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Abstract: Cement production produces a high amount of carbon dioxide, which has a negative impact
on the environment. By utilizing waste products instead of cement, environmental degradation can
be reduced. The current study was undertaken to study the mechanical and durability performance
of concrete by replacing 7.5%, 10%, and 12.5% silica fume (SF) of cement weight. Additionally, coal
bottom ash (CBA) was also substituted as fine aggregates with 10%, 20%, and 30%. Compressive
strength and indirect tensile strength were the major parameters regarding mechanical properties,
while corrosion analysis and sulfate attack were set for durability performance. Sixteen mixes were
prepared including a control mix. Out of these, three mixes contained SF, three mixes contained CBA,
and eight mixes contained both SF and CBA with 1:2:4 ratio at 0.5 w/b ratio. The results concluded
that the addition of 12.5% SF and 30% CBA gives optimum compressive strength and tensile strength.
Furthermore, using the SF and CBA reduces the workability of concrete. Furthermore, the use of
these byproducts increased the durability in terms of corrosion and sulfate attack.

Keywords: coal bottom ash; silica fume; partial replacement; mechanical performance;
durability performance

1. Introduction

Concrete is one of the materials mostly used in the construction of buildings and
other infrastructure projects. By 2050, it is expected that the demand for concrete will have
increased to nearly 7.5 billion m3 (roughly 18 billion tons) [1]. Because of this huge demand
for concrete in the construction industry, it will also cause 10% Co2 emission in the natural
environment. This release of Co2 results in the rising of temperatures on the earth, and thus
the occurrence of problems like global warming and climate change. It is understood that
concrete is essential for the construction of large structures, but on the other hand, it also
increases the energy cost for manufacturing cement, thus utilizing the natural resources
that are needed for cement production [2–4]. Such extensive use of concrete, increases
the use of natural aggregates and cement, putting a strain on the environment. Coarse
and fine aggregates occupy around 60–75% volume of the concrete, and because of the
extensive use of both these natural materials, there will be a shortage of these materials
in near future [5]. As a result, in the present environment of the scarcity of river sand
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and increased infrastructure growth, it is more important than ever to find a replacement
material for river sand in concrete [6].

In electricity power generation plants, which produce a huge amount of CBA and
FA as waste products of around about 20–80%, using both the materials in the making
of concrete can surely reduce the problem of not only disposal, but also in saving the
environment [1]. The particle size of CBA can vary from fine sand to fine gravel. Chemical
composition shows that the main ingredients of CBA include silica, iron, alumina, and a
small quantity of calcium and magnesium sulfate [6]. Since ash is considered waste, it is
disposed of in landfills or ponds. In some power plants, bottom ash is combined with fly
ash before being cleared [7]. In reality, dumping coal bottom ash in the open air endangers
people and the environment [8]. Singh et al. described how the presence of coal bottom ash
increases the risk of health problems such as skin, lung, and bladder cancer [9]. As a result,
developing concrete products that use this material as one of the mix ingredients will save
landfill space, time, resources, and energy. This method would lower manufacturing costs
while still protecting the environment from waste’s negative landfilling and human health
effects [10].

It was observed from the available literature that the CBA had very little effect on
compressive strength when it was replaced with fine sand. However, when the replacement
level increased, the flexural strength and modulus of elasticity decreased. [11]. Literature
reports that when CBA was used as a replacement of fine sand, the compressive strength
obtained was lower than the control concrete mix at shorter curing durations. Moreover,
the improvement in strength was found to be equal or higher than the control concrete mix
when longer curing duration was selected [12,13]. Another study shows that by using CBA
as a replacement of sand keeping w/c ratio fixed, the slump of concrete increased while
the compressive strength decreased [14]. A similar study indicates that by increasing CBA
content, the compressive strength decreased when a constant w/c ratio was adopted [15].

SF in concrete as a pozzolanic material provides better bonding on the interface zone
of cement paste-aggregate, which is usually weaker. Generally, SF in concrete is used for the
pozzolanic effect (chemical effect) because the rapid pozzolanic reaction, which generates
the C-S-H gel during the early age of concrete results in early strength gain when SF is
added to the concrete mix as reported by [16,17]. In the early days of curing, such as at
7 days, SF shows very fast pozzolanic behavior, and it was observed that the major cause of
such a fast hydration process in SF concrete was due to compounds such as Ca(OH)2 and C–
S–H gel, as described by [18]. SF is mostly used as a substitute of cement in conventional
as well as of high-performance concrete (HPC) because of its much finer surface area as
described by [19]. In another study, it was concluded that high-strength concrete with 10%
SF by the mass of cement, and w/b ratios of 0.22, 0.25, and 0.28, exhibited increased drying
shrinkage strain up to 610 × 10−6, whereas for the normal-strength concrete (w/b = 0.57),
it was about 50% lower [20]. It was also suggested by different authors that when SF is
used, the workability of concrete reduces so as to achieve workable as well high-strength
concrete; a small amount of superplasticizer is used in concrete, this is because the finer
particles of SF need a little extra water for the proper hydration mechanism [21,22]. A few
investigations found that the typical replacement level of SF in concrete can vary between
20 and 30% [23]. It affects the properties of concrete like porosity and CH content, which
increases both the compressive and flexural strength of concrete. Previous investigations
have indicated the typical silica fume content used in the concrete mixture is approximately
20% to 30%, by the mass of cementitious materials. In contrast, other research has found
that the dosage levels of 5–15% were used for obtaining higher strength values [24].

The mechanism of concrete considering mechanical and durability performance incor-
porating various industrial by-products was investigated by many researchers; however,
the standard method, which is being used to quantify the mechanical and durability perfor-
mance keeping SF dosage level fix and varying dosage levels of CBA at different curing
ages, was not touched by many researchers. So, the present study was carried out to
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determine both the mechanical and durability performance of concrete containing CBA
and SF as a partial replacement of sand and cement, respectively.

Hence, the main purpose of this study was to evaluate the effect of using CBA as a
substitute for sand (10–30%), combined with silica fume as a cement replacement with
various percentages (7.5–12.5%). For mechanical properties, the compressive strength and
split tensile strength properties of concrete were determined at 28- and 90-day water curing.
In the end, the test results of normal conventional concrete were compared with those of
concrete containing both CBA and silica fume. Moreover, SEM and EDS were performed to
check the characteristics of materials and chemical composition of CBA and silica used in
this study. Furthermore, the influence of CBA on durability properties, especially the effect
of corrosion and sulphur attack, was also investigated in this study.

2. Experimental Program
2.1. Materials and Mix Proportions

Ordinary Portland cement (OPC) of Type-I was used as a binder, which complies with
ASTM C150-05 (2005) and BS 12 (1991). The crushed aggregate of 20 mm maximum size
was used as a coarse aggregate in the concrete. The hill sand was used as a fine aggregate
after sieving through standard sieve No.4 (4.75 mm). The aggregates were washed before
use in the mix to separate the silt, clay, organic impurities, or any undesired sticky material
that adversely affects the quality of concrete. After washing, the wet aggregates were left at
room temperature to get the saturated surface dry condition. The coal bottom ash (CBA)
was used as a partial replacement material for sand. The samples of CBA were collected
from the Lakhra coal power plant, district Jamshoro. Coal bottom ash was sieved from
sieve No.4. The SF was obtained from a local supplier located in Karachi, Pakistan. Silica
fume is an amorphous polymorph of silicon dioxide (SiO2) [25] and is an ultrafine powder
collected as a by-product of the manufacturing of silicon and ferrosilicon alloys, having
a particle size of ≤0.15 µm. SEM images of both CBA and SF are shown in Figure 1 for
more clear understanding. The replacement of sand with coal bottom ash was carried out
at 0 to 30% by weight with an increment of 10% while the cement was replaced with silica
fume ranging from 7.5% to 12.5% with an increment of 2.5%. The chemical composition of
materials used in this research is given in Table 1. The sum of SiO2, Al2O3, and Fe2O3 can
be calculated according to ASTM C 618 [26]. A concrete mix ratio of 1:2:4 as per Table 2
with a w/c ratio of 0.5 was used throughout the study.
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Table 1. Properties of cement and coal bottom ash.

Material

Physical Properties Chemical Analysis (% Age)

Blaine
(cm2/g) Specific Gravity SiO2 CaO Al2O3 MgO K2O Fe2O3 LOI

Cement 3008 3.14 20.78 60.89 5.11 3.00 0.00 3.17 1.71
CBA - 2.30 35.37 3.307 28.18 1.956 0.976 20.64 -
Silica
Fume - 2.22 93.28 0.23 0.49 0.9 0.98 1.3 -

Table 2. Concrete mix proportion.

S.No Mix Type OPC
(kg)

Sand
(kg)

CBA
(kg)

SF
(kg)

C.A
(kg)

Water
(kg)

W/C
(kg)

01 Plain 20 40 0 0 80 10 0.5
02 10CBA 20 38 2 0 80 10 0.5
03 20CBA 20 36 4 0 80 10 0.5
04 30CBA 20 34 6 0 80 10 0.5
05 7.5SF 18.5 32 0 1.5 80 10 0.5
06 10SF 18 30 0 2 80 10 0.5
07 12.5SF 17.5 28 0 2.5 80 10 0.5
08 7.5SF10CBA 18.5 38 2 1.5 80 10 0.5
09 7.5SF20CBA 18.5 36 4 1.5 80 10 0.5
10 7.5SF30CBA 18.5 34 6 1.5 80 10 0.5
11 10SF10CBA 18 38 2 2 80 10 0.5
12 10SF20CBA 18 36 4 2 80 10 0.5
13 10SF20CBA 18 34 6 2 80 10 0.5
14 12.5SF10CBA 17.5 38 2 2.5 80 10 0.5
15 12.5SF20CBA 17.5 36 4 2.5 80 10 0.5
16 12.5SF20CBA 17.5 34 6 2.5 80 10 0.5

2.2. Specimen Preparations and Test Method

The standard size of 150 mm × 300 mm cylindrical specimens were cast for the
determination of compressive strength and splitting tensile strength of concrete. Abram’s
cone apparatus was used to measure the workability (slump test) of each concrete mix.
After 24 h, the concrete specimens were demolded and placed in clean water to cure for 28
and 90 days, respectively. The compressive strength of concrete samples was assessed by
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an automatic Tecno-Test compression testing machine, having a load capacity of 3000 KN.
The tensile strength of concrete specimens was assessed using a Universal Testing Machine
(UTM) having a load capacity of 1800 KN.

For the corrosion analysis test, cylindrical specimens of 100 × 200 mm were cast. A
bar of 12 mm diameter, and 300 mm in length was placed in the center of all specimens.
The samples were first immersed in water for 28 days after demolding. After 28 day curing
period, specimens were then immersed into the water tank containing a solution of 3%
NaCl for 14 days. After 14 days, the samples were removed from the water tank and
allowed to air dry. This wet and air-dry curing cycle continued for 90 days. Corrosion
potential was determined according to ASTM C-876 [27]. The average of three specimens
was used to calculate a specimen’s corrosion potential.

The length variations of prism specimens measuring 25 mm × 25 mm × 285 mm
were used to calculate the sulfate resistance of concrete. These specimens were prepared
as specified in ASTM C1012 [28]. The prisms were demolded, and then placed in sodium
sulfate solution for 28 days. The lengths of the samples were again recorded. Change in
length was recorded with the help of a digital meter.

3. Results and Discussions
3.1. Workability

The slump test was conducted to check the workability of each concrete mix. Figure 2
depicts the workability of the mixtures containing CBA of 10, 20, and 30%. Replaced
with fine aggregate. Figure 2 indicates that with increments in CBA percentage the slump
decreased. This trend of decreasing slump values validates the findings of Bheel et al. [25].
The higher value 110 mm was achieved in the plain mixture, while the lowest value of
85 mm was achieved in the 30CBA mixture. The addition of CBA in the concrete affects
its workability because CBA is porous and granular material having high porosity and a
rough surface. It absorbs a higher amount of water from the mixed concrete matrix. The
slump of the concrete mix continued to decrease as the amount of CBA was increased. This
trend is also suggested in the literature [29–31].
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Furthermore, Figure 3 illustrates the workability of various mixtures containing differ-
ent percentages of SF and CBA. From the figure, it can be seen that the highest workability
recorded was 114 mm, which represents plain concrete, while the smallest workability was
recorded at 34 mm when using 15% silica fume as cement replacement and 30% coal bottom
ash as fine aggregate replacement. From the results, it can be concluded that workability
decreases as the percentage of SF and CBA increases. Abidin et al. [32] also found that due
to the porous nature of CBA, the workability reduces as CBA absorbs higher amounts of
water during mixing. As validated by Keerio et al. [33], who found that as the dosage of
silica fume increased, the workability decreased, because of the porous nature of CBA and
SF. Furthermore, Figure 4 shows the workability of mixes containing silica fume as cement
replacement with 5, 10, and 15%. From the Figure 4, it can be seen that as the percentage of
SF increases, the workability decreases.
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3.2. Compressive Strength

The compressive strength of concrete containing various percentages of silica fume is
illustrated in Figure 5. The Maximum strength after 28- and 90-day curing was achieved
for the mixture containing 12.5% silica fume. An increment of 15.76% and 11.98% could
be noted after 28- and 90-day water curing, respectively. Furthermore, Figure 5 is clear
evidence that as the percentage of silica fume increases, the strength of concrete increases.
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Figure 5. Compressive strength of concrete with Silica Fume.

The pozzolanic reaction between silica fume and calcium hydroxide results in the
creation of calcium silicate hydrate. However, Almusallam et al. [34], in their study, revealed
that an increase in strength of up to 10% of silica fume was recorded. Moreover, Bhemood
and Ziari [35], in their study, found that an increment of 25% in compressive strength
was achieved at 10% silica fume dosage after 28-day water curing. Figure 6 presents the
cylindrical compressive strength of the specimens containing CBA as replacement for fine
aggregates after 28- and 90-day water curing.
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Figure 6. Compressive strength of concrete mixed with CBA.
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The maximum strength of 34.9 MPa and 38.78 MPa after 28- and 90-day water curing,
respectively, was achieved at 30% replacement of sand with CBA, while the minimum
strength of 32.1 MPa and 35.67 MPa was achieved after 28 and 90-day water curing, re-
spectively, when 10% of CBA was utilized as replacement for sand. From Figure 5, it can
be assessed that maximum compressive strength was attained when 30% of CBA was
substituted for fine aggregates. [25]. In their study, Mangi et al. [30] concluded that the
optimum strength of concrete was achieved when 30% CBA was consumed. Beyond this
percentage, the strength decreased. The major cause of this reduction in strength is the CBA
content, which generates the permeable concrete with additional holes distributed across
the surface of CBA in concrete. Moreover, this reduction is also due to the highwater absorp-
tion and porosity of CBA particles [30]. Additionally, Figure 7 represents the compressive
strength of concrete with various mixtures containing CBA and SF. It can be seen from
Figure 7 that the maximum compressive strength was achieved when the 12.5% SF was
replaced with cement, along with different CBA percentages (10–30%) replaced with fine
aggregate. The minimum strength was achieved when 7.5% and 10% SF were blended with
various CBA ratios (10–30%) and substituted as fine aggregates. The optimal compressive
strength, however, was attained by 38.45 MPa by utilizing 12.5 percent silica fume and
30 percent CBA in concrete, which is approximately 20% greater than conventional mixes
after 28-days curing. According to the current study’s findings, when the SF and CBA
were mixed together, the compressive strength enhanced. Because of the high silica content
present in SF and CBA, the compressive strength was increased. The fineness of the SF and
CBA particles could also have contributed to the higher compressive strength. Because
the fineness of SF and CBA improves the transition zone of concrete, this helps in gaining
the compressive strength. Furthermore, the strength enhancement might be due to the
additional pozzolanic reaction from tiny CBA particles, which enhances this unprecedented
rise in aggregate interfacial bonding [33,36].
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Figure 7. Compressive strength of concrete mixed CBA and SF.

3.3. Split Tensile Strength

The tensile strength of concrete containing silica fume after 28- and 90-day water
curing is illustrated in Figure 8. When 12.5% SF was substituted with cement, the maximum
strength was 4.29 Mpa and 4.66 Mpa after 28 and 90 days of water curing, respectively.
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Similarly, for the same curing periods, the minimum strength was found to be 3.63 Mpa
and 3.64 Mpa, respectively, when 7.5% SF was replaced with cement. However, a marginal
increment of almost 4% could be seen for the 12.5 SF mix when compared with 10 SF.
Roy et al. [37] and Hanumesh et al. [38], in their study, concluded that the strength of
concrete starts decreasing when the amount of SF exceeds by 10% cement replacement.
Moreover, Keereio et al. [33], in their study, mentioned a decrease in the strength of SF
beyond 10% replacement of cement. The maximum amount of SF added in the current
study was 12.5%, which was not used in the previous investigations [38–40]. Though a
very marginal increment of 3.96% after 28-day water curing could be seen from Figure 8
for 12.5 SF when compared with 10 SF. Furthermore, Figure 9 shows the tensile strength
of concrete having various percentages of CBA replaced with fine aggregate. In this case,
the maximum strength was achieved when 30% CBA was replaced with fine aggregates,
while the minimum was achieved at 10% replacement of fine aggregates after 28- and
90-day water curing. While comparing 30 CBA with plain concrete after 28 days of curing,
an increase in nearly 18 percent was found, while the same was only 2.96 percent for
10 CBA when compared to conventional concrete. Moreover, from the literature, it is
evident that the maximum strength could be achieved by replacing 30%CBA with the fine
aggregates [25,29].
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Figure 8. Tensile Strength of concrete mixed with SF.
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Figure 9. Tensile Strength of concrete mixed with CBA.



Buildings 2022, 12, 44 10 of 14

Figure 10 illustrates the split tensile strength of concrete mixed with various amounts
of silica fume (7.5–12.5%) replaced with cement and CBA (10–30%) substituted with fine
aggregates. From the figure, it could be finalized that the mixture containing 30% CBA and
12.5% SF has the maximum tensile strength. The optimum tensile strength was found to be
4.74 Mpa and 5.21 Mpa after 28- and 90-day water curing, respectively. Tensile strength was
raised by up to 35.44% and 36.85% after 28- and 90-day curing, respectively, as compared
to ordinary concrete. However, the minimum tensile strength of 3.45 Mpa and 3.79 Mpa
was found under mixture 7.5 SF10 CBA after 28- and 90-day curing. The increase in tensile
strength could be attributed to the surface area of silica fume and CBA [25,33].
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Figure 10. Tensile Strength of concrete mixed with CBA and SF.

3.4. Corrosion Analysis

It is a fact that corrosion of steel is caused by the chloride inclusion in concrete, which
seriously affects RCC structures. It was observed from this study as well as from available
research that [15,41–44] the addition of CBA and SF decreases the chloride penetration
inside the concrete mass and enhances the internal resistance of concrete. Table 3 and
Figure 11 show that as the percentage of CBA was increased, the resistance to chloride ions
was also increased. Mix M1 with 12.5 S.F and 0 CBA gives −287 mV and mix M4 with
12.5 SF30 CBA gives −211 mV. The obtained results clearly showed that silica fume SF and
coal bottom ash CBA are very effective in terms of corrosion resistance in concrete. Saadoun
and Gahtani [41] studied that blending of plain cement with 10% or 20% SF significantly in-
crease the resistance against corrosion. Berke [42] found that using silica fume significantly
increased the long term corrosion resistance. The effectiveness of SF concrete in resisting
damage caused by embedded steel corrosion was reported by Khedr and Idriss [43]. They
discovered that combining plain concrete with 10–20% silica fume significantly increased
corrosion resistance. Kou and Poon [15] investigated whether the use of bottom ash in
concrete increases the resistance to the chloride-ion penetration. Coal bottom ash gives
concrete better resistance to chloride-ion penetration, according to Singh and Siddique [44].
Halit Yazici [39] determined that by using Fly ash and silica fume in self-compacted con-
crete resistance to chloride-ion, penetration increased. Moreover, Detwiler et al. [40] used
various supplementary cementitious materials to find the influence of these materials in



Buildings 2022, 12, 44 11 of 14

enhancing the chloride resistance of cured concrete. These studies verify the results of the
current study. All these by-products show better performance as compared to the normal
concrete mix and improve the durability performance of the concrete.

Table 3. Corrosion analysis of 90-Day’s sodium chloride solution.

Sr. CBA and SF % Replacement Corrosion Potential (mV)

M 1 12.5 SF 0 CBA −287
M 2 12.5 SF 10 CBA −261
M 3 12.5 SF 20 CBA −234
M 4 12.5 SF 30 CBA −211
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3.5. Sulfate Attack

Use of silica fume and coal bottom ash in the concrete matrix gives excellent resistance
to sulfate attack. As seen in Table 4, the increasing amount of CBA enhances resistance
to sulfate attack. For the sulfate resistance test, all the specimens were immersed in a
Na2SO4 solution. The change in length of each specimen was measured with the help of a
digital meter. It can be observed that after exposure to Na2SO4 mix M1 with 12.5 SF 0 CBA
gives a 0.52% increment and mix M4 with 12.5 SF 30 CBA gives 0.32% increment. Many
researchers have described the same trend. Ghafoori and Cai [45,46] studied the effect
of bottom ash in concrete. From their investigation, it is observed that bottom ash gives
excellent resistance to sulfate attack. Mangat and Khatib [47] conducted a study that shows
the effect of silica fume on durability performance and concluded that an optimum level of
5–15% of silica fume as a substitute for cement improved concrete sulfate resistance. Cohen
and Bentur [48] studied the effects of substituting 15% silica fume with cement. Sulfate
resistance was confirmed in silica fume samples. According to Sajjad et al. [49], using CBA
in concrete minimizes the negative effects of sulphate and chloride in concrete.

Table 4. Sulfate Attack of 28-Days in sodium sulfate solution (Na2SO4).

Sr.No CBA % Replacement Initial Length (mm) Final Length (mm) % Increment

M 1 12.5 SF 0 CBA 285.2 ± 0.03 286.7 ± 0.04 0.52
M 2 12.5 SF 10 CBA 285.4 ± 0.04 286.5 ± 0.05 0.39
M 3 12.5 SF 20 CBA 285.7 ± 0.02 286.7 ± 0.04 0.35
M 4 12.5 SF 30 CBA 285.0 ± 0.05 285.9 ± 0.05 0.32
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4. Conclusions

Based on conducted study, it can be concluded that Coal Bottom Ash (CBA) can be a
suitable substitute material of fine aggregate in concrete mix combined with silica fume.
The use of CBA material in the concrete preparation is a viable invention and technology
for manufacturing green concrete with high performance in the construction area. To fully
comprehend the characteristics of CBA concrete, further long-term experimental work will
be required in the future. The effective use of a large volume of coal bottom ash as a sand
and gravel substitute will minimize the use of natural fine and coarse aggregate while also
reducing the amount of coal waste disposed of in landfills. Furthermore, it will be very
beneficial to use the industrial waste by-product from an economic and environmental
point of view.

The workability of the resulting concrete decreased with the increase in the CBA and
SF contents because the water absorption of CBA is higher than the sand. It is suggested
that, while preparing CBA concrete, rather than selecting a constant water/binder ratio a
constant slump should be considered.

CBA has the potential to be employed in the production of medium-strength concrete
as a coarse and fine aggregate alternative. A 30% CBA replacement as a fine aggregate
along with 12.5% SF as a cement replacement achieved the maximum compressive strength
38.45 Mpa, which is almost 21% greater than the conventional concrete. As a result, in
order to improve its use as a construction element, CBA concrete must be developed using
contemporary design methodologies and the right mix design to provide high strength,
durability, and serviceability.

The splitting tensile strength of all those concrete mixtures containing CBA was
improved when 12.5% SF was used as a partial replacement of cement. The maximum
tensile strength of 38.45 Mpa was achieved at 12.5SF30CBA. SF has a low carbon content
which is quite helpful to generate good quality pozzolanic reaction and functions as an
extra binder component in the concrete hardening process.

The test results indicate that with 12.5% SF and 30% CBA replacement, with cement
and sand respectively in concrete mixtures show good mechanical and durability properties.
Moreover, these mixtures have also great environmental and economic benefits.

The durability properties i.e. chloride penetration resistance and sulfate attack resis-
tance of the concrete by using SF and CBA, especially 12.5% SF replacement, is improved
when combined with 30% CBA.

The use of a high percentage of CBA with the incorporation of FA as a cementitious
material in concrete preparation is a realistic innovation and strategy for producing a green
construction industry while also assisting with waste management of combustion products
at power plants.
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