optimization. 

The early algorithms mainly focused on single-objective optimization [23–25]. 
However, the research results of some scholars show that there are conflicts between 
different optimization goals, and the single-objective optimization cannot achieve 
satisfactory results. Therefore, there are several studies which focus on the multi-objective 
optimization of buildings’ performance, as shown in Table 2. 

Table 2. Literature review of building performance simulation based on multi-objective optimization. 

Authors Time Main Work Reference 

Chantrelle et al. 2011 

They used NSGA-II algorithm (Non-dominated Sorting Genetic 
Algorithm) and dynamic simulation tool TRNSYS to carry out multi-

objective optimization design of building envelope and shading 
control strategy based on building energy consumption, cost, thermal 

comfort and environmental protection.  

[26] 

Karaguzel et al. 2014 
They combined the building energy simulation software EnergyPlus 
and the optimization tool GenOpt to optimize the life cycle cost of a 

commercial office building.  
[27] 

Alessandro 
Prada 2014 

They implemented a comprehensive framework of multi-objective 
energy optimization in buildings, and used EnergyPlus and NSGA-II 
algorithm for building environment simulation and multi-objective 
optimization to search Pareto frontier for building energy-efficiency 

design. 

[28,29] 

Ascione, F. et al. 2014 They combined MATLAB and EnergyPlus to optimize the construction 
plan of a hospital building with multiple goals. The optimization goals [30] 
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are the primary energy consumption of the building, the initial 
investment and global cost of the renovation plan.  

Asl et al. 2015 They presented an integrated framework for building information 
modeling (BIM)-based performance optimization, BPOpt.  

[31] 

Tomás  
Méndez 

Echenagucia 
2015 

An integrative approach for the early stages of building design is 
proposed to obtain detailed information on energy-efficient envelope 

configurations. 
[32] 

Facundo Bre et 
al. 2016 

They took daylighting and energy saving as optimization goals, and 
used sensitivity analysis and genetic algorithms to optimize the design 

of typical independent houses.  
[33] 

Ahmed Toutou 
et al. 2018 They discussed the potential of parametric algorithms to optimize 

residential design lighting and thermal performance. [34] 

Richard  
Gagnon et al. 

2019 
Through a case study of a residential building, they compared a 

sequential versus a holistic design approach based on multi-objective 
optimization.  

[35] 

Yin Li et al. 2019 

They proposed a hierarchical decomposition approach that can achieve 
global optimal solutions. This approach was applied to a multi-

objective optimization problem to minimize the carbon emissions and 
operating costs of buildings. 

[36] 

Tianqi Zhang et 
al. 2020 

This research calculated the energy-saving effect of buildings with 
different shape parameters and the cooling load of thermal 

performance of different envelope by numerical simulation. In 
addition, the corresponding energy-saving indexes for cooling load 

reduction (CLR) are presented. 

[37] 

Zhixing Li et al. 2021 

They proposed an integrated multi-objective multivariate framework 
for building performance optimization. Then, a comparison of the 

performance indicators of low-rise and medium-rise residential 
buildings under five typical urban climatic conditions are carried out. 

[38] 

Yizhe Xu et al. 2021 

They proposed a two-stage multi-objective optimization method based 
on a meta-model to obtain the optimal design scheme for primary and 
secondary school education buildings, based on daylighting, thermal 

comfort, energy savings and economy.  

[39] 

2.1.3. Research Gap 
The research on residential building climate responsive design has shown a trend of 

gradual deepening and refinement over time, which is reflected in the following 
characteristics: 
1. Transition from energy-saving design practice or theoretical research based on 

qualitative analysis to quantitative research based on energy consumption 
simulation. 

2. The research related to building energy consumption is becoming more and more 
comprehensive, from only focusing on the thermal performance of buildings or the 
energy consumption of heating and cooling systems to comprehensive assessments 
that also consider other factors such as total building energy consumption, lighting 
and indoor thermal comfort. 

3. “Performance coupling factors” are valued. The development of society and 
economy requires sustainable building design to achieve low energy consumption 
under the premise of ensuring high performance building environment, and “high 
performance” cannot be sacrificed for low energy consumption. As the pursuit of 
single-environment performance improvement often has an adverse effect on other 
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aspects of performance, research on multiple environments and their coupling 
performance has attracted more and more attention. 

4. New tools or new methods for building performance simulation such as BIM 
technology or computer programming technology are constantly emerging. On this 
basis, the amount of simulated data is increasing and the reliability of simulation 
results is improving. 
However, current research still pays more attention to the building equipment 

optimization, while ignoring the influence of passive design parameters such as the 
building space form in the preliminary design stage on energy saving. As the schematic 
design stage has a far-reaching impact on building energy efficiency, and the flexibility of 
adjustment is greater than other design stages. If the energy-saving benefits and climate 
responsiveness of the building are ignored in the early stage of the design, it is difficult to 
compensate for the energy-saving efficiency of the building only through technical 
stacking and parameter adjustment of active equipment in the later stage. Therefore, this 
article will take the residential indoor space form design as the research object and 
conduct an in-depth discussion on the residential building climate responsive design in 
different regions in China. 

2.2. Typical Cities’ Selection 
China is located on the west coast of the Pacific Ocean. The climate is mainly affected 

by the monsoon circulation, and it is complicated due to the variability of the terrain. It is 
roughly divided into the eastern monsoon area, the western dry area and the alpine area 
with the Gangdise Mountains, Bayan Har Mountains, Yinshan Mountains, Helan 
Mountains and Daxingan Mountains as the boundary. Taking Kunlun Mountains, Altun 
Mountains, Qilian Mountains and Hengduan Mountains as the approximate geographic 
boundaries, the northwest arid and semi-arid regions, the eastern monsoon regions and 
the Qinghai-Tibet alpine regions are distinguished [40].  

In the “Code for Thermal Design of Civil Buildings GB50176-93” promulgated in 
1993, China divided the country into 7 first-class building climate zones and 20 second-
class building climates based on the average temperature of the coldest and hottest 
months across the country. The first-class climate zone reflects the big difference in the 
national building climate, as shown in Figure 1, while the secondary zone reflects the 
small differences in the building climate of each major zone. 
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Figure 1. Chinese building climate zoning map. 

According to the building climate division in China, five typical cities are selected 
from climate zones I, II, III, IV and V, which are Harbin (severe cold region I), Beijing (cold 
region II), Shanghai (hot summer and cold winter zone III), Shenzhen (hot summer and 
warm winter zone IV) and Kunming (temperate area V), as shown in Figure 2. 

China divides the heating area with the Qinling mountain and Huaihe River as the 
boundary. The area north of the Qinling mountain and the Huaihe River starts to 
centralize heating around November 15th and lasts for 4 months until March 15th. Some 
areas (such as Harbin and other northern cities) will extend the heating period due to 
climatic reasons. There are no mandatory centralized heating measures for cities on the 
south of the Qinling mountain and the Huaihe River, however, some communities will 
provide heating according to actual needs. Table 3 lists the heating period of typical cities 
based on the current actual heating situation survey in various cities. 

Due to the vast land area of China and the influence of different factors such as 
altitude, topography, coastal or inland areas, the climate in different regions varies 
greatly. Among these five typical cities, the average relative humidity of Beijing and 
Harbin is relatively low. From January to April each year, the average relative humidity 
of Beijing and Harbin fluctuates around 40%. Regarding the average dry bulb temperature, 
except for Kunming, where the annual temperature changes are relatively gentle, the 
coldest month is about 10 °C and the hottest month is about 30 °C. The average dry bulb 
temperature among the other four cities basically shows a trend of gradual decrease from 
south to north. The coldest months in Harbin are January and December each year and 
the average dry bulb temperature can reach −15 °C. 

 
Figure 2. Geographical location of typical cities in China. 

Table 3. Typical cities selected according to building climate zoning. 

Climate Zone 
Typical 

City 

Heating 
Degree Day (18 

°C) 
Heating Period (Day/Month) 

Heating 
Hours per 

Day 
Severe cold 

area I 
Harbin ≥3800 20/10 to 15/4 24 h 

Cold region II Beijing 2000–3799 15/11 to 31/3 24 h 



Buildings 2022, 12, 59 9 of 39 
 

Hot summer 
and cold 

winter area III 

Shangha
i 700–1999 

There is no mandatory 
requirement – 

Hot summer 
and warm 

winter area IV 

Shenzhe
n 

<500 

There is no mandatory 
requirement 

(according to the actual demand, 
heating time is not set in the 

simulation) 

– 

Temperate 
region V 

Kunmin
g <2000 

There is no mandatory 
requirement 

(but it is set to 15/12 to 1/3 in the 
simulation according to the actual 

demand) 

– 

3. Multi-Objective Model Set-Up 
3.1. Building Performance Optimization Workflow 

Grasshopper and Ladybug/Honeybee were used in this study to achieve building 
performance simulation-based optimization. Grasshopper is a visual programming 
language and environment that runs within the Rhinoceros 3D computer-aided design 
(CAD) application. Ladybug and Honeybee is a plug-in of Grasshopper, which analyzes 
the environmental performance of the building model [41–43]. Ladybug imports standard 
RADIANCE, energy models using OPENSTUDIO and envelope heat flow using THERM. 
This study applied integrative building performance simulation and optimization 
workflow as shown in Figure 3. TT toolbox and Octopus, as Grasshopper plug-ins were 
used for collecting dynamic simulation results by Ladybug and Honeybee which was then 
analyzed via MATLAB for understanding the data distribution characteristics. 

 
Figure 3. Parametric building optimization process. 

3.2. Building Parameter Settings 
The study takes the 118.11 square meter apartment in one of Tianjin residential 

communities as an example to optimize the internal space design parameters. The 
reference building is shown as Figure 4, its parameters are listed in Table 4, and Figure 5 
depicts the apartment layout for optimization analysis. The parametric model is 
established based on the house type on the left. The house type includes three bedrooms, 
one living room and one dining room, two bathrooms and a kitchen. The bedrooms are 
mainly distributed on the west side of the room. The master bedroom faces south and has 
a separate bathroom. The second bedroom faces north and the middle bedroom is smaller 
which can also be used as a study room. The living room is connected to the dining room, 
there is a balcony on the south side, and the kitchen is connected to the dining room on 
the north side. 
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The parameter settings used for optimization are shown in Table 5. Under the 
changes of different spatial parameters, the model always maintains a total area of 118 
square meters, that is, it satisfies the relationship of Equations (2)–(4). In the parametric 
model, as the parameters in Table 5 change, the spatial scale of the apartment also changes, 
as shown in Figure 6, and the Grasshopper operation process is shown in Figure 7. 

Master bedroom depth + Middle bedroom depth + Northern bedroom depth  

= Kitchen/Dining room depth + Living room depth  

= Total depth 

(2)

Master bedroom width + Living room width + 1.8 m (Toilet width) 

= Northern bedroom width + 1.8 m (Toilet width) + Dining room width + Kitchen 
width 

= Total width 

(3)

Total depth × Total width = 118 (4)

 
Figure 4. Baseline model. 

Table 4. Parameters of the baseline model. 

Type Subcategory Parameter Category Unit Baseline Model 
Geographical 

position 
Climate Climate data of Tianjin – Climate data of Tianjin 

Architectural 
form  

parameters 

Building type 

Number of layers – 2.00 
Net height of each floor m 3.30 

Total height of each floor m 3.60 
Width (s/N direction) m 13.5 

Aspect ratio – 2.15 
Window-to-wall ratio (WWR) – 0.35 

orientation deg 0 

Geometry  
parameters 

volume m³ 3089.5 
Total surface area m² 1336.4 

Total floor area m² 668 
Body shape coefficient – 0.325 

Design  
parameters of 

envelope 

Enclosure 
structure 

External wall heating transmittance 
(average) 

W/(m2K) 0.56 

Ground heating transmittance W/(m2K) 0.46 
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(average) 
Roof heating transmittance 

(average) 
W/(m2K) 0.71 

Window heating transmittance 
(average) W/(m2K) 3.30 

Solar heat gain coefficient  
(shading coefficient) – 0.60 

Building  
operation  

parameters 

behavior Indoor heat gain (lighting, appliances 
and occupancy, daily average) 

W/m2 5 

Control and 
operation  
settings 

Heating set point temperature °C 20 
Cooling set point temperature °C 26 

Air change rate (air tightness and 
ventilation) vol/h 0.8 

Schedule—Option 1: Ig/VE/H/C * N.  0 
Schedule—Option 2: Ig/VE/H/C * N.  0/0/1/2 

* Ig: indoor heat gain, VE: ventilation, H: heating, C: cooling. 

 
Figure 5. Indoor apartment. 

Table 5. Interior space design parameter settings for optimization. 

Classification Number Describe Unit Reference 
Parameter 

Minimum Value Maximum 
Value 

Spatial 
morphological 

parameters 

A1 Floor height m 3 2.7 3.3 
A2 Total width m 10.2 8 15 
A3 Total depth m 13.7 7.8 14.8 
A4 Master bedroom width m 3.6 2.5 5 
A5 Master bedroom depth m 4.4 2.5 6.5 
A6 Middle bedroom width m 3.6 2.5 5 
A7 Middle bedroom depth m 3 1.7 5 
A8 North bedroom width m 3.6 2.5 5 
A9 North bedroom depth m 4.2 1.7 6.5 
A10 Kitchen width m 1.8 1.7 5 
A11 Kitchen depth m 3 1.7 6.5 

Window 
parameters B1 

Window-to-wall ratio in 
north bedroom – 0.35 0.15 0.6 
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B2 Window-to-wall ratio in 
middle bedroom 

– 0.3 0.15 0.6 

B3 Window-to-wall ratio in 
master bedroom 

– 0.35 0.15 0.6 

B4 
Window-to-wall ratio in 

living room – 0.55 0.15 0.6 

B5 
Window-to-wall ratio in 

Kitchen  – 0.3 0.15 0.6 

B6 Window-to-wall ratio in 
dining room 

– 0.35 0.15 0.6 

 
Figure 6. Internal space model (partial) with the parameter changes. 

 
Figure 7. Grasshopper procedure. 

In order to compare the optimization results of typical cities in different climate zones 
with the reference model, and to understand the improvement of the optimization results 
on the reference model, Table 6 lists the performance indicators of the reference model. 
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Table 6. Performance indicators of the reference model. 

Objective Function 
Harbin 

(Severe Cold 
Area I) 

Beijing 
(Cold Regions II) 

Shanghai 
(Hot Summer and 

Cold Winter Area III) 

Shenzhen 
(Hot Summer and 

Warm Winter Area IV) 

Kunming 
(Temperate 
Region V) 

BED(kWh/m2): 
Building energy demand 

179.42 114.81 85.16 65.20 36.10 

H(kWh/m2): 
Heating energy demand 

174.31 97.14 60.21 0 26.03 

C(kWh/m2): 
Cooling energy demand 

5.11 17.67 24.95 65.20 10.07 

UDI 100–2000(%): 
Useful Daylight Illuminance 

56.58 59.75 60.75 64.67 67 

3.3. Objective Function Settings 
The evaluation indicators of building climate responsive design include lighting 

environment comfort and building energy demand. In order to facilitating the parametric 
modeling and analysis, this section explains the theoretical basis of these two objective 
functions and clarifies the relevant design influence factors. 

3.3.1. Building Energy Demand 
The annual building energy demand is defined as the sum of the cooling and heating 

loads of all apartments [44–46]—domestic hot water, electrical equipment and other 
energy needs are not included in the calculation. The cooling period in summer and the 
heating period in winter are set according to the requirements of different climate zones. 
In this study, in order to avoid the influence of HVAC system parameters, its performance 
coefficient is assumed to be 1, so the energy demand can be directly extracted from the 
EnergyPlus simulation results. It is assumed that no heat recovery device is implemented 
in the HVAC system. Therefore, the objective function of the annual building energy 
demand can be calculated as Equation (5): 

BED = 1/A × ∑ni=1(Eci + Ehi) (5) 

where BED represents the annual building energy demand per unit building area 
(kWh/m2)—the calculation of building energy demand only considers heating and cooling 
demand, and does not consider other aspects, such as lighting, domestic hot water, etc. Eci 
is the cooling demand of the i-th floor, Ehi is the heating demand of the i-th floor, n is the 
total number of floors in the building and A is the total area of each floor in the air-
conditioning area of the building. 

3.3.2. Lighting Environment Comfort 
There are currently two types of light environment evaluation indicators, which are 

divided into static indicator and dynamic indicator. The static indicators include 
illumination, uniformity of illumination (U0), Daylight factor—DF, Unified Glare Rating—
UGR and Scope of View. The static lighting environment evaluation index is simple, 
intuitive and easy to calculate. It is suitable for index control under general conditions, 
but it cannot distinguish the difference in lighting environment performance under the 
influence of different climatic factors, and it cannot distinguish the different types of 
buildings; moreover, it is impossible to evaluate various technical measures such as an 
auxiliary lighting system. Whereas the dynamic daylighting evaluation indicators 
including Daylight Autonomy (DA), Continuous Daylight Autonomy (DAcon) and 
Useful Daylight Illuminance (UDI) take into account the characteristics of different 
climate zones. It takes one hour as the step length to reflect the annual illuminance level, 
which is close to the actual situation. The practicability of dynamic daylighting evaluation 
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indicators is significantly better than that of static indicators. Such indicators not only 
consider the role of daylighting auxiliary systems, but also evaluate their advantages and 
disadvantages, thereby providing support for low-energy design [47]. 

This study uses the lighting environment evaluation index as one of the optimization 
objectives and conducts a coupling analysis with the building’s annual cooling and 
heating demand. The dynamic daylighting evaluation index is more convenient to 
evaluate the design parameters from the time scale of the whole year, which is in line with 
the purpose of this study. Therefore, this study uses the Useful Daylight Illuminance 
(UDI) as the index of lighting environment optimization. The UDI indicator is mainly used 
to evaluate the dynamic lighting quality of indoor spaces, and takes into account the part 
where the actual illuminance of the indoor working surface exceeds the design 
illuminance at a certain time and may cause glare. This indicator expresses a range value. 
Within this range, the surface illumination level meets the requirements of indoor work. 
Nabil and Mardaljevic [48] proposed the effective illuminance range value in 2005: 100 lx 
< UDI < 2000 lx, below 100 lx indicates that the indoor working surface illuminance is 
seriously insufficient, and 2000 lx or more may cause glare, which will adversely affect 
the indoor light and heat environment. Therefore, the UDI of residential buildings should 
be divided into three intervals, namely, the annual percentage of 100 lx and below, 100–
2000 lx, and 2000 lx and above to evaluate the indoor light environment quality. 

3.4. Multi-Objective Optimization Algorithm 
The basic idea of the NSGA-II algorithm is: first, randomly generate an initial 

population of size N, and after non-dominated sorting, the first generation of offspring 
population is obtained through the three basic operations of genetic algorithm selection, 
crossover and mutation. Secondly, starting from the second generation, merge the parent 
population with the offspring population for fast non-dominated sorting. At the same 
time, the crowding degree is calculated for the individuals in each non-dominated layer, 
and suitable individuals are selected according to the non-dominated relationship and the 
crowding degree of the individuals to form a new parent population. Finally, a new 
offspring population is generated through the basic operations of genetic algorithm and 
so on, until the conditions for the end of the program are met [49–52]. The program flow 
chart is shown in Figure 8 below. 

Assuming that the population is P, the algorithm needs to calculate two parameters 
Np and Sp of each individual p in P, where Np is the number of individuals dominating 
individual p in the population, and Sp is the set of individuals dominated by individual 
p in the population. The total computational complexity of these two parameters is O 
(Mn2). 

The main steps of the algorithm are as follows: (1) find all the individuals with np = 
0 in the population and save them in the current set Fl, (2) for each individual i in the 
current set Fl, its dominating individual set is Si, for l in Si, execute nl = nl − 1, if nl = 0, 
then save individual l in set H, (3) the individual obtained in Fl is the individual in the 
first non-dominated layer, and H is used as the current set, and the above operation is 
repeated until the entire population is classified 
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Figure 8. NSGA-II algorithm flow chart. 

In order to estimate the crowding degree of the solutions around a particular solution 
in the population, NSGA-II algorithm calculates the average distance between the two 
points on both sides of this point according to each objective function. This value is used 
as an estimate of the perimeter of a box with its nearest neighbor as its vertex (known as 
the crowding factor) [53]. In Figure 9 below, the crowding factor of the i-th solution at its 
front is the length of the cuboid around it (as shown by the dashed box). The calculation 
of the crowding factor ensures the diversity of the population. 

 
Figure 9. Schematic diagram of crowding factor. 

The calculation of the crowding factor needs to sort the populations according to the 
ascending order of the value of each objective function (that is, if the first-level non-
dominated layer is obtained, it is sorted according to the value of the objective function, 
and then the crowding degree is calculated). Therefore, for each objective function, the 
boundary solution (the solution with the maximum and minimum values) is specified as 
the value of the infinite distance. All other intermediate solutions are designated as the 
normalized absolute difference of the function values of the two adjacent solutions. The 
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calculation method is the same for other objective functions. All the crowding factor 
values are calculated by the sum of the distance values of each individual target, and each 
objective function is normalized before calculating the crowding factor. 

In the non-dominated sorting genetic algorithm of elite strategy, the calculation of 
crowding factor is an important link to ensure the diversity of population. The pseudo 
code of its function is as follows: 

(1) Let nd = 0, n = 1, 2, ... N 
(2) For each objective function 

1. The population was ranked based on the objective function, 
2. Let the crowding degree of two individuals on the boundary be infinite, that is, 

ld = nd = ∞, 
3. Calculate nd = nd + (ƒm(i + 1) − ƒm(i − 1)), n = 2, 3, ..., N − 1 
After the fast non-dominated sorting and crowding factor calculation, each 

individual i in the population has two attributes: the non-dominated order irank (i.e., the 
rank) and the crowding degree id. According to these two attributes, the crowding degree 
comparison operator can be defined, i.e., individual i compares with another individual j, 
and as long as any of the following conditions are met, individual i wins. 

(1) If irank < jrank 
(2) If they have the same rank and individual i has a larger crowding distance than 

individual j, i.e., irank = jrank and id > jd 
The first condition ensures that the selected individual belongs to the superior non-

inferior rank. The second condition selects the individual who is located in the less 
crowded area (having a greater crowding degree id) among the two individuals who are 
in the same non-inferior rank and who are indifferent due to their crowded distance. The 
winning individual enters the next operation. 

The NSGA-II algorithm adopts the elite strategy shown in Figure 10 [54]. First, the 
new population Qt produced by the t th generation and the parent Pt are combined to form 
Rt, and the population size is 2N. Then, Rt performs non-dominated sorting, generates a 
series of non-dominated sets Zi and calculates the crowding factor. Since both offspring 
and parent individuals are included in Rt, the individuals included in the non-dominated 
set Z1 after non-dominated sorting are the best in Rt; so first put Z1 into the new parent 
population Pt+1. If the size is less than N, then continue to fill the next-level non-dominated 
set Z2 into Pt+1, until the size of the population exceeds N when Z3 is added. The crowding 
degree comparison operator is used for the individuals in Z3 to make the number of 
individuals in Pt+1 reach N. Then a new offspring population Qt+1 is generated through 
genetic operators (selection, crossover, mutation). 
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Figure 10. Schematic diagram of elite strategy. 

4. Predictive Model Set-Up and Sensitivity Analysis 
4.1. Artificial Neural Network Theory 

Artificial Neural Network (ANN) is usually called neural network, which is an 
information processing system that imitates the structure and function of the human brain 
[55,56]. The establishment of artificial neural networks is based on the collection of 
connected units or nodes of artificial neurons, which can loosely model neurons. Each 
connection is like a synapse in a biological brain. It can transmit signals to other neurons. 
The artificial neurons that receive the signals then process them and send signals to 
connected neurons. The output of each neuron is calculated by a nonlinear function of the 
sum of its inputs. Neurons usually adjust their weights as they learn. The increase or 
decrease of the weight affects the strength of the signal at the connection. Neurons can 
have a threshold so that they only send a signal when the total signal exceeds the 
threshold. Generally, neurons are clustered into layers, and different layers can perform 
different transformations on their inputs. Signal propagation from the first layer (input 
layer) to the last layer (output layer) may require multiple traversal of all layers. 

For system modeling, the main feature of an artificial neural network is that it has 
strong adaptability and capacity in the process of dealing with actual problems. In the 
actual modeling process, there is no need to know the composition of the research object, 
but only need to limit the topology of the neural network. Its weight or threshold not only 
specifies the parameters of the model, but also specifies the structure and properties of the 
model. An accurate network model can be obtained by using the known input and output 
data as learning and testing samples for training. 

BP neural network (Back Propagation Neural Network) is a multi-layer feedforward 
neural network based on the error back propagation algorithm, which consists of two 
parts: the forward transmission of information and the back propagation of errors [57,58]. 
In the process of forward propagation, through the training and testing of samples, the 
input information is calculated layer by layer through the weight or threshold between 
the input layer to the hidden layer, and the hidden layer to the output layer. Finally, the 
result is passed to the output layer. If the deviation between the result of the output layer 
and the actual value is outside the error range, the error change value of the output layer 
is calculated. Then the error is back propagated, and the error signal is transmitted back 
along the original connection path through the network, thereby adjusting the weights of 
the neurons in each layer. The two processes of forward transmission of information and 
back propagation of error are repeated until the predicted value of the BP neural network 
can accurately reflect the result of the actual situation. The process is shown in Figure 11. 

 
Figure 11. Neural network structure of BP algorithm. 
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The input neurons of the neural network model established in this paper include 
design parameters such as the width and depth of different bedrooms and kitchens, as 
well as the window-to-wall ratios of different rooms and facades. Based on the previous 
simulation results as the basis of the database, 10,000 sets of data are selected for each city 
as a sample set to train the prediction model. The output neuron parameters of the model 
are the annual energy demand per unit area of the building and the annual percentage of 
UDI 100–2000 lx. According to the output parameters (2) and input parameters (17) of the 
network model, a three-layer neural network model is established, as shown in Figure 12. 

 
Figure 12. Schematic diagram of BP network model for energy demand and lighting environment 
comfort of residential buildings. 

4.2. Prediction Model Set-Up for Residential Building Simulation in Typical Cities 
Taking the climate of Shanghai as an example, 10,000 random simulation data of total 

energy demand (including heating demand and cooling demand) and annual percentage 
of Useful Daylight Illuminance (100 lx < UDI < 200 lx) are obtained in the simulation 
results; the minimum, maximum and average values of the total energy demand per 
square meter are 71.78 kWh/m2, 117.40 kWh/m2 and 94.30 kWh/m2, respectively. The 
lowest UDI 100–2000 lx is 38.67% and the highest is 72%. Therefore, through the 
adjustment of internal space design parameters, the maximum energy-saving rate can 
reach 38.8% and the maximum light environment improvement rate is 33.4%. 

The study did not establish a neural network for each of the typical cities to predict 
the impact of residential indoor space on energy demand and lighting. Instead, “city" was 
taken as one of the input data of neural network, and about 10,000 random simulations 
were conducted for each city. The design parameters used in the Monte Carlo simulation 
uniformly covered their respective value ranges. Compared with the establishment of 
different neural network models, this method can greatly reduce the amount of data 
needed for training neural network under the premise of ensuring the accuracy of 
prediction, thus saving simulation time. In order to prevent the neural network from over-
fitting, the cross validation method is used to divide the training set and test set according 
to the ratio of 8:2. There are more than 40,000 data in training set and more than 10,000 
data in test set. Before training, in order to speed up the convergence of the neural network 
and improve the accuracy of prediction, the data were normalized in the process of 
training a neural network model; when indicators such as the root mean square error of 
the model tend to be stabilized, it can be considered that the model has reached 
convergence. If the error is small enough, it indicates that the prediction effect of the 
neural network is good, and it can replace the building simulation as the adaptive 
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evaluation in the multi-objective optimization. Table 7 shows the performance of the 
neural network model on the training set and the validation set. The results show that the 
error of the neural network has been controlled within an acceptable range. In order to 
visually demonstrate the predictive ability of the neural network model, the study 
randomly selected 100 data from the test set to compare with the prediction results of the 
neural network. The results are shown in Appendix Figures A1–A4. 

Table 7. Fitting index of neural network prediction model. 

Data Set Data Type MAE MSE R2 
Training set Cooling demand 0.067 0.012 1.000 

 Heating demand 0.056 0.007 1.000 

 
Light environment (UDI 

index) 
0.261 0.207 0.996 

Test set Cooling demand 0.072 0.009 1.000 
 Heating demand 0.059 0.006 1.000 

 
Light environment (UDI 

index) 
0.318 0.304 0.994 

4.3. Sensitivity Analysis of Design Parameters of Residential Interior Space 
The study is based on 15,000 sets of data obtained for each city in a Monte Carlo 

simulation, and uses IBM SPSS Statistics 24 to analyze the Spearman correlation coefficient 
between the parameters and the objective function. The correlation analysis results are 
shown in Appendix Tables A1–A5. In regard to the Spearman correlation coefficient, the 
coefficient has high correlation in the range 0.8–1, strong correlation in the range 0.6–0.8, 
medium correlation in the range 0.4–0.6, weak correlation in the range 0.2–0.4 and 
extremely weak correlation in the range 0–0.2 [59]. 

It can be seen from Tables A1–A5 that the depth and width variables of each room 
have a moderate impact on the Useful Daylight Illuminance (UDI 100–2000 lx), because 
the Spearman coefficient of the relevant design parameters is between 0.3 and 0.5. 
Compared with these parameters, the window-to-wall ratio of each room has a weaker 
influence on the lighting environment, with the Spearman coefficient in between 0.1 and 
0.3. Regarding the total energy demand, floor height has a strong influence on it for each 
typical city. However, except for the climatic conditions of Shenzhen and Kunming where 
the depth and width of each room have a moderate impact, under the climatic conditions 
of Harbin, Beijing and Shanghai, the depth and width of each room have a weak influence 
on it (generally less than 0.3). Except for Kunming, under the climatic conditions of 
Harbin, Beijing and Shanghai, the influence of room depth and width on building cooling 
demand is significantly higher than that on heating demand. In Kunming, these design 
parameters have similar effects on cooling and heating; while in Shenzhen, since there is 
no heating time period, the influence of design parameters on heating demand is zero. In 
addition, under the climatic conditions of typical cities, the window-to-wall ratio of each 
room has a higher impact on building cooling demand than it has on building heating 
demand. 

In addition to the analysis of Spearman coefficient, the study also conducted a local 
sensitivity analysis of different design parameters to understand the influence of each 
design parameter on the objective function under different climate conditions. However, 
due to the large number of design parameters, and each of them affects more than one 
objective function, Figures 13–28 only select 4 typical design parameters for local 
sensitivity analysis, namely floor height, total width, master bedroom window-to-wall 
ratio and living room window-to-wall ratio to intuitively understand the changes of 
objectives under different climatic conditions. 

From Figures 13–15, it can be seen that with the increase in floor height, the total 
energy demand for residential buildings in each city is increasing, where the increase in 
Harbin climate is the largest and the energy demand per unit building area is much higher 
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than that of other cities, while the increase in Kunming is the smallest. The heating and 
cooling demand of different cities account for different proportions of the total energy 
demand. The energy demand in Harbin mainly comes from heating which is about 160–
205 kWh/m2, while the cooling demand is only 5–10 kWh/m2. Under the climatic 
conditions of Beijing and Shanghai, the heating demand is higher than the cooling 
demand. The heating demand is about 50–110 kWh/m2, while the cooling demand is only 
15–35 kWh/m2. Residential buildings under the climate conditions in Shenzhen are 
different from the above cities where the building energy demand comes only from the 
cooling demand, which is about 65–85 kWh/m2. In addition, compared with other cities, 
residential heating and cooling demand under the climatic conditions of Kunming are at 
a lower value, indicating the climate there is quite pleasant. 

From the analysis of lighting environment and floor height in Figure 16, it can be seen 
that with the increase of floor height, under all typical climate conditions, the annual 
percentage of UDI 100 lx–2000 lx is decreasing. By comparing the residential indoor light 
environment in different cities, it is clear to see that Kunming has the best indoor light 
environment, followed by Shenzhen, Beijing and Shanghai, and Harbin has the worst 
indoor light environment, resulting from different latitude and solar angles in different 
cities. Through the sensitivity analysis of the floor height, it can be summarized that with 
the increase of the floor height, the energy demand and the indoor lighting environment 
are deteriorating. Therefore, it is recommended to control the floor height at 2.7 m in order 
to obtaining the optimal goals. 

 
Figure 13. Relationship between building total energy demand and floor height. 

 
Figure 14. Relationship between heating demand and floor height. 
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Figure 15. Relationship between cooling demand and floor height. 

 
Figure 16. The relationship between annual percentage of UDI 100–2000 lx and floor height. 

Since the total area of the apartment is always controlled at 118 m2, the total width 
and the total depth are symmetrical with respect to the objective function. Therefore, the 
study only conducts local sensitivity analysis for the total width of the apartment. Figures 
17–19 show the relationship of the total width and the building energy demand, where it 
is clear to see that the total energy demand under the climate conditions of Harbin and 
Beijing gradually decreases as the total width increases, while under Shanghai climate 
conditions, the total width has little influence on the fluctuation of total energy demand. 
Moreover, under the climatic conditions of Shenzhen and Kunming, as the total width 
increases, the total energy demand is gradually increasing. This is because in residential 
buildings in Harbin and Beijing, as the total width becomes larger, the heating demand is 
decreasing. Although the corresponding cooling demand increases slightly, the 
magnitude is not as large as the change in heating demand, which leads to a decrease in 
total energy demand. Specifically, under the climate conditions of Harbin, the total energy 
demand decreases from 235 kWh/m2 to about 200 kWh/m2 as the width increases, and 
under Beijing climatic conditions, the total energy demand decreases from 150 kWh/m2 to 
about 135 kWh/m2 as the width increases. Different to Harbin and Beijing, the total energy 
demand of residential buildings in Shenzhen and Kunming has increased with the 
increase in width, mainly because the change in heating demand is relatively stable, while 
the demand for cooling has increased. For example, under the climatic conditions in 
Shenzhen, as the width of the house becomes larger, the cooling demand has increased 
from 80 kWh/m2 to about 90 kWh/m2. 
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According to the analysis of the total width and the annual percentage of UDI 100 lx–
2000 lx in Figure 20, as the width increases, the annual percentage of UDI100 lx–2000 lx is 
decreasing. Among them, Kunming has the best indoor light environment, followed by 
Shenzhen, Shanghai and Beijing. Harbin’s indoor light environment comfort is worse than 
other cities. 

Through the sensitivity analysis of the total width, it can be seen that under different 
typical urban climate conditions, the change in the total width of the house has different 
correlations with the objective function. The main difference lies in the impact on the total 
energy demand. Therefore, it is necessary to perform an optimization search on a global 
scale to find the optimal width value that weighs the total energy demand and the comfort 
of the light environment. 

 
Figure 17. Relationship between building total energy demand and total width. 

 
Figure 18. Relationship between heating demand and total width. 
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Figure 19. Relationship between cooling demand and total width. 

 
Figure 20. The relationship between annual percentage of UDI 100–2000 lx and total width. 

Figures 21–23 analyze the effect of the window-to-wall ratio of the master bedroom 
on the total energy demand (including heating demand and cooling demand) and annual 
percentage of UDI 100–2000 lx. It can be seen that the increase in the window-to-wall ratio 
of the master bedroom has little effect on the total energy demand of residential buildings 
in cities other than Shenzhen where the total energy demand of residential buildings has 
increased. This is because the increase in window area has led to a significant increase in 
the demand for cooling in the area, from 82 kWh/m2 to 95 kWh/m2. From the analysis in 
Figure 24, it can be seen that with the increase in the window-to-wall ratio in the master 
bedroom, annual percentage of UDI 100–2000 lx in all typical cities has gradually 
decreased, thus the lighting environment comfort has a certain degree of degradation. 
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Figure 21. Relationship between building total energy demand and window-to-wall ratio in master 
bedroom. 

 
Figure 22. Relationship between building heating demand and window-to-wall ratio in master 
bedroom. 

 
Figure 23. Relationship between building cooling demand and window-to-wall ratio in master 
bedroom. 
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Figure 24. The relationship between annual percentage of UDI 100–2000 lx and window-to-wall 
ratio in master bedroom. 

Figures 25–27 analyze the impact of window-to-wall ratio in the living room on the 
total energy demand (including heating demand and cooling demand) and annual 
percentage of UDI 100–2000 lx. With the increase in the window-to-wall ratio in the living 
room, the total energy demand of residential buildings under the climate of Shenzhen is 
also increasing, but that under the climatic conditions of Kunming is decreasing, and there 
is little fluctuation in other cities. This is because with the increase in the window-to-wall 
ratio in the living room, more solar radiation enters the room, leading to a significant 
increase in residential cooling demand in Shenzhen, from 210 kWh/m2 to about 240 
kWh/m2. However, due to different climatic conditions, the demand for residential 
cooling in Kunming has slightly decreased, from 30 kWh/m2 to about 20 kWh/m2. 

From the analysis in Figure 28 which shows the impact of the window-to-wall ratio 
in the living room on the indoor lighting environment, it is summarized that with the 
window-to-wall ratio increases, the annual percentage of UDI 100–2000 lx in each typical 
city gradually decreases, therefore, the light environment comfort has a certain degree of 
degradation. 

 
Figure 25. Relationship between building total energy demand and window-to-wall ratio in living 
room. 
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Figure 26. Relationship between building heating demand and window-to-wall ratio in living room. 

 
Figure 27. Relationship between building cooling demand and window-to-wall ratio in living room. 
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Figure 28. Relationship between annual percentage of UDI 100–2000 lx and window-to-wall ratio in 
living room. 

5. Discussion of Optimization Results 
5.1. Optimization Results of Residential Interior Design in Typical Cities 

The research obtained the best solution through parametric performance simulation 
and NSGA-II algorithm to optimize all design parameters, as shown in Figure 29, where 
the darkest part in red is the Pareto front. Tables 8 and 9 list the best building energy 
demand (that is, the smallest building energy demand solution, nZEB optimal solution) 
and the best light environment (that is, the highest annual percentage of UDI 100 lx–2000 
lx, UDI optimal solution) for each city under different climatic conditions and its 
corresponding design parameters. 

It can be seen from Table 8 that in the optimal design of nZEB and UDI in all cities, 
the floor height is 2.7 m. Furthermore, in nZEB solution, the total depth and total width 
of residential buildings in Harbin, Beijing and Shenzhen are the same (total width is 14.97 
m, total depth is 7.88 m), while those parameters in Shanghai and Kunming are different. 
The total width in Shanghai nZEB optimal solution is 12.28 m and the total depth is 9.61 
m; the total width in Kunming nZEB optimal solution is 11.20 m and the total depth is 
10.54 m, leading to the fact that the difference of nZEB optimal design parameters in 
Harbin, Beijing and Shenzhen are mainly from the difference in depth between the master 
bedroom and the middle bedroom. With respect of the window-to-wall ratio of each room, 
the best window-to-wall ratio in the master bedroom and the living room of Beijing nZEB 
solution (0.41 and 0.59, respectively) is higher than that of Harbin and Shenzhen nZEB 
solution (0.19 and 0.32 in Harbin, 0.18 and 0.24 in Shenzhen). However, in general, the 
window-to-wall ratio in colder cities in the north are larger than those in warm cities in 
the south. This is because residential buildings in northern cities need to introduce more 
solar radiation into indoor space to reduce heating demand in winter, while southern 
cities need to reduce the window-to-wall ratio to prevent too much solar radiation from 
entering the room, thereby reducing the demand for cooling in summer, however, too 
large window area will also accelerate the flow of indoor energy to the outdoors and 
reduce the insulation performance of the building. Therefore, the window-to-wall ratio in 
severe cold areas such as Harbin should not be too large. 

In addition, the total depth and total width in the UDI optimal solution for all cities 
are approximately the same. The total width is 14.97 m and the total depth is 7.88 m, 
leading to the depth and width of each room being approximately the same. The main 
difference between the UDI optimal design solution in each city is the window-to-wall 
ratio parameter of each room. The window-to-wall ratio of the north bedroom, master 
bedroom and living room of the UDI optimal design solution in Shanghai is greater than 
that in other cities, which are 0.26, 0.32 and 0.33, respectively. The kitchen window-to-wall 
ratio of UDI optimal design solution in Shenzhen is greater than that in other cities, which 
is 0.59. Moreover, the window-to-wall ratios of dining room in Harbin, Beijing and 
Shenzhen UDI optimal design solution (0.54, 0.50 and 0.60, respectively) are significantly 
greater than that in Shanghai and Kunming (0.19 and 0.16, respectively). 

From the comparison of the performance indicators of the optimal solution in Table 
9, it is obvious to see that the heating demand of residential buildings in Harbin, Beijing 
and Shanghai is much higher than the cooling demand. Meanwhile, as mentioned above, 
the heating schedule in Shenzhen is set to zero, thus the building energy demand in 
Shenzhen is all from cooling demand. Furthermore, through the comparison of the 
optimal energy demand of nZEB and UDI solution in various cities, it can be seen that the 
energy demand of residential buildings in Beijing is higher than other cities, which are 
110.69 kWh/m2 and 137.48 kWh/m2. While Kunming and Shanghai are the lowest. Besides, 
with the exception of Beijing, the optimal energy demand indicators in nZEB and UDI 
solution in each city are not much different. Different from the energy demand index, the 
index of annual percentage of UDI 100–2000 lx in nZEB optimal solution and UDI optimal 
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solution in Shanghai and Kunming are quite different. The annual percentage of UDI 100–
2000 lx of the two optimal solutions in Shanghai differed by 21.35%, while that in 
Kunming differed by 15.63%. 

 
Figure 29. Multi-objective optimization results of typical cities. 
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Table 8. Optimization design parameters of residential interior space form in typical cities. 

Classification Code Description 

Harbin 
(Severe Cold  

Area I) 

Beijing 
(Cold Regions II) 

Shanghai 
(Hot Summer and 

Cold Winter  
Area III) 

Shenzhen 
(Hot Summer and 

Warm Winter  
Area IV) 

Kunming 
(Temperate  
Region V) 

nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) 

Spatial  
morphological 

parameters 

A1 Floor height 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 
A2 Total width 14.97 14.96 14.97 14.97 12.28 14.98 14.98 14.90 11.20 14.92 
A3 Total depth 7.88 7.89 7.88 7.88 9.61 7.88 7.88 7.92 10.54 7.91 

A4 
Master bedroom 

width 
2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50 

A5 
Master bedroom 

depth 
3.94 4.48 2.59 4.48 4.58 4.47 4.23 4.42 4.88 4.51 

A6 
Middle bedroom 

width 
2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50 

A7 
Middle bedroom 

depth 
2.24 1.70 3.60 1.70 3.18 1.70 1.88 1.73 3.89 1.70 

A8 North bedroom width 2.50 2.50 2.50 2.50 4.42 2.51 2.50 2.50 3.63 2.50 
A9 North bedroom depth 1.70 1.71 1.70 1.70 1.85 1.71 1.77 1.77 1.77 1.70 
A10 Kitchen width 1.70 4.95 1.71 1.74 1.96 1.70 1.70 5.00 1.70 1.74 
A11 Kitchen depth 1.70 1.71 1.70 1.70 1.85 1.71 1.77 1.77 1.77 1.70 

Window  
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.15 0.16 0.15 0.27 0.29 0.26 0.15 0.18 0.15 0.15 

B2 Window-to-wall ratio 
in middle bedroom 

0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

B3 
Window-to-wall ratio 

in master bedroom 
0.19 0.15 0.41 0.15 0.49 0.32 0.18 0.16 0.15 0.36 

B4 
Window-to-wall ratio 

in living room 
0.32 0.15 0.59 0.20 0.60 0.33 0.24 0.16 0.15 0.17 

B5 
Window-to-wall ratio 

in Kitchen  
0.23 0.28 0.16 0.20 0.24 0.33 0.15 0.59 0.15 0.18 

B6 
Window-to-wall ratio 

in dining room 0.15 0.54 0.15 0.50 0.16 0.19 0.15 0.60 0.15 0.16 

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual 
percentage of UDI 100–2000 lx. 

Table 9. Performance index of optimal solution. 

Objective Function 
Harbin 

(Severe Cold Area I) 
Beijing 

(Cold Regions II) 

Shanghai 
(Hot Summer and 
Cold Winter Area 

III) 

Shenzhen 
(Hot Summer and 
Warm Winter Area 

IV) 

Kunming 
(Temperate Region V) 

nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) 
BED (kWh/m2): 

Building energy demand 
84.36 91.23 110.69 137.48 24.86 29.47 63.57 70.08 23.69 28.85 

H (kWh/m2): 
Heating energy demand 

70.36 77.46 104.57 132.69 24.77 27.82 0 0 17.05 19.10 

C (kWh/m2): 
Cooling energy demand 

14.00 13.77 6.12 4.79 0.09 1.65 63.57 70.08 6.64 9.75 

UDI 100–2000 (%): 
Useful Daylight 

Illuminance 
80.27 82.92 71.43 78.99 67.49 88.84 87.06 89.24 71.56 87.19 

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual 
percentage of UDI 100–2000 lx. 

5.2. Comparison of Optimization Results with Reference Model 
Table 10 compares the optimal indicators of each city with the simulated indicators 

of the reference house. As far as Harbin is concerned, the energy demand of the two 
optimization results is greatly reduced compared with the reference building, and the 
main reason for the decrease is that the heating demand is greatly reduced on the basis of 
a small increase in cooling demand. Heating demand has been reduced by 103.95 kWh/m2 
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and 96.85 kWh/m2 respectively. In addition, in terms of the annual percentage of UDI 100–
2000 lx, the two optimal results of Harbin residential building types have also been greatly 
improved compared with the reference building, increasing by 23.69 and 26.34%, 
respectively. However, it is worth noting that under Harbin climatic conditions, the 
performance indicators of the nZEB optimal solution and the UDI optimal solution have 
little difference for the improvement to the reference building in terms of these two 
objective functions. 

Table 10. The gap between the optimal solution and the performance index of the reference building. 

Objective Function 
Harbin 

(Severe Cold Area I) 
Beijing 

(Cold Regions II) 

Shanghai 
(Hot Summer and 
Cold Winter Area 

III) 

Shenzhen 
(Hot Summer and 

Warm Winter Area IV) 

Kunming 
(Temperate Region V) 

 nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) nZEB(*) UDI(*) 
BED (**) (kWh/m2): 

Building energy 
demand 

95.06 88.19 4.12 −22.67 60.3 55.69 1.63 −4.88 12.41 7.25 

H (**) (kWh/m2): 
Heating energy demand 

103.95 96.85 −7.43 −35.55 35.44 32.39 0 0 8.98 6.93 

C (**) (kWh/m2): 
Cooling energy demand 

−8.89 −8.66 11.55 12.88 24.86 23.3 1.63 −4.88 3.43 0.1 

UDI 100–2000 (**) (%): 
Useful Daylight 

Illuminance 
−23.69 −26.34 −11.68 −19.24 −6.74 −28.09 −22.39 −24.57 −4.56 −20.19 

nZEB(*): the best solution for annual energy demand, UDI(*): the best solution for the annual 
percentage of UDI 100–2000 lx, (**) A positive value indicates that the proposed solution reduces 
the performance index, while a negative value indicates an increase. 

In cold regions represented by Beijing, the optimal total energy demand of nZEB is 
reduced by 4.12 kWh/m2 compared to the reference house. The main reason is that the 
cooling demand decreases more than the increase in heating demand. Meanwhile, the 
nZEB optimal solution also increases annual percentage of UDI 100–2000 lx 11.68%. 
Whereas, although an annual percentage of UDI 100–2000 lx is better in the UDI optimal 
solution which is 19.24% than that in nZEB optimal solution, it increases the total energy 
demand by 22.67 kWh/m2 where cooling demand decreases by 12.88 kWh/m2, but the 
heating demand increases by 35.55 kWh/m2. 

In the hot summer and cold winter area represented by Shanghai, the total energy 
demand of the two optimization solutions has been greatly reduced compared with the 
reference house, which are 60.3 kWh/m2 and 55.69 kWh/m2, respectively. However, the 
UDI optimal solution improves the annual percentage of UDI 100–2000 lx (which is 
28.09%) better than nZEB optimal solution (6.74%). Therefore, from a global perspective, 
the UDI optimal solution is more in line with the improvement of multi-objective 
performance indicators. 

In the hot summer and warm winter area represented by Shenzhen, the total energy 
demand of the two optimization solutions has little change compared to the reference 
house. Specifically, the nZEB optimal solution reduces 1.63 kWh/m2, while the UDI 
optimal solution only increases 4.88 kWh/m2. Since the heating schedule of the model is 
not set according to the actual situation, the changes in total energy demand all come from 
cooling demand. Different from the indicator of energy demand, annual percentage of 
UDI 100–2000 lx have greatly improved by these two optimal solutions which are 22.39% 
(nZEB optimal solution) and 24.57% (UDI optimal solution), respectively. 

Similar to Shenzhen, in the temperate climate zone represented by Kunming, the total 
energy demand of the two optimal solutions has little change compared to the reference 
house, where nZEB optimal solution reduces 12.41 kWh/m2 and UDI optimal solution 
reduces 7.25 kWh/ m2. However, the improvement of UDI optimal solution for annual 
percentage of UDI 100–2000 lx is significantly higher than that of nZEB optimal solution. 
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Specifically, the annual percentage of UDI 100–2000 lx in nZEB optimal solution is 
increased by 4.56% compared with the reference house, but improved by 20.19% in UDI 
optimal solution. Therefore, in the actual project, design parameters in UDI optimal 
solution are more in line with the improvement of global performance indicators. 

6. Conclusions 
This research uses the meteorological parameters of 5 typical Chinese cities and takes 

the 118.11 square meter apartment in Tianjin residential community as an example to 
carry out the optimization analysis for indoor space design. Finally, the optimal indoor 
space design parameters are explored from the perspective of lowest building energy 
demand and highest annual percentage of UDI 100–2000 lx. Meanwhile, the design 
parameters and performance indicators of each typical city are compared and explained 
to understand the difference of indoor space design under different climate conditions. 

From the analysis results, it can be concluded that in the early stage of the schematic 
design, the indoor space design optimization can effectively reduce the residential energy 
demand and improve the indoor lighting environment comfort. According to the 
optimization results in this case, the total energy demand per square meter and the annual 
percentage of UDI 100–2000 lx in each optimal solution under different typical cities are 
generally better than the original reference apartment plan. 

Under the climate conditions of Harbin, the design parameters of nZEB optimal 
solution and UDI optimal solution have greatly improved the performance of the 
reference apartment. Both design optimization results suggest that the total indoor width 
is 14.97 m, the total depth is 7.88 m, the window-to-wall ratio of the living room is 0.32 
(nZEB optimal solution) or 0.15 (the UDI optimal solution), and the value of the restaurant 
window-to-wall ratio is 0.15 (nZEB optimal solution) or 0.54 (the UDI optimal solution). 
Under the climate conditions of Shenzhen, both the nZEB optimal solution and UDI 
optimal solution greatly improve indoor lighting environment comfort, which are 22.39% 
(nZEB optimal solution) and 24.57% (UDI optimal solution), respectively. However, they 
have little difference in the improvement of total energy demand, which are 1.63 kWh/m2 
(nZEB optimal solution) and −4.88 kWh/m2 (UDI optimal solution), respectively. Under 
Shanghai climatic conditions, compared with the performance index of nZEB optimal 
solution, the UDI optimal solution has higher overall benefits. Therefore, the 
recommended total width is 14.98 m and the total depth is 7.88 m. The window-to-wall 
ratio of north bedroom, master bedroom and living room are 0.26, 0.32 and 0.33, 
respectively. Similar to Shanghai, the interior design parameters of residential buildings 
under Kunming climate conditions are also recommended to take the UDI optimal design 
solution, which means that the total width is 14.92 m, the total depth is 7.91 m, the 
window-to-wall ratio of the master bedroom is 0.36, and that of the remaining rooms is 
between 0.15 and 0.18. Different from Shanghai and Kunming, it is recommended to take 
nZEB optimal design solution for residential building interior design parameters under 
Beijing climatic conditions, i.e., the total width is 14.97 m, the total depth is 7.88 m, the 
window-to-wall ratio of the master bedroom and the living room are 0.41 and 0.59, 
respectively, and that of the rest of the room is 0.15. 

Through the correlation analysis between the design parameters and energy demand 
and the indoor lighting comfort, the indoor space design parameters have a strong 
influence on the energy-saving design of residential buildings, so it needs to be 
differentiated according to the climate characteristics of different typical cities, which 
enables architects to make wise decisions on parameter values according to different 
climatic conditions, and to meet multiple design intents in terms of architectural function, 
aesthetics and architectural performance. 

Based on the Grasshopper, a parametric multi-objective optimization process was 
created in this research for the preliminary stage of residential building design. Through 
sensitivity analysis, the research discusses the relationship between residential indoor 
space design parameters, building performance and lighting environment, which enables 
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architects to make design decisions based on parameter sensitivity. The research is only 
optimized for a specific case, but this method has a certain general applicability and can 
be widely used in the optimization of different residential interior designs. Therefore, the 
application and promotion of this optimization method is of great significance to 
residential projects. 
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Appendix A 

 
Figure A1. Prediction model of building energy demand. 
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Figure A2. Prediction model of building cooling demand. 

 
Figure A3. Prediction model of building heating demand. 
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Figure A4. Prediction model of annual percentage of UDI 100–2000 lx. 

Table A1. Comparison of Spearman coefficients of residential interior space design 
parameters in Harbin. 

Classificatio
n 

Code Description 

Harbin 
(Severe Cold Area I) 

H C BED UDI 
C* S* C* S* C* S* C* S* 

Spatial 
morphologic

al 
parameters 

A1 Floor height 0.891 0.00 0.397 0.00 0.898 0.00 0.237 0.00 
A2 Total width −0.127 0.00 0.523 0.00 −0.062 0.00 −0.579 0.00 
A3 Total depth 0.127 0.00 0.523 0.00 0.062 0.00 0.579 0.00 
A4 Master bedroom width 0.127 0.00 0.523 0.00 0.062 0.00 0.579 0.00 
A5 Master bedroom depth −0.031 0.00 −0.467 0.00 −0.086 0.00 0.563 0.00 

A6 
Middle bedroom 

width 
−0.127 0.00 0.523 0.00 −0.062 0.00 −0.579 0.00 

A7 
Middle bedroom 

depth 
−0.129 0.00 −0.258 0.00 −0.155 0.00 0.148 0.00 

A8 North bedroom width −0.127 0.00 0.523 0.00 −0.062 0.00 0.579 0.00 
A9 North bedroom depth 0.350 0.00 −0.288 0.00 0.307 0.00 0.387 0.00 

A10 Kitchen width 0.049 0.00 0.316 0.00 0.085 0.00 −0.344 0.00 
A11 Kitchen depth 0.350 0.00 −0.288 0.00 0.307 0.00 0.387 0.00 

Window 
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.065 0.00 0.177 0.00 0.084 0.00 −0.124 0.00 

B2 
Window-to-wall ratio 

in middle bedroom 
0.028 0.00 0.288 0.00 0.061 0.00 −0.159 0.00 

B3 Window-to-wall ratio 
in master bedroom 

−0.036 0.00 0.437 0.00 0.018 0.00 −0.292 0.00 

B4 
Window-to-wall ratio 

in living room 
−0.054 0.00 0.409 0.00 −0.003 0.00 −0.405 0.00 

B5 
Window-to-wall ratio 

in kitchen  
0.044 0.00 0.147 0.00 0.060 0.00 −0.102 0.00 

B6 
Window-to-wall ratio 

in dining room 
0.034 0.00 0.074 0.00 0.042 0.00 −0.070 0.00 

C* coefficient; S* Significance. 
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Table A2. Comparison of Spearman coefficients of residential interior space design 
parameters in Beijing. 

Classificatio
n 

Code Description 

Beijing 
(Cold Regions II) 

H C BED UDI 
C* S* C* S* C* S* C* S* 

Spatial 
morphologic

al 
parameters 

A1 Floor height 0.865 0.00 0.522 0.00 0.894 0.00 −0.257 0.00 
A2 Total width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00 
A3 Total depth 0.196 0.00 −0.472 0.00 −0.001 0.00 0.588 0.00 
A4 Master bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00 
A5 Master bedroom depth 0.024 0.00 −0.439 0.00 −0.140 0.00 0.502 0.00 
A6 Middle bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00 
A7 Middle bedroom depth −0.094 0.00 −0.263 0.00 −0.175 0.00 0.087 0.00 
A8 North bedroom width −0.196 0.00 0.472 0.00 0.001 0.00 −0.588 0.00 
A9 North bedroom depth 0.397 0.00 −0.221 0.00 0.263 0.00 0.510 0.00 
A10 Kitchen width 0.002 0.00 0.293 0.00 0.108 0.00 −0.349 0.00 
A11 Kitchen depth 0.397 0.00 −0.221 0.00 0.263 0.00 0.510 0.00 

Window 
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.055 0.00 0.188 0.00 0.118 0.00 −0.168 0.00 

B2 
Window-to-wall ratio 

in middle bedroom 
0.009 0.00 0.264 0.00 0.103 0.00 −0.172 0.00 

B3 
Window-to-wall ratio 

in master bedroom 
−0.075 0.00 0.389 0.00 0.078 0.00 −0.292 0.00 

B4 
Window-to-wall ratio 

in living room 
−0.157 0.00 0.397 0.00 0.012 0.00 −0.358 0.00 

B5 
Window-to-wall ratio 

in kitchen  
0.028 0.00 0.146 0.00 0.079 0.00 −0.132 0.00 

B6 
Window-to-wall ratio 

in dining room 
0.036 0.00 0.084 0.00 0.063 0.00 −0.103 0.00 

C* coefficient; S* Significance. 

Table A3. Comparison of Spearman coefficients of residential interior space design 
parameters in Shanghai. 

Classification Code Description 

Shanghai 
(Hot Summer and Cold Winter Area III) 

H C BED UDI 
C* S* C* S* C* S* C* S* 

Spatial 
morphologica
l parameters 

A1 Floor height 0.879 0.00 0.645 0.00 0.894 0.00 −0.21 0.00 
A2 Total width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00 
A3 Total depth 0.172 0.00 −0.396 0.00 −0.078 0.00 0.599 0.00 
A4 Master bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 0.599 0.00 
A5 Master bedroom depth 0.008 0.00 −0.388 0.00 −0.188 0.00 0.455 0.00 
A6 Middle bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00 
A7 Middle bedroom depth −0.118 0.00 −0.242 0.00 −0.196 0.00 0.274 0.00 
A8 North bedroom width −0.172 0.00 0.396 0.00 0.078 0.00 −0.599 0.00 
A9 North bedroom depth 0.387 0.00 −0.148 0.00 0.190 0.00 0.405 0.00 

A10 Kitchen width 0.029 0.00 0.256 0.00 0.146 0.00 −0.338 0.00 
A11 Kitchen depth 0.387 0.00 −0.148 0.00 0.190 0.00 0.405 0.00 

Window 
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.035 0.00 0.198 0.00 0.123 0.00 −0.063 0.00 

B2 
Window-to-wall ratio 

in middle bedroom 
0.012 0.00 0.244 0.00 0.130 0.00 −0.107 0.00 

B3 
Window-to-wall ratio 

in master bedroom 
−0.061 0.00 0.330 0.00 0.125 0.00 −0.331 0.00 

B4 
Window-to-wall ratio 

in living room 
0.357 0.00 −0.113 0.00 0.102 0.00 −0.435 0.00 

B5 
Window-to-wall ratio 

in kitchen  
0.006 0.00 0.155 0.00 0.083 0.00 −0.006 0.00 

B6 
Window-to-wall ratio 

in dining room 
0.025 0.00 0.086 0.00 0.062 0.00 0.026 0.00 

C* coefficient; S* Significance. 
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Table A4. Comparison of Spearman coefficients of residential interior space design 
parameters in Shenzhen. 

Classification Code Description 

Shenzhen 
(Hot Summer and Warm Winter Area IV) 

H C BED UDI 
C* S* C* S* C* S* C* S* 

Spatial 
morphologica
l parameters 

A1 Floor height 0.00 0.00 0.733 0.00 0.733 0.00 −0.239 0.00 
A2 Total width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00 
A3 Total depth 0.00 0.00 −0.350 0.00 −0.350 0.00 0.589 0.00 

A4 
Master bedroom 

width 
0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00 

A5 Master bedroom depth 0.00 0.00 −0.369 0.00 −0.369 0.00 0.429 0.00 

A6 
Middle bedroom 

width 
0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00 

A7 Middle bedroom 
depth 

0.00 0.00 −0.253 0.00 −0.253 0.00 0.023 0.00 

A8 North bedroom width 0.00 0.00 0.350 0.00 0.350 0.00 −0.589 0.00 
A9 North bedroom depth 0.00 0.00 −0.077 0.00 −0.077 0.00 0.633 0.00 

A10 Kitchen width 0.00 0.00 0.244 0.00 0.244 0.00 −0.347 0.00 
A11 Kitchen depth 0.00 0.00 −0.077 0.00 −0.077 0.00 0.633 0.00 

Window 
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.00 0.00 0.181 0.00 0.181 0.00 −0.191 0.00 

B2 
Window-to-wall ratio 

in middle bedroom 0.00 0.00 0.186 0.00 0.186 0.00 −0.161 0.00 

B3 
Window-to-wall ratio 

in master bedroom 
0.00 0.00 0.282 0.00 0.282 0.00 −0.236 0.00 

B4 
Window-to-wall ratio 

in living room 
0.00 0.00 0.308 0.00 0.308 0.00 −0.271 0.00 

B5 
Window-to-wall ratio 

in kitchen  
0.00 0.00 0.132 0.00 0.132 0.00 −0.165 0.00 

B6 
Window-to-wall ratio 

in dining room 
0.97 0.97 0.097 0.00 0.097 0.00 −0.126 0.00 

C* coefficient; S* Significance. 

Table A5. Comparison of Spearman coefficients of residential interior space design parameters 
in Kunming. 

Classificatio
n 

Code Description 

Kunming 
(Temperate Region V) 

H C BED UDI 
C* S* C* S* C* S* C* S* 

Spatial 
morphologica
l parameters 

A1 Floor height 0.808 0.00 0.278 0.00 0.838 0.00 −0.238 0.00 
A2 Total width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00 
A3 Total depth 0.236 0.00 −0.289 0.00 0.182 0.00 0.599 0.00 
A4 Master bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00 
A5 Master bedroom depth 0.044 0.00 −0.286 0.00 −0.007 0.00 0.489 0.00 
A6 Middle bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00 
A7 Middle bedroom depth −0.097 0.00 −0.036 0.00 −0.101 0.00 0.054 0.00 
A8 North bedroom width −0.236 0.00 0.289 0.00 −0.182 0.00 −0.599 0.00 
A9 North bedroom depth 0.449 0.00 −0.209 0.00 0.406 0.00 0.568 0.00 

A10 Kitchen width −0.012 0.00 0.179 0.00 0.020 0.00 −0.362 0.00 
A11 Kitchen depth 0.449 0.00 −0.209 0.00 0.406 0.00 0.568 0.00 

Window 
parameters 

B1 
Window-to-wall ratio 

in north bedroom 
0.029 0.00 0.137 0.00 0.052 0.00 −0.169 0.00 

B2 
Window-to-wall ratio 

in middle bedroom 
−0.023 0.00 0.601 0.00 0.069 0.00 −0.161 0.00 

B3 
Window-to-wall ratio 

in master bedroom −0.101 0.00 0.457 0.00 −0.023 0.00 −0.257 0.00 

B4 
Window-to-wall ratio 

in living room 
−0.248 0.00 0.162 0.00 −0.215 0.00 −0.278 0.00 

B5 
Window-to-wall ratio 

in kitchen  
0.003 0.00 0.125 0.00 0.025 0.00 −0.137 0.00 
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B6 
Window-to-wall ratio 

in dining room 
0.018 0.00 0.032 0.00 0.024 0.00 −0.100 0.00 

C* coefficient; S* Significance. 
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