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Abstract: This paper aims to examine the nonlinear flexural behavior of continuous RC beam
specimens strengthened with fabric-reinforced cementitious matrix (FRCM) composites through
experimental testing and numerical modeling. A total of nine two-span RC beam specimens were
constructed and tested. Test parameters included the type of FRCM (carbon (C-FRCM) and polypara-
phenylene benzobisoxazole (PBO-FRCM), location of strengthening (sagging and hogging regions)
and number of FRCM layers (two and four layers). Test results indicated that sagging strengthening
resulted in a strength gain in the range of 17 to 29%, whereas hogging strengthening increased the
load capacity by 9 to 17%. The use of C-FRCM resulted in a higher strength gain than that provided
by PBO-FRCM composites. Specimens strengthened with PBO-FRCM exhibited, however, higher
ductility and deformational capacity than those of their counterparts strengthened with C-FRCM.
Doubling the number of FRCM layers resulted in no or insignificant increase in the load capacity
but reduced the beam ductility. Specimens strengthened in the sagging regions exhibited moment
redistribution ratios of 13 to 26% between the hogging and sagging regions. Insignificant moment
redistribution was recorded for the specimens strengthened in the hogging region. Three-dimensional
(3D) numerical simulation models, with and without an interfacial bond-slip law at the fabric–matrix
interface, were developed. The inclusion of the bond-slip law in the modeling had an insignificant
effect on predicted response. Although the models tended to underestimate the deflection, the
predicted load capacities were within a 12% error band. Numerical findings were in agreement with
those obtained from laboratory testing.

Keywords: FRCM; continuous beams; flexural strengthening; moment redistribution; numerical
simulation; testing

1. Introduction

The use of innovative composite-based strengthening solutions would prolong the
service life of reinforced concrete (RC) structures, reduce the operational cost, and minimize
the repair cycles. Fabric-reinforced cementitious matrix (FRCM) composites involve the
use of nonmetallic fabrics and cement-based matrices. The inclusion of steel-free fabrics
in the strengthening solution eliminates the risk of corrosion of the strengthening system,
whereas the use of a cementitious matrix improves the heat resistance of the system and
reduces the risk of debonding at the matrix–concrete substrate interface [1].

Fabric-reinforced cementitious matrix composites have the potential to improve the
flexural capacity of RC beams to a level comparable or slightly less than that offered by
epoxy-based composite systems [2–4]. Failure of the FRCM in strengthened RC beams is
mainly due to debonding at the fabric–matrix interface. Other failure modes reported in
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the literature include debonding/slippage of the fabric from the matrix, detachment of
the FRCM composite layer at the matrix–concrete substrate interface due to poor surface
preparation, and sudden detachment of the FRCM composite layer with the fracture surface
within the concrete, typically, at the level of the steel reinforcing bars [5]. The latter failure
mode is also known as concrete cover separation/cover rip-off [6,7].

The strength gain and failure mode of FRCM-strengthened beams are highly depen-
dent on mechanical properties of the fabric and matrix and the bond characteristics at the
fabric–matrix interface. In the presence of an adequate bond at the fabric–matrix interface,
the flexural capacity may be related to the ratio of the axial stiffness of the FRCM composite
reinforcement to that of the steel reinforcing bars [8–13]. Nevertheless, an inadequate
bond and adherence between the fabric and matrix may hinder any improvement in the
flexural capacity [8,14]. Although increasing the number of FRCM layers results in a
nonproportional increase in the strength gain, it reduces the beam ductility and deforma-
tional capacity [5–7,15–20]. Despite their potential to increase the flexural strength gain,
additional FRCM composite layers could change the failure mode from concrete crushing
after steel yielding (i.e., ductile mode of failure) or fabric slippage from the matrix to a
premature, sudden failure due to intermediate crack debonding or sudden detachment
from the concrete substrate [9,15,17].

Previous studies focused on examining the behavior of simply supported beams
strengthened with FRCM, although practical applications would typically involve strength-
ening of continuous RC beams. The behavior of FRCM-strengthened continuous RC beams
is different from that of simply supported beams. The load capacity of simply supported
beams is directly proportional to the moment capacity of the midspan section. Simply
supported beams fail once the midspan section reaches its moment capacity. Conversely,
the load capacity of continuous RC beams is governed by the rotational and moment
capacities of critical sections at both sagging and hogging regions [21–26]. When one of
the critical sections reaches its moment capacity in two-span RC beams, the beam can still
carry additional loads and sustain further deformations prior to complete failure. The
extent to which an additional load can be carried by a two-span RC beam depends on
the rotational capacity of the section that has yielded first and the moment capacity of the
other section. As such, data reported in previous studies on flexural behavior of simply
supported RC beams strengthened with FRCM composites in terms of the gain in load
capacity and change in ductility are not valid for the case of continuous RC beams.

To the best knowledge of the authors, only two studies published recently examined
the behavior of continuous RC beams strengthened with FRCM composites [25,26]. The
beams tested in these two studies had two spans reinforced with the same amount of
steel on both tension and compression sides and strengthened with the same type of
FRCM (C-FRCM). The loading configuration rendered a shear span-to-effective depth ratio
(a/d) of 2.5. Findings of these two studies indicated that strengthening of continuous RC
beams with FRCM resulted in a negligible improvement in the load capacity and a severe
ductility reduction. The poor performance of the FRCM strengthening was attributed in
one of the studies to the poor surface preparation and insufficient impregnation of the
carbon fibers into the matrix [25]. It was reported also that FRCM weakened the moment
redistribution capacity between the sagging and hogging regions [25,26]; therefore, it
resulted in a significant ductility reduction and an insignificant gain in the load capacity.
It is believed that the small value of a/d adopted in these two studies did not allow for
a meaningful assessment of the flexural behavior of continuous RC beams because of
the possible development of an arch action effect. Further research is needed to better
understand the behavior of continuous RC beams strengthened with FRCM composites.

This research focuses on studying the nonlinear flexural behavior of continuous RC
beams strengthened with different types of FRCM. A total of nine two-span RC beam
specimens were tested. The specimens’ geometry and steel detailing were designed in a
way to ensure that a flexural mode of failure would dominate. The loading configuration
adopted in the current study rendered an a/d ratio of 4.4 to avoid occurrence of an arch action
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effect, therefore, allowing for a proper assessment of each specimen’s flexural behavior.
Test parameters included the type of FRCM (C-FRCM and PBO-FRCM), the amount of
FRCM (two and four layers), and location of FRCM strengthening (sagging or hogging).
The experimental investigation was supplemented by numerical modeling. A comparative
analysis between predicted and measured results was conducted to examine the accuracy
of the models. Due to the lack of knowledge on the subject, results of the present study
would enrich the literature and help practitioners and researchers to better understand the
nonlinear flexural behavior of continuous RC beams strengthened with FRCM composites.

2. Research Significance

Although previous studies provided interesting findings and conclusions on the
flexural behavior of simply supported RC beams strengthened with FRCM composites,
there is a lack of knowledge on the behavior of continuous RC beams strengthened with
FRCM in either the sagging or the hogging region. Practical application would typically
involve strengthening of continuous beams rather than simply supported beams. This
research aimed to fill this gap through experimental testing and numerical modeling.
The main aim of the study was to provide experimental evidence on the interactions
between the type of FRCM composite, location of strengthening, gain in load capacity,
ductility index, and moment redistribution between the hogging and sagging regions. The
experimental investigation was supplemented by 3D numerical modeling to simulate the
nonlinear flexural behavior of the tested continuous RC beam specimens. Outcomes of this
research could contribute to an improved understanding of the nonlinear flexural behavior
of continuous RC beams strengthened with FRCM composites. A comparison between
numerical and experimental results verified the capability of the developed models to
predict the nonlinear response of the tested specimens with good accuracy. The numerical
models developed in the current study can be used in future research to study the effect
of a wider range of parameters on the nonlinear flexural response of FRCM-strengthened
continuous RC beams.

3. Experimental Program

The experimental study comprised testing of nine two-span RC beam specimens. Test
variables included the type of FRCM used in strengthening (C-FRCM and PBO-FRCM),
location of strengthening (sagging and hogging regions), and number of FRCM layers (two
and four layers). A flowchart of the activities of the experimental program is shown in
Figure 1. Flexural and shear design of the beam specimens was conducted in accordance
with ACI 318-19 [27]. The characterization of concrete, steel, and mortar properties was
conducted in accordance with the corresponding standards [28–33].
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3.1. Test Matrix

The test matrix is given in Table 1. One beam was a control specimen without strength-
ening. Four beams (group A) were strengthened in the sagging region, whereas the
remaining four beams (group B) were strengthened in the hogging region. The strength-
ening regime consisted of either two or four FRCM layers. The fabric used was either
carbon or polyparaphenylene benzobisoxazole (PBO). The specimens were designated as
X-YZ, where X refers to the strengthening location (sagging (S) or hogging (H) region), Y
refers to the type of fabric (carbon (C) or PBO (P)], and Z refers to the number of FRCM
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layers applied to the beams (2 or 4). The load capacity of continuous RC beams is governed
by the moment capacity of both sagging and hogging regions and more importantly, the
ability of the first yielded section to distribute the moment to the other section until both
sections reach their full moment capacity. Although hogging strengthening is anticipated
to be less effective than sagging strengthening, it might be easier and quicker to apply in
a practical setting because it does not require installation of the scaffolding necessary for
the application of an overhead sagging strengthening. In contrast, hogging strengthen-
ing would delay the yielding of steel in the hogging region; therefore, it would limit the
moment redistribution capacity between the hogging and sagging regions. The effects of
strengthening in either the hogging and sagging region on the load capacity and moment
redistribution index were investigated in this research. Specimens in the current study
were strengthened with the same amount of FRCM in either the sagging or hogging region
to isolate the effect of strengthening location on the nonlinear behavior of strengthened
continuous RC beams and minimize the risk of ductility reduction due to strengthening of
both regions simultaneously [26]. This study can, however, be extended in the future to
investigate the behavior of continuous beams strengthened with FRCM in both sagging
and hogging regions.

Table 1. Test matrix.

Group
Strengthening Regime

Designation
Location Fabric Type No. of FRCM Layers

Control - - - Control

A Sagging

Carbon
2 S-C2

4 S-C4

PBO
2 S-P2

4 S-P4

B Hogging

Carbon
2 H-C2

4 H-C4

PBO
2 H-P2

4 H-P4

3.2. Test Specimens

Test specimens had a width of 150 mm, depth of 250 mm, and total length of 5200 mm
(Figure 2). Each specimen comprised two equal spans, of 2400 mm each. The tension
reinforcement consisted of three 12 mm diameter steel reinforcing bars in both sagging
and hogging regions. The concrete cover to the center of the tension steel bars was 25 mm,
rendering an effective depth of d = 225 mm. The corresponding tension steel reinforcement
ratio (ρs) was 1%, which is typically used in practical settings, and also well below the
balanced reinforcement ratio (ρb = 2%) calculated in accordance with ACI 318-19 [27] based
on the cylinder compressive strength of the concrete and yield strength of the steel used in
the current study. The sagging reinforcement stopped at a distance of 150 mm from the
middle support. The hogging reinforcing bars had a total length of 1600 mm. They were
extended inside each span for a distance equal to one third of the beam span. Two 6 mm
diameter bars were used as hangers in the compression zone of both sagging and hogging
regions. The stirrups, 8 mm in diameter, were distributed at a spacing of 75 mm along the
beam length. The beams were adequately reinforced for shear, allowing the load capacity
to be attained without shear failure.
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3.3. Materials

Concrete—A readymix concrete was used in the current study. Ordinary Portland
cement was used. The concrete mix proportions by weight were as follows (cement:fine
aggregates:coarse aggregates:w/c; 1:1.94:2.69:0.43). A superplasticizer was added, at a
dosage of 4.4 kg/m3, to improve the workability of the mix. The fine aggregates com-
prised a combination of crushed sand (70%) and dune sand (30%). The coarse aggregates
were a blend of 10 mm (33%) and 20 mm (67%) crushed aggregates. Concrete cylinders
(150 mm × 300 mm) and cubes (150 mm × 150 mm × 150 mm) were sampled during cast-
ing. The cube and cylinder compressive strength tests of the concrete were conducted in
accordance with BS 12390-3 [28] and ASTM C39 [29], whereas the splitting tensile strength
test was conducted as per ASTM C496 [30]. Based on the results of 5 replicate samples, the
average cube concrete compressive strength, cylinder compressive strength, and splitting
tensile strength were 40, 29, and 2.4 MPa, respectively.

Steel—Three replicate samples were tested for each steel bar diameter as per BS
4449:2005 [31]. The 12 mm diameter steel bars that were used as the main tension steel had
average yield and ultimate strengths of 561 and 649 MPa, respectively. The yield strength
of the 6 and 8 mm diameter steel bars were 525 and 524 MPa, respectively, whereas their
respective ultimate strengths were 633 and 643 MPa, respectively.

FRCM—Carbon-FRCM (C-FRCM) and polypara-phenylene-benzo-bisthiazole-FRCM
(PBO-FRCM) systems were used to strengthen the beams. The cementitious matrix used
with each type of fabric was provided by the corresponding manufacturer. Mechanical
properties tests were conducted as per ASTM standards [32,33]. Based on the results
of three replicate specimen tests, the cube compressive strength, cylinder compressive
strength, and splitting tensile strength of the cementitious matrix used in the C-FRCM
system were on average 45, 35, and 3.4 MPa, respectively, whereas the Young’s modulus
was 28 GPa. The respective values of the matrix used in the PBO system were on average
35, 28, and 4.0 MPa, whereas the Young’s modulus was 9 GPa. The carbon fabric used in
this study consisted of unidirectional carbon fiber bundles with a center-to-center spacing
of 17 mm (Figure 3a). The PBO fabric was bidirectional with a center-to-center spacing of
10 and 17.5 mm between bundles of the warp and weft directions, respectively (Figure 3b).
Properties of the fabrics, as provided by the manufacturer [34,35], are listed in Table 2.
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Table 2. Fabric properties provided by the manufacturer [34,35].

Property Carbon PBO

Weight per unit area (g/m2) 281 88
Tensile strength (MPa) 4300 5800
Modulus of elasticity (GPa) 240 270
Elongation at break (%) 1.80 2.15
Cross sectional area (mm2/mm) 0.157 0.045 (0.012) 1

Spacing between fabric bundles (mm) 17 10 (17.5) 1

1 Values in parentheses belong to the weft direction.

3.4. FRCM Strengthening Methodology

The strengthened part of the sagging region had a length of 2100 mm, whereas
that of the hogging region had a length of 1600 mm (Figure 4). Sagging strengthening
was conducted in the laboratory with the beams upside-down. Strengthened regions
were marked on the concrete surface. A high-pressure waterjet was used to roughen
the concrete surface of the designated areas. Formwork was installed on the sides to
maintain the desired thickness of FRCM layers. The surface was then cleaned of dust
and loose particles. The area was then moistened for 24 h using wet burlaps prior to the
placement of mortar. The cementitious matrix was mixed according to the specifications
provided by the manufacturer. A 4 mm thick mortar layer was first placed on the concrete
surface. A single fabric sheet was then applied onto the matrix, then pressed gently with
gloved hands to ensure impregnation of the fabric into the mortar. A second layer of
matrix was then applied, rendering a total composite layer of approximately 8 mm. The
process was repeated to apply other successive layers of FRCM composites. Following the
application of FRCM composite layers, the strengthened regions were covered with burlaps
and polyethylene sheets for 24 h, moisture-cured using wet burlaps for 7 days, then left to
air-cure for a minimum of 28 days prior to testing. Figure 5 summarizes the strengthening
process.
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The application of FRCM in field situations would follow the same procedure adopted
in the current study. Nevertheless, in practical settings, temporary shoring is typically
applied prior to strengthening to release the applied stress in the steel reinforcement [36].
Overhead strengthening would require installation of scaffolding for the workers to prepare
the surface of concrete [36]. The mortar layers of the FRCM are non-sag; therefore, they
can be applied to an overhead surface in a way similar to that applied during conventional
repair using a trowel or a similar tool [36]. Previous research indicated that installation of
carbon fiber-reinforced polymer composite layers upward (i.e., against gravity) in overhead
applications resulted in a maximum of 2.1% delaminated area with no or insignificant
reduction in the bond and flexural strengths [37,38]. The researchers concluded that the
upward application of composites is unlikely to cause any significant loss of bond between
the composite layer and concrete substrate or the flexural capacity of the strengthened
element [37,38].

3.5. Test Set-Up and Instrumentation

The specimens were placed on three supports. The center-to-center spacing between
the supports was 2400 mm (span length). A 500 kN capacity MTS actuator was used to
apply the load at the midpoint of the beam. A steel spreader beam was used to distribute
the load on two points, one in each span. The load points were located at a distance 0.4 L
(960 mm) from the middle support, where L = beam span. The support and load steel
plates were 100 mm × 150 mm × 20 mm. A load cell was placed between the actuator and
top surface of the steel spreader beam to measure the total applied load. Another load
cell was placed between the middle support and the bottom soffit of the beam to measure
the middle support reaction. Two linear variant displacement transducers (LVDTs) were
used to measure the beam deflection at the bottom soffit below the load points. Strain
gauges (SGs), with a gauge length of 5 mm, were bonded to the tension steel bars to
measure the steel strain at locations of maximum moments in the sagging and hogging
regions. The beams were tested under a displacement-controlled loading at a rate of
1.5 mm/min following the typical procedure adopted previously in testing two-span RC
beam specimens [21–24]. A schematic showing test setup and instrumentation is given in
Figure 6.
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4. Experimental Results
4.1. Crack Pattern and Failure Mode

Schematics showing crack patterns of the tested specimens at failure are shown in
Figure 7. Photos of typical specimens strengthened in the sagging and hogging regions at
failure are shown in Figures 8 and 9, respectively. None of the tested specimens failed in
shear, as planned in the design. The control specimen exhibited yielding of the steel in both
sagging and hogging regions followed by local concrete crushing in the hogging region
at peak load. In the post-peak stage, the beam was able to sustain additional deformation
until crushing of concrete occurred in the sagging region.
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Failure of the specimens strengthened in the sagging region was initiated by the
yielding of steel in the hogging region, then in the sagging region. Ripping off of the
tension concrete cover in the sagging region (i.e., concrete cover separation) occurred at
failure. Localized concrete crushing was observed on the compression side of the hogging
and sagging regions. Specimen S-P2 exhibited localized slippage of fabric and localized
ripping off of the tension cover in the sagging region. Specimen S-P4 exhibited interfacial
debonding cracks at the fabric–matrix interface in the east sagging region.

The specimens strengthened in the hogging region with 2 layers of FRCM composites
exhibited yielding of steel in the hogging and sagging regions, followed by slippage
of fabric/interfacial debonding at the fabric–matrix interface accompanied by localized
concrete crushing in the hogging and sagging regions. Specimen H-C4 with 4 layers of
C-FRCM composites failed prematurely, shortly after steel yielding, without crushing of the
concrete due to ripping off of the tension concrete cover in the hogging region. Although
specimen H-P4 also exhibited a splitting crack parallel to the tension steel in the hogging
region, failure was due to slippage of fabric/interfacial debonding at the fabric–matrix
interface, followed by crushing of the concrete in the compression zones of the hogging
and sagging regions.

4.2. Steel Strains

Figure 10a,b show the steel strains of specimens of groups A and B, respectively. The
yield load values are given in Table 3. Yielding of steel in the control beam occurred first in
the hogging region at a load value of approximately 190 kN, followed by yielding of steel
in the sagging region at approximately 230 kN. Specimens of group A were strengthened
in the sagging region. As such, the yield load in the hogging region of specimens of
group A was almost the same as that of the control specimen. In contrast, the yield load
in the sagging region of group A increased due to strengthening. Specimens of group
B experienced yield load values in the hogging region higher than that of the control
specimen due to the hogging strengthening. Yielding of the steel in the sagging region
occurred almost at the same time or shortly after it happened in the hogging region. The
difference between the yielding loads in the hogging and sagging regions of specimens of
group B was within 10%.
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Table 3. Summary of test results.

Specimen

Loads (kN) Deflection (mm)
Strength

Gain
(%)

Ductility
Index 2

(∆f/∆y2)

Ductility
Reduction 2

(%)

At 1st
Yield
(Py1)

At 2nd
Yield
(Py2)

At
Ultimate

(Pu)

At 1st
Yield
(∆y1)

At 2nd
Yield
(∆y2)

At Peak
Load
(∆p)

At
Failure 1

(∆f)

Control 190 230 243 7.8 10.4 16.2 26.8 - 2.6 -

S-C2 190 260 312 7.5 11.9 24.0 24.0 28 2.0 23
S-C4 180 280 313 6.2 11.9 16.5 16.5 29 1.4 46
S-P2 190 260 285 7.3 11.7 26.1 28.8 17 2.5 4
S-P4 180 260 288 6.0 11.7 21.2 21.2 19 1.8 31

H-C2 230 250 284 8.4 9.5 17.3 17.3 17 1.8 31
H-C4 3 230 230 256 9.3 9.3 11.4 11.4 N/A N/A N/A
H-P2 230 255 266 9.2 11.1 25.0 27.0 9 2.4 8
H-P4 250 250 276 9.4 9.4 17.5 17.5 14 1.9 27

1 For specimens with a sudden drop in peak load, ∆f = ∆p, whereas for specimens with a plateaued or softened
response after the peak load, ∆f = maximum measured deflection, noting that corresponding loads at ∆f are
greater than 0.85 Pu. The value of ∆f of represents the deflection capacity of the specimen. 2 With respect to
results of the control specimen. 3 This specimen had an initial vertical crack in the east span close to the middle
support, and hence, it did not develop its full flexural capacity due to a premature, sudden ripping off of the
tension concrete cover.

4.3. Load-Deflection Response

Figure 11a,b show the load-deflection responses of specimens of groups A and B,
respectively. A summary of test results is given in Table 3. First yielding had almost
no effect on the slope of the load-deflection response of the tested specimens, whereas
the second yielding resulted in a significant change in the slope of the curve. Flexural
strengthening with two layers of FRCM had almost no effect on the stiffness compared
with that of the control specimen. Nevertheless, the specimens strengthened with four
layers of FRCM were slightly stiffer than the control specimen, and hence, they exhibited
slightly less deflection in the pre-yield stage.

The response of the control specimen almost plateaued after the second yielding,
whereas that of the strengthened specimens depended on the type, location, and number
of FRCM layers. Flexural FRCM strengthening delayed yielding of the tension steel in the
strengthened region, and hence, increased the beam load carrying capacity (i.e., ultimate
load). Specimen H-C4 was an exception because it did not develop its full flexural capacity
due to the presence of an initial vertical crack that developed in the east span close to the
middle support during handling, which caused a premature and sudden ripping off of
the tension concrete cover. Results for specimen H-C4 were excluded from the analysis.
Specimens S-C2, with two layers of C-FRCM in the sagging region, exhibited a gain of 28%
in strength and a reduction of 23% in its ductility index. Its counterpart specimen, S-P2
with two layers of PBO-FRCM, exhibited a strength gain of 17% without compromising the
beam ductility. Doubling the number of FRCM layers in the sagging region resulted in no or
insignificant increase in the strength gain but reduced the beam ductility index. Application
of FRCM in the hogging region had a less pronounced effect on the ultimate load and
strength gain. The ultimate loads and strength gains of the specimens strengthened in the
hogging region were on average 93% and 63% of those of their counterparts strengthened in
the sagging region, respectively. The ductility indices of the specimens strengthened in the
hogging region were insignificantly different from those of their counterparts strengthened
in the sagging region.
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Figure 11. Experimental load-deflection response: (a) Group A (sagging strengthening); (b) Group B
(hogging strengthening).

4.4. Moment Redistribution

The difference in flexural rigidity between the sagging and hogging regions in con-
tinuous beams results in a moment redistribution. Figure 12a,b show the load–moment
relationships of specimens of groups A and B, respectively, whereas the moment redistribu-
tion ratios of the tested specimens at ultimate load are summarized in Table 4. The moment
redistribution ratio, β, is calculated using Equation (1), where Mexp is the bending moment
obtained from the test and Me is the bending moment obtained from an elastic analysis.

β =
Mexp −Me

Me
× 100 (1)

The moments from the test, Mexp, were calculated based on measured the middle
support reaction and equilibrium of forces. The elastic moments, Me, were calculated based
on structural analysis, assuming a uniform stiffness along the beam spans. From Figure 12,
it can be seen that the response of the specimens strengthened in the sagging region almost
coincided with the elastic response until yielding of steel in the hogging region. Following
yielding in the hogging region, the sagging region gained additional moments due to
the presence of FRCM layers, whereas the hogging region lost moments. The sagging
moment redistribution ratios at ultimate load for specimens of group A given in Table 4
had a positive sign, confirming a gain in moment, whereas those of the hogging region
had a negative sign, indicating a moment reduction. The load–moment relationships of
specimens of group B coincided with the elastic response. This occurred because yielding of
the hogging and sagging regions happened almost simultaneously, and hence, insignificant
moment redistribution occurred between the hogging and sagging regions. Specimen
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H-C4, which had a vertical crack during handling, was an exception. At approximately
200 kN, a premature splitting crack occurred in the hogging region, causing ripping off of
the tension concrete cover. This crack was connected to the vertical crack initiated earlier
during handling. The premature cover separation in the hogging region resulted in a
decrease in the hogging moment and a corresponding increase in the sagging moment.
When yielding of steel occurred in the sagging region at about 230 kN, the sagging moment
decreased rapidly, and a corresponding rapid increase in the hogging moment took place
until the specimen failed at 256 kN.
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Figure 12. Experimental load–moment relationships: (a) Group A (sagging strengthening); (b) Group
B (hogging strengthening).

Table 4. Moment redistribution at ultimate load.

Specimen

Experimental Ultimate
Moment, Mexp

(kN-m)

Elastic Moment, Me
(kN-m)

Moment Redistribution
Ratio, β

(%)

Sagging Hogging Sagging Hogging Sagging Hogging

Control 39.7 50.7 36.4 56.1 +9.1 −9.6

S-C2 53.1 61.1 46.7 71.9 +13.7 −15.0
S-C4 57.9 53.5 46.8 72.0 +23.7 −25.7
S-P2 48.1 56.8 42.7 65.8 +12.7 −13.7
S-P4 49.5 55.8 43.2 66.4 +14.6 −16.0

H-C2 40.0 70.4 42.7 65.7 −6.3 +7.2
H-C4 39.9 58.3 38.9 59.9 +2.6 −2.7
H-P2 41.4 60.1 40.3 61.9 +2.8 −2.9
H-P4 39.1 68.5 41.7 64.1 −6.2 +6.9

5. Numerical Simulation

Numerical models were developed using ATENA 3D [39] to simulate the nonlinear
behavior of the tested specimens.

5.1. Material Constitutive Models

The built-in “CC3DNonLinCementitious2” material constitutive model was used to
simulate the concrete and cementitious mortars. This constitutive model employs the
Menétrey-Willam failure surface [40] for hardening and softening plasticity and Rank-
ine failure criterion for concrete fracture. The compression stress-strain relationship of
“CC3DNonLinCementitious2” begins by a linear relation with a slope equal to the modulus
of elasticity (Ec) until reaching a compressive stress value of f ′co = 2 ft, where ft = uniaxial
tensile strength. After that, the behavior is modeled by the compressive hardening relation
and then compressive softening as presented in Figure 13a,b, respectively. In Figure 13a,
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the compressive stress (σc) in the compressive hardening phase is a function of the plastic
strain (εp). The default value of the plastic strain at peak (εcp) is equal to 0.001. The stresses
in the post-peak stage, i.e., during compressive softening, are inversely proportional to
the displacement (wc) through the length scale (Lc). The stress reaches zero when the
displacement is equal to a critical compressive displacement of wd = 0.5 mm [41]. The
tensile stress-strain relationship begins by a linear segment with a slope equal to Ec until
the tensile stress (σt) reaches the tensile strength (ft). The stress-strain relationship in the
post-peak stage exhibits an exponential decay based on the crack opening displacement (wt)
through the length scale (Lt) as presented in Figure 13c, where Lt is assumed to be equal
to the size of the element projected into the crack direction. The fracture energy needed
to create a unit area of stress-free crack (Gf) determines the value of crack opening at the
complete release of stress (wtc). Tables 5–7 present the key properties of concrete and the
cementitious matrices used with carbon and PBO.

Buildings 2022, 12, x FOR PEER REVIEW 14 of 25 
 

uniaxial tensile strength. After that, the behavior is modeled by the compressive 
hardening relation and then compressive softening as presented in Figure 13a,b, 
respectively. In Figure 13a, the compressive stress (σc) in the compressive hardening phase 
is a function of the plastic strain (εp). The default value of the plastic strain at peak (εcp) is 
equal to 0.001. The stresses in the post-peak stage, i.e., during compressive softening, are 
inversely proportional to the displacement (wc) through the length scale (Lc). The stress 
reaches zero when the displacement is equal to a critical compressive displacement of wd 
= 0.5 mm [41]. The tensile stress-strain relationship begins by a linear segment with a slope 
equal to Ec until the tensile stress (σt) reaches the tensile strength (ft). The stress-strain 
relationship in the post-peak stage exhibits an exponential decay based on the crack 
opening displacement (wt) through the length scale (Lt) as presented in Figure 13c, where 
Lt is assumed to be equal to the size of the element projected into the crack direction. The 
fracture energy needed to create a unit area of stress-free crack (Gf) determines the value 
of crack opening at the complete release of stress (wtc). Tables 5–7 present the key 
properties of concrete and the cementitious matrices used with carbon and PBO. 

   
(a) (b) (c) 

Figure 13. Constitutive laws of “CC3DNonLinCementitious2”: (a) compressive hardening; (b) 
compressive softening; (c) tensile softening. 

Table 5. Input data for concrete properties. 

Parameter Description Value 
fcu Cube compressive strength −40.0 MPa 
f’c Cylinder compressive strength −29.0 MPa 
ft Tensile strength 2.4 MPa 
Ec Elastic modulus 2.5 × 104 MPa 
μ Poisson’s ratio 0.2 
Gf Specific fracture energy 7.0 × 10−5 MN/m 
wd Critical compressive displacement −5.0 × 10−4 m 
εcp Plastic strain at compressive strength −1.0 × 10−3 

Table 6. Input data for the cementitious matrix used with carbon. 

Parameter Description Value 
fcu Cube compressive strength −45.0 MPa 
f’c Cylinder compressive strength −35.0 MPa 
ft Tensile strength 3.4 MPa 
Ec Elastic modulus 2.8 × 104 MPa 
Μ Poisson’s ratio 0.2 
Gf Specific fracture energy 7.6 × 10−5 MN/m 
wd Critical compressive displacement −5.0 × 10−4 m 
εcp Plastic strain at compressive strength −1.1 × 10−3 

  

Figure 13. Constitutive laws of “CC3DNonLinCementitious2”: (a) compressive hardening; (b) com-
pressive softening; (c) tensile softening.

Table 5. Input data for concrete properties.

Parameter Description Value

fcu Cube compressive strength −40.0 MPa
f ′c Cylinder compressive strength −29.0 MPa
ft Tensile strength 2.4 MPa
Ec Elastic modulus 2.5 × 104 MPa
µ Poisson’s ratio 0.2
Gf Specific fracture energy 7.0 × 10−5 MN/m
wd Critical compressive displacement −5.0 × 10−4 m
εcp Plastic strain at compressive strength −1.0 × 10−3

Table 6. Input data for the cementitious matrix used with carbon.

Parameter Description Value

fcu Cube compressive strength −45.0 MPa
f ′c Cylinder compressive strength −35.0 MPa
ft Tensile strength 3.4 MPa
Ec Elastic modulus 2.8 × 104 MPa
M Poisson’s ratio 0.2
Gf Specific fracture energy 7.6 × 10−5 MN/m
wd Critical compressive displacement −5.0 × 10−4 m
εcp Plastic strain at compressive strength −1.1 × 10−3
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Table 7. Input data for the cementitious matrix used with PBO.

Parameter Description Value

fcu Cube compressive strength −35.0 MPa
f ′c Cylinder compressive strength −28.0 MPa
ft Tensile strength 4.0 MPa
Ec Elastic modulus 9.0 × 103 MPa
µ Poisson’s ratio 0.2
Gf Specific fracture energy 6.4 × 10−5 MN/m
wd Critical compressive displacement −5.0 × 10−4 m
εcp Plastic strain at compressive strength −9.2 × 10−4

The tension steel reinforcing bars (12 mm diameter) were modeled using a bilinear
stress-strain relationship with a post-yield strain hardening as presented in Figure 14a. The
Young’s modulus of steel (Es), yield strength (fy), and ultimate strength (fu) were 200 GPa,
561 MPa, and 649 MPa, respectively. The post-yield modulus (Esp) was assumed as 1%
of Es (pre-yield modulus). This provided a tensile strain at ultimate strength (εu) of 0.05.
An elastic perfectly plastic response was assigned to the steel hangers and stirrups. The
stress-strain relationship of the carbon and PBO fabrics was assumed to be linear elastic
up to failure as shown in Figure 14b, where ff = stress, εf = strain, ffu = ultimate strength,
εfu = ultimate strain, and Ef = Young’s modulus. The values of these input parameters for
the fabrics were listed earlier in Table 2. A linear-elastic behavior was assigned to the steel
plates at the support and loading points.

Buildings 2022, 12, x FOR PEER REVIEW 15 of 25 
 

Table 7. Input data for the cementitious matrix used with PBO. 

Parameter Description Value 
fcu Cube compressive strength −35.0 MPa 
f’c Cylinder compressive strength −28.0 MPa 
ft Tensile strength 4.0 MPa 
Ec Elastic modulus 9.0 × 103 MPa 
μ Poisson’s ratio 0.2 
Gf Specific fracture energy 6.4 × 10−5 MN/m 
wd Critical compressive displacement −5.0 × 10−4 m 
εcp Plastic strain at compressive strength −9.2 × 10−4 

The tension steel reinforcing bars (12 mm diameter) were modeled using a bilinear 
stress-strain relationship with a post-yield strain hardening as presented in Figure 14a. 
The Young’s modulus of steel (Es), yield strength (fy), and ultimate strength (fu) were 200 
GPa, 561 MPa, and 649 MPa, respectively. The post-yield modulus (Esp) was assumed as 
1% of Es (pre-yield modulus). This provided a tensile strain at ultimate strength (εu) of 
0.05. An elastic perfectly plastic response was assigned to the steel hangers and stirrups. 
The stress-strain relationship of the carbon and PBO fabrics was assumed to be linear 
elastic up to failure as shown in Figure 14b, where ff = stress, εf = strain, ffu = ultimate 
strength, εfu = ultimate strain, and Ef = Young’s modulus. The values of these input 
parameters for the fabrics were listed earlier in Table 2. A linear-elastic behavior was 
assigned to the steel plates at the support and loading points. 

  
(a) (b) 

Figure 14. Reinforcement stress-strain response: (a) steel; (b) carbon and PBO fabrics. 

5.2. Bond-Slip Model at Fabric–Matrix Interface 
The bond between the fabric bundles and mortar in the PBO-FRCM and C-FRCM 

composite systems was modeled using the respective bond-slip constitutive laws 
published in the literature by Zou et al. [42] and Feras et al. [43]. The perfect bond 
condition at the fabric–matrix interface was also considered as an alternative for the 
purpose of comparison. The adopted bond-slip models are presented in Figure 15. A 
perfect bond was assumed at the matrix–concrete interface. The steel reinforcing bars 
were assumed to be perfectly bonded to the concrete. 

Figure 14. Reinforcement stress-strain response: (a) steel; (b) carbon and PBO fabrics.

5.2. Bond-Slip Model at Fabric–Matrix Interface

The bond between the fabric bundles and mortar in the PBO-FRCM and C-FRCM
composite systems was modeled using the respective bond-slip constitutive laws published
in the literature by Zou et al. [42] and Feras et al. [43]. The perfect bond condition at the
fabric–matrix interface was also considered as an alternative for the purpose of comparison.
The adopted bond-slip models are presented in Figure 15. A perfect bond was assumed
at the matrix–concrete interface. The steel reinforcing bars were assumed to be perfectly
bonded to the concrete.
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Figure 15. Bond-slip models adopted at the fabric–matrix interface [42,43].

5.3. Element Types

The concrete beam, cementitious matrix, and steel plates were modeled as solid 3D
macro-elements. The steel bars and the fabric bundles were modeled as one-dimensional
discrete elements embedded in the concrete and mortar macro-elements, respectively. Only
half of the specimens were modeled, as the beams were symmetric around a vertical plane
crossing the center of the middle support. A pilot mesh sensitivity analysis indicated an
insignificant difference in the predicted results of numerical models with a mesh size of
20 and 15 mm. However, modeling half of the specimens utilizing the feature of ATENA
software [39] enabled the authors to use the smallest possible mesh size of 15 mm for the
software to operate on a high-performance computer. The maximum computational time
for a typical model was approximately 17 h.

5.4. Boundary Conditions and Loading

Support and loading plates were modeled as perfectly connected with the concrete
beam. The outer support plate was restricted from movement in the vertical direction
only, whereas the middle support plate was restricted from movement in the vertical
and horizontal directions. As half of the beam was modeled, the surface at the plane of
symmetry was restrained from movement in the direction toward the other symmetrical
part of the beam through the use of surface supports. The load was applied on the loading
plate at the prescribed vertical displacement of 0.1 mm/step. Figure 16 demonstrates the
numerical model elements and boundary conditions.
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5.5. Numerical Results and Comparative Analysis

The load-deflection responses predicted numerically are shown in Figure 17. The
deflection response and the ultimate load of the models with and without the bond-slip law
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at the fabric–matrix interface were significantly different. In some models, the inclusion
of the bond-slip law resulted in a very minor reduction in the predicted ultimate load. A
maximum strength reduction of 3% was recorded for specimen H-C2 strengthened in the
hogging region with two layers of C-FRCM due to the inclusion of the bond-slip law at
the fabric–matrix interface. In alignment with experimental observations, the first yielding
resulted in an insignificant change in the slope of the deflection response, whereas the
second yielding of steel caused a significant change in the slope of the deflection response.
The models strengthened with the PBO-FRCM system exhibited a lower load capacity and
a greater deformational capacity than those of the models with C-FRCM. This behavior can
be ascribed to the reduced Young’s modulus of the mortar used in the PBO-FRCM system
relative to that of the mortar included in the C-FRCM system.

The load-deflection responses predicted numerically are compared to those obtained
from the tests in Figure 18. A comparison between predicted and experimental results is
given in Table 8. Results for the models with bond-slip law are considered in the comparison.
Although the deflection responses predicted numerically for the control specimen, beams of
group A, and beams of group B tended to be stiffer than those obtained from experimental
testing as shown in Figure 18a,b,c, respectively, the predicted and measured load-deflection
responses exhibited a similar trend. The ratio of the predicted-to-measured deflections
at ultimate load was on average 0.77. Reinforced concrete specimens are vulnerable to
microcracks due to drying shrinkage or during handling prior to testing. This could explain
why the tested specimens tended to exhibit lower stiffness and less deflection at ultimate
load than those predicted numerically [44–47]. The predicted ultimate loads were within
a 12% error band, which verified the ability of the models to accurately predict the load
capacity of continuous RC beams strengthened with FRCM composites. Numerical results
indicate that sagging strengthening had a more pronounced effect on the load capacity
than hogging strengthening. Doubling the amount of FRCM composite layers did not
result in a proportional increase in the strength gain. These findings are in alignment with
experimental results.

Table 8. Comparison between predicted and experimental ultimate loads.

Specimen

Ultimate Load
(kN)

Deflection at Ultimate Load
(mm)

Experimental
(Pu)

Numerical 1

(PFE)
Ratio

(PFE/Pu)
Experimental

(∆p)
Numerical 1

(∆FE)
Ratio

(∆p/∆FE)

Control 243 264 1.09 16.2 18.7 1.15

S-C2 312 315 1.01 24 12.6 0.53
S-C4 313 334 1.07 16.5 10.4 0.63
S-P2 285 302 1.06 26.1 18 0.70
S-P4 288 319 1.11 21.2 16.1 0.76

H-C2 284 305 1.07 17.3 12.2 0.71
H-C4 2 256 318 N/A 11.4 9.6 N/A
H-P2 266 290 1.09 25 20.2 0.81
H-P4 276 308 1.12 17.5 15.1 0.86

Average 1.08 0.77
1 Results of the numerical models with bond-slip law at the fabric–matrix interface. 2 This specimen had an initial
vertical crack in the east span close to the middle support, and hence, it did not develop its full flexural capacity
due to a premature and sudden ripping off of the tension concrete cover. Experimental results for this specimen
were not included in the analysis.
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Figure 17. Numerical load-deflection response: (a) Group A (sagging strengthening); (b) Group B
(hogging strengthening).
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Figure 18. Numerical vs. experimental load-deflection response: (a) Control; (b) Group A (sagging
strengthening); (c) Group B (hogging strengthening).

The load versus moment relationships predicted numerically are shown in Figure 19.
The corresponding key results are reported in Table 9. The predicted response of the
models strengthened in the sagging region deviated from the elastic response at the onset
of steel yielding in the hogging region, which was verified experimentally. The moment
redistribution ratios at ultimate load of the sagging regions for these models have a positive
sign indicating a gain in moment, which is in agreement with experimental findings.
The load–moment relationship of the models strengthened in the hogging region almost
coincided with the elastic response due to yielding of steel in the sagging region shortly
after or at the same time as the yielding in the hogging region. This behavior is in alignment
with experimental results.
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Figure 19. Numerical load–moment relationships: (a) Group A (sagging strengthening); (b) Group B
(hogging strengthening).
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Table 9. Numerical moment redistribution at ultimate load.

Specimen

Numerical Ultimate
Moment, MFE

(kN-m)

Elastic Moment, Me
(kN-m)

Moment
RedistributionRatio, β

(%)

Sagging Hogging Sagging Hogging Sagging Hogging

Control 46 50 39 61 +16.0 −17.3

S-C2 61 50 47 73 +28.5 −30.9
S-C4 66 50 50 77 +32.3 −35.0
S-P2 56 51 45 69 +24.3 −26.4
S-P4 62 50 48 73 +29.5 −31.9

H-C2 45 72 46 70 −1.9 +2.0
H-C4 44 80 48 73 −7.8 +8.5
H-P2 46 63 43 67 +5.6 −6.0
H-P4 45 72 46 71 −1.3 +1.4

The crack patterns predicted numerically at ultimate load are shown in Figure 20. In
agreement with experimental findings, the specimens exhibited extensive flexural cracks
in both sagging and hogging regions in addition to some inclined shear cracks prior to
failure. The localized concrete crushing in the sagging and hogging regions was manifested
by a localized horizontal crack on the compression side under the loading plate and over
the middle support plate, respectively. Interestingly, most of the models strengthened in
the sagging region exhibited horizontal splitting cracks at the level of the tension steel
reinforcement, which is in agreement with the tension concrete cover rip-off observed
experimentally in most of the specimens strengthened in the sagging region. The agree-
ment between the crack pattern predicted numerically and those observed experimentally
verified the capability of the models to predict the nonlinear response of continuous RC
beams with good accuracy.
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6. Discussion

Studies on the nonlinear flexural behavior of continuous RC beams strengthened with
FRCM composites are scarce [25,26]. Su et al. [25] reported negligible load capacity gains
of 3% and 6% that were due to strengthening with 2 layers of C-FRCM composites at the
hogging and sagging regions, respectively. When both sagging and hogging regions were
strengthened with 2 layers of C-FRCM simultaneously, a limited load capacity gain of 9%
was recorded. In addition, the ductility of the continuous beam specimens was significantly
reduced due to C-FRCM strengthening. The ductility of one of the beams strengthened
in both sagging and hogging regions was only 20% of that of the un-strengthened control
specimen. The poor performance of the strengthened continuous RC beam specimens
was attributed to a premature peeling off of the C-FRCM composite plate caused by poor
surface preparation and insufficient impregnation of the carbon fibers into the matrix [25].
The premature detachment of the FRCM composite plate seriously compromised the
performance of the strengthened specimens. Therefore, the researchers recommended
that more tests be conducted with improved workmanship during FRCM preparation and
installation to better examine the performance of continuous RC beams strengthened with
FRCM. Feng et al. [26] indicated that strengthening of both sagging and hogging regions
with 2 layers of C-FRCM resulted in a very limited load capacity gain of 7%. Increasing the
number of C-FRCM layers to 3 layers did not result in an additional increase in the load
capacity. In fact, only a 6% gain in load capacity was recorded due to strengthening with
3 layers of C-FRCM composites. The researchers concluded that C-FRCM strengthening
weakened the deformational capacity of the beam sections, and therefore, it significantly
reduced the moment redistribution index. Although the inclusion of U-wraps slightly
improved the behavior, the gain in load capacity was still limited. Only 10% and 14%
increases in load capacity with respect to that of the control specimen were recorded,
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respectively, when 2 and 3 layers of C-FRCM composite plates were used along with U-
wraps. In terms of ductility and deformability, the use of U-wraps was detrimental because
it resulted in a brittle failure mode that compromised the beam ductility and deformational
capacity.

Despite proper FRCM preparation and installation, the performance of FRCM-
strengthened specimens tested by Feng et al. [26] was still inadequate because an in-
significant gain in load capacity was reported along with a serious reduction in beam
ductility. The significant reduction in ductility exhibited by the strengthened continuous
beam specimens may be attributed to the increased amount of strengthening installed in
both the hogging and sagging regions simultaneously. Additionally, specimens tested in
previous studies [25,26] had an a/d ratio of 2.5. Such a small value for a/d promotes an arch
action effect; therefore, tested specimens may not have adequately represented the typical
flexural behavior of continuous RC beams that might be encountered in a practical setting.
Varying the type and properties of FRCM may also affect the performance of continuous
RC beam specimens.

The continuous beam specimens tested in the present study had an a/d value of 4.4.
The value of a/d adopted in the current study was large enough to avoid the occurrence
of the arch action; therefore, it allowed for a proper evaluation of the flexural behavior
of continuous RC beams strengthened with FRCM. The specimens were strengthened in
either the sagging or hogging region in an effort to reduce the risk of reduced ductility
and isolate the effect of the strengthened locations on flexural behavior. Two different
types of FRCM were used for strengthening (C-FRCM and PBO-FRCM) to investigate
the effect of varying the type of FRCM system on the flexural performance of continuous
RC beam specimens. The test results of the present study demonstrated that properly
designed FRCM strengthening can improve the load capacity of continuous RC beams with
no or insignificant reduction in beam ductility and deflection capacity. The use of 2 layers
of C-FRCM composites in the sagging region increased the load capacity by 28% while
maintaining 77% and 90% of the original beam ductility and deflection capacity, respectively.
It was possible to achieve a 17% gain in the load capacity without any reduction in beam
ductility or deflection capacity through the use of 2 layers of PBO-FRCM composites in
the sagging region instead of C-FRCM. Increasing the number of C-FRCM layers in the
sagging region to 4 layers was detrimental to beam performance irrespective of the type of
FRCM used because it resulted in a negligible additional increase in load capacity but at
the same time reduced beam ductility and deflection capacity. Hogging strengthening with
2 layers of C-FRCM increased the load capacity by 17% while maintaining 70% and 65% of
the original beam ductility and deflection capacity, respectively. The use of 2 layers of PBO-
FRCM in the hogging region instead of C-FRCM increased the load capacity by only 9%
with no or insignificant reduction in the original beam ductility and deflection capacity. The
use of 4 layers of PBO-FRCM composites in the hogging region increased the load capacity
by 14% while maintaining 73% and 65% of the original beam ductility and deflection
capacity, respectively. Specimens strengthened in the sagging regions experienced an
appreciable moment redistribution ratio of up to 26% because yielding of steel occurred
first in the hogging region, which had adequate rotational capacity to effectively transfer
the moments to the sagging region until both sections reached their ultimate moment
capacity. Conversely, specimens strengthened in the hogging region exhibited insignificant
moment redistribution between the hogging and sagging regions because both sections
experienced yielding of steel almost simultaneously.

Despite the use of the smallest possible mesh size of 15 mm, the numerical models
developed in the current study tended to underestimate the deflection of the tested beams.
This behavior has also been reported in previous studies [44–47] and is attributed to
the vulnerability of the specimens to microcracking due to drying shrinkage or during
handling prior to testing, which would result in a reduction in the actual beam stiffness and
an increase in the beam deflection relative to those predicted numerically. The predicted
load capacities, numerical findings, profiles of the load-deflection response, load-moment
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relationship, and crack pattern were, however, in good agreement with those obtained
from the tests.

7. Implications and Limitations

Although practical application would involve strengthening of continuous RC beams,
most of previous studies on FRCM flexural strengthening focused on studying the perfor-
mance of simply supported RC beams strengthened with FRCM composites. The present
study provided insight into the subject of strengthening indeterminate RC structures with
FRCM composites. The outcomes of this study will contribute to an improved understand-
ing of the nonlinear flexural behavior of undamaged continuous RC beams strengthened
with two different types of FRCM composites. The strengthening of undamaged continu-
ous RC beams is frequently required to accommodate an increase in the applied live load
due to a change in a building function or an increase in traffic load in the case of bridge
girders. The results of the present investigation were limited to undamaged beams having
dimensions, reinforcement details, material properties, and strengthening regimes specified
in the paper. The numerical models developed in the current study are considered to be
valuable and cost-effective techniques to predict the nonlinear response of continuous RC
beams strengthened with FRCM. Although the numerical findings and predicted load
capacities were in good agreement with the corresponding experimental results, the models
tended to underestimate the deflection of the tested specimens. Future research should
focus on investigating the behavior of pre-damaged continuous RC beams strengthened
with FRCM composites. The generation of new experimental data in future research would
help to further validate the numerical models, thus allowing for investigating the effect of a
wider range of parameters on the nonlinear response of continuous RC beams strengthened
with FRCM composites.

8. Conclusions

The behavior of two-span RC beam specimens strengthened with FRCM composites
in either the sagging or hogging region was examined numerically and experimentally.
The effectiveness of FRCM composites in upgrading the response of continuous RC beams
was dependent on the location of strengthening and the properties/amount of the FRCM
composites used. The main conclusions of this work are summarized below.

• Sagging strengthening with 2 layers of C-FRCM increased the load capacity by 28%
while maintaining 77% and 90% of the original beam ductility and deflection capacity,
respectively. The use of 2 layers of PBO-FRCM in the sagging region instead of C-
FRCM increased the load capacity by 17% without compromising the original beam
ductility and deflection capacity.

• Hogging strengthening with 2 layers of C-FRCM resulted in 17% increase in load
capacity while maintaining 70% and 65% of the original beam ductility and deflection
capacity, respectively. The use of 2 layers of PBO-FRCM in the hogging region instead
of C-FRCM increased the load capacity by only 9% with no or insignificant reduction
in the original beam ductility and deflection capacity.

• The use of 4 FRCM composite layers instead of 2 layers resulted in no or negligible ad-
ditional increase in the load capacity but reduced the ductility and deflection capacity
of the strengthened specimens.

• Specimens strengthened in the sagging regions exhibited up to 26% moment redistri-
bution between the hogging and sagging regions. In contrast, insignificant moment
redistribution was recorded for the specimens strengthened in the hogging region.

• The 3D numerical simulation models developed in the current study were capable
of predicting the nonlinear response of the tested specimens. The inclusion of an
interfacial bond-slip law at the fabric–matrix interface had an insignificant effect on
the predicted response. Numerical findings were in agreement with those obtained
from laboratory testing.
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• The numerical models accurately predicted the load capacity of the tested specimens
but tended to underestimate the deflection. The ratio of the predicted-to-measured
load capacity was in the range of 1.01 to 1.12 with an average of 1.08, whereas the ratio
of the predicted-to-measured deflection at ultimate load was on average 0.77.
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