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Abstract: The performance of various multilayer neural network algorithms to predict the energy
consumption of an absorption chiller in an air conditioning system under the same conditions was
compared and evaluated in this study. Each prediction model was created using 12 representative
multilayer shallow neural network algorithms. As training data, about a month of actual operation
data during the heating period was used, and the predictive performance of 12 algorithms according
to the training size was evaluated. The prediction results indicate that the error rates using the
measured values are 0.09% minimum, 5.76% maximum, and 1.94 standard deviation (SD) for the
Levenberg–Marquardt backpropagation model and 0.41% minimum, 5.05% maximum, and 1.68 SD
for the Bayesian regularization backpropagation model. The conjugate gradient with Polak–Ribiére
updates backpropagation model yielded lower values than the other two models, with 0.31% mini-
mum, 5.73% maximum, and 1.76 SD. Based on the results for the predictive performance evaluation
index, CvRMSE, all other models (conjugate gradient with Fletcher–Reeves updates backpropaga-
tion, one-step secant backpropagation, gradient descent with momentum and adaptive learning
rate backpropagation, gradient descent with momentum backpropagation) except for the gradient
descent backpropagation model yielded results that satisfy ASHRAE (American Society of Heating,
Refrigerating and Air-Conditioning Engineers) Guideline 14. The results of this study confirm that the
prediction performance may differ for each multilayer neural network training algorithm. Therefore,
selecting the appropriate model to fit the characteristics of a specific project is essential.

Keywords: multilayer shallow neural networks; energy consumption; predictive performance

1. Introduction

Buildings consume most of their energy during the operating phase of their entire
service life. Specifically, about 60% of energy is used for air conditioning to provide a
comfortable living and working environment [1–3]. In order to reduce energy consumption
in buildings, efficient energy use and management should be implemented for the oper-
ational phase. To meet this need, countless studies have been undertaken that focus on
the development of high-efficiency facilities, control solutions, and energy management
systems. However, in order to optimize energy performance from the design stage to the
operation stage, the accurate prediction of energy consumption and the demands of the
building must be addressed first.

Various studies of accurate energy consumption and demand prediction have em-
ployed neural network techniques based on machine learning. For example, Cheng et al.
used an artificial neural network (ANN) model to investigate building envelope perfor-
mance, parameters, heating degree day, and cooling degree day as input variables and
were able to increase the prediction accuracy by more than 96% compared to the existing
method [4].
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Peng et al. proposed an ANN model that predicts the refrigeration load by combining
the box model and Jenkins model and showed performance of less than 2.1% mean absolute
percentage error [5]. Roldan et al. proposed an ANN model for predicting the time-
temperature curve using short-term building energy consumption, usage temperature, and
type of building as input variables. They obtained high prediction accuracy after testing in
real buildings for one year [6].

Turhan et al. compared the results of predicting the thermal load according to the
building envelope conditions using ANN with those obtained from the building energy
simulation tool. They observed a high similarity between ANN prediction techniques
and the results of building energy simulation tools and confirmed an average absolute
percentage of 5.06% and a prediction success rate of 0.977 [7]. Ferlito et al. developed an
ANN model that uses monthly building electrical energy consumption data and showed
a prediction accuracy of 15.7% to 17.97% root mean square error (RMSE) [8]. Li et al.
proposed an energy consumption prediction technique that simplifies a complex building
into several blocks in the initial design stage based on an ANN algorithm. The prediction
result of cooling and heating energy consumption showed a relative deviation within
±10%, and the total energy consumption showed a predictive performance within 10% of
the relative deviation [9].

Le Cam et al. used a closed-loop nonlinear autoregressive neural network training
algorithm to predict the energy consumption of the air supply fan in an air-handling unit
(AHU) [10]. Their results showed a predictive performance of 5.5% RMSE and 17.6%
coefficient of variation of the RMSE (CvRMSE) [10]. Ahmed et al. predicted the power
load of a single building using ANN and random forest (RF) models and compared and
analyzed each predictive performance. Their proposed ANN model yielded an average
CvRMSE of 4.91%, and the RF model showed an average CvRMSE of 6.10% by adjusting
the depth of the tree [11].

Ding et al. investigated prediction accuracy by combining eight input variables using
an ANN model and a support vector machine (SVM) [12]. They improved the prediction
accuracy by optimizing the combination of variables using K-means, and among the
variables, historical cooling capacity data showed the highest correlation with prediction
accuracy [12].

Koschwitz et al. predicted data-driven thermal loads using NARX RNNs (nonlinear
autoregressive exogenous recurrent neural networks) of different depths and an ε-SVM
regression model. Predicting the monthly load in non-residential regions in Germany
found that the NARX RNNs showed higher accuracy levels than the ε-SVM regression
model [13]. Niu et al. evaluated the energy consumption prediction performance of the
AHU in a Bayesian network training model and ARX (autoregressive with external) model.
All the models used in their study satisfied ASHRAE Guideline 14 and, among them,
the Bayesian network training algorithm exhibited the best prediction performance [14].
Chen et al. improved the accuracy of the prediction model by adopting the concept of
clustering to preprocess data when predicting the energy consumption of the chiller system.
Important variables for the cluster chiller mode were successfully identified using data
mining, K-mean clustering, and gap statistics, and the predictive accuracy and reliability
of the energy baseline of the model were effectively improved when key variables were
applied [15]. Panahizadeh et al. predicted the performance and coefficient of thermal energy
consumption of absorption coolers using three widely used machine learning methods:
artificial neural networks, support vector machines, and genetic programming. When
the newly estimated formulas were used for the performance coefficients, and thermal
energy consumption of each cooler based on genetic programming, the accuracy of the
determinants were 0.97093 and 0.95768 [16]. Charron et al. proposed machine learning
and deep learning models to predict the power consumption of a water-cooled chiller. The
prediction model consisted of a thermodynamic model and multilayer perceptron (MLP),
and the time series prediction model adopted MLP, one-dimensional convolutional neural
network (1D-CNN), and long short-term memory (LSTM). The best time series prediction
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performance was LSTM, which showed the results of R2 of 0.994, MAE of 0.233, and RMSE
of 1.415. Models selected for both MLP and LSTM showed predictive results approximate
to actual data [17].

When predicting building energy consumption and cooling loads using machine
learning methods, including ANN models, the prediction accuracy must be above a certain
level. In order to derive better prediction results, researchers also evaluate the performance
of various prediction models under the same conditions.

This research team has been continuously conducting research into various prediction
methods related to the operation of air conditioning equipment through machine learning.
For example, ref. [18] investigated a study of heat pump energy consumption predictions
using an ANN model and found that the CvRMSE of 19.49% in the training period and
22.83% in the testing period satisfy the ASHRAE standard. In another study of cooling
load predictions using MATLAB’s NARX (with eXogenous) feedforward neural networks
model, ref. [19] confirmed the prediction performance with a CvRMSE of 7% or less. In
yet another study, the energy consumption of the air handling unit and the absorption
heat pump during the cooling period was predicted using the ANN model. Both the air
handling unit and the absorption heat pump prediction models obtained results satisfying
ASHRAE guidelines. Through these research results, it was reaffirmed that the artificial
neural network-based prediction model could obtain relatively high accuracy prediction
results with only a sufficient amount of data [20].

Based on this earlier work, the energy consumption and load predictions based on
ANNs were conducted to develop an energy management technique for centralized air
conditioning systems. The ANN model, which is used in various ways in the field of
prediction, has numerous detailed algorithms.

Previous studies used a single machine learning algorithm, but this study evaluated the
predictive performance of each algorithm using various algorithms classified as multilayer
shallow neural networks among deep learning neural network techniques to predict the
energy consumption of absorption heat pumps. The predictive performance of 12 multilayer
shallow neural network training algorithms was evaluated using energy consumption data
of the heating period absorption heat pump in the actual building. Previous studies have
shown that machine learning techniques generally have higher predictive performance
as large amounts of data are used for training. Among them, shallow natural network
models have a simple structure, which reduces the likelihood of overfitting, but instead, it
is common to get good results when using a sufficient amount of data [21]. In this study,
we examined whether prediction results that meet the criteria of ASHRAE guideline 14 can
be obtained when training shallow natural network models with a small amount of data
(251 datasets).

Section 2 describes how to write multilayer shallow neural network-based energy
consumption prediction models, how to collect data for use in research, and how to use
evaluation criteria for prediction results. Section 3 summarizes the prediction results of
12 natural network training algorithms and evaluates the prediction performance, and
Section 4 summarizes the research results.

2. Methodology

Figure 1 shows the process of predicting the energy consumption of the absorption
heat pump. Data necessary for prediction is collected from the target building and changed
to an appropriate form for use as input data. In this process, all data is preprocessed. In
this way, input data are prepared to predict energy consumption using natural network
algorithms. Finally, the predictive performance of each algorithm is evaluated through the
prediction results.
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Figure 1. Schematic diagram of the process of predicting energy consumption of the absorption
heat pump.

2.1. Collection of Absorption Heat Pump Operational Data

The dataset used for training the neural network training algorithms is composed of
absorption heat pump data that were measured during the heating period in an actual
office building which is located in Seoul, Korea. The building is an office facility with a
total floor area of 41,005.32 m2 and a total of 18 floors. An absorption heat pump with a
capacity of 600 USRT is the heat source facility. From 10 December 2020 to 12 January 2021,
weather data and absorption heat pump operation data were collected to predict the energy
consumption of one absorbent heat pump operated during the heating period. All data
were collected on an hourly basis, and for energy consumption, cumulative usage was
used for an hour. The entire dataset was preprocessed before the prediction was performed.
First, the entire dataset was normalized to a value in the range of 0 to 1, and missing values
in which the air conditioning facility was not operated were removed. Energy consumption
prediction was performed using 251 data points that were preprocessed in this way.

2.2. Neural Network Algorithms

The deep learning neural network training algorithms included in the Neural Net-
works Toolbox of MATLAB (R2021a) were adopted to predict energy consumption, and
multilayer shallow neural network training algorithms were used as training algorithms.
Multilayer neural network training data exhibit excellent performance when optimized
using the gradient of the neural network’s performance with regard to neural network
weights and the Jacobian matrix of the neural network error. The gradient and Jacobian
matrix are calculated using a backpropagation algorithm. The backpropagation algorithm
performs calculations by going backward through the neural network. The following
twelve neural network training algorithms were compared to predict energy consumption:
Levenberg–Marquardt (LM), Bayesian regularization (BR), Broyden–Fletcher–Goldfarb–
Shanno (BFGS) quasi-Newton (BFG), resilient propagation (RP), scaled conjugate gradient
(SCG), conjugate gradient backpropagation with Powell–Beale restarts (CGB), conjugate
gradient backpropagation with Fletcher-Reeves updates (CGF), conjugate gradient back-
propagation with Polak-Ribiére updates (CGP), one-step secant (OSS), gradient descent
with momentum and adaptive learning rate (GDX), gradient descent with momentum
(GDM), and gradient descent (GD) models.

Figure 2 is a schematic diagram of the neural network used in this study, which is a
two-layer feedforward neural network with a sigmoid transfer function in the hidden layer
and a linear transfer function in the output layer. Neural network training algorithms are
typically composed of an input layer, hidden layer, and output layer. This neural network
also stores previous values of x(t) and y(t) sequences using tapped delay lines. Since y(t) is
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a function of y(t−1), y(t−2), . . . , y(t−d), the output y(t) of the neural network is fed back
to the neural network input through delay.
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Figure 2. Schematic of the multilayer shallow neural network training algorithms for predicting
energy consumption.

For neural network learning in the input layer, outside conditions, seasonality data,
historical energy consumption data, and energy consumption prediction results fed back
from output layers are used as the input values. The hidden layer receives input signals
every hour from the input layer and performs neural network calculations through internal
neurons. The hidden layers were set to 3 and the number of neurons to 20. The output
layer outputs the energy consumption (kWh) prediction result for an hour after the input
signal point based on the hidden layer calculation result.

2.3. Prediction Criteria for Neural Network Training Algorithms

The input values are the dry bulb temperature of the outside air, relative humidity,
cold water supply temperature, and water supply flow rate. The year and date were used
as seasonality data.

The structural parameter is the state of the hidden layer and neuron in which actual
learning takes place, and the learning capacity is determined according to the number.
Epoch, a learning parameter that is used as a unit of learning, is defined as one complete
pass through the entire data set. Table 1 lists the conditions.

Table 1. Structural and learning parameters for multilayer shallow neural network training algorithms.

Division Number of Conditions

hidden layers 3

neurons 20

epochs 100

In order to obtain more accurate prediction results, missing values were removed due
to the non-operation hours, and the dataset was normalized. A total of 250 data points
from 10 December 2020 to 12 January 2021 were used for the analysis. All training data
were normalized to values between 0 and 1.

The training data size was changed from 50% to 90%, and thus, energy consumption
could be predicted.

2.4. Performance Evaluation Indicators

The predictive performance of each model was evaluated according to ASHRAE Mea-
surement and Verification (M&V) guidelines, the U.S. Department of Energy Federal Energy
Management Program (FEMP) guidelines, and the International Performance Measurement
and Verification Protocol (IPMVP). Table 2 shows that ASHRAE, FEMP, and IPMVP present
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an M&V protocol for building energy management and serve to establish the Building
Energy Model’s predictive accuracy criteria for predicting building energy performance.
In this study, the CvRMSE and MBE were employed as performance indicators. CvRMSE
refers to the degree of variance of the estimates, and MBE is an error analysis indicator that
tracks how close estimates form a cluster to the target. Equations (1) and (2) present the
formulas for obtaining the CvRMSE and MBE.

CvRMSE = 100 × [∑(yi − ŷi)
2/(n − p)]

1/2
/y, (1)

MBE =
n
Σ

(yi − ŷi)/[(n − p)× y]× 100, (2)

where n is the number of data points, p is the number of parameters, yi is the utility data
used for calibration, ŷi is the simulation predicted data, and y is the arithmetic mean of the
sample of n observations.

Table 2. Acceptable calibration tolerances in building energy performance prediction.

Calibration Type Index ASHRAE
Guideline 14 [22] FEMP [23] IPMVP [24]

Monthly
MBE ±5% ±5% ±20%

CvRMSE 15% 15% -

Hourly
MBE ±10% ±10% ±5%

CvRMSE 30% 30% 20%

3. Results
3.1. Energy Consumption Prediction Results

Figure 3 summarizes the prediction results according to the sizes of training and
test data. In the training period, most models showed satisfactory error rates under all
conditions. However, GDM and GD models showed slightly higher error rates of 14.75%
and 11.01%, respectively, when the training sizes were 50%, 17.33%, and 70%, GD 12.30%,
and 80%, respectively.
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In the testing period, the LM and BR models showed an error rate of less than 5%
under all conditions, while other algorithms showed an increase in error rate compared to
the training period depending on the conditions. In particular, RP, SCG, CGF, OSS, GDX,
GDM, and GD models showed error rates of 10% or more.

3.2. Predictive Accuracy

Figure 4 summarizes the CvRMSE and MBE prediction results according to the size of
training and test data. The CvRMSE of most models satisfies ASHRAE guideline 14 with
less than 30% in the training period and testing period. However, GDM and GD did not
meet the criteria by more than 30% under all conditions. In addition, CGF (testing period
50%), OSS (training period 70%/testing period 50%), and GDX(training period 50%, 60%,
70%/testing period 50%) did not meet the criteria under some conditions. The MBE of all
models was 5% or less, showing that ASHRAE guideline 14 was satisfied.
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4. Discussion

To determine how each algorithm changes its prediction performance with the change
in training test data size, Figure 5a,b show the distribution of the error rate and CvRMSE,
respectively, for the energy consumption prediction results under all conditions for each
algorithm. Table 3 provides a summary of the minimum, maximum, and standard de-
viations (SDs) of the error rate and CvRMSE for each algorithm. Based on the overall
energy consumption predictions, LM, BR, and CGP showed the best results in terms of
the distribution of the error rates. LM showed an SD of 1.94 with a minimum error rate of
0.09% and a maximum error rate of 5.76 percent. BR showed a minimum error rate of 0.41%
and a maximum of 5.05%, with an SD of 1.68, and CGP showed a minimum error rate of
0.13% and a maximum of 5.73%, with an SD of 1.76. The other algorithms showed high
error rates of 9.78~41.77%, among which OSS had the worst results with 8.16 SD, followed
by GDM with 41.77 SD and GD with 27.52 SD.
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Table 3. Minimum, maximum, and standard deviation (SD) of error rate and CvRMSE by multilayer
shallow neural network training algorithms.

Error Rate CvRMSE

Min (%) Max (%) SD Min (%) Max (%) SD

LM 0.09 5.76 1.94 22.04 28.88 2.17

BR 0.41 5.05 1.68 21.98 30.00 2.33

BFG 0.95 9.78 2.82 23.13 27.92 1.75

RP 0.59 13.59 4.91 24.31 28.12 1.27

SCG 0.04 15.16 5.07 24.29 29.30 1.45

CGB 0.07 10.14 2.99 24.33 29.49 1.49

CGF 0.58 15.58 4.81 21.08 30.69 3.13

CGP 0.13 5.73 1.76 24.89 29.97 1.48

OSS 0.03 26.07 8.16 24.76 38.05 4.13

GDX 0.92 17.40 5.75 26.16 37.11 3.66

GDM 0.30 41.77 14.82 32.25 53.20 7.11

GD 3.89 27.52 6.98 33.20 58.85 9.08

For CGF, OSS, GDX, GDM, and GD, the CvRMSE SDs of the prediction results are
3.13~9.08, confirming that the prediction performance of these algorithms was poor. The
other algorithms had SDs of 1.27~2.33 and exhibited predictive performances that satisfy
ASHRAE Guideline 14. When the error rate and CvRMSE results are combined, LM and
BR exhibit the best prediction performance. These two models are known to be suitable for
nonlinear regression problems [25,26], which is confirmed in this study as well.

Models such as GDX, GDM, and GD, which are gradient-based methods, are algo-
rithms that find the minimum value of a function through the gradient of the loss function.
One of the disadvantages of this gradient descent method is the local minima problem.
This problem occurs when it is difficult to find a unique minimum value because the graph
of the loss function becomes complex, which is known to be mainly due to the learning
rate. Among the gradient-based algorithms, the significantly poor prediction performance
of GDM and GD is considered to have caused this problem.

As such, in this study, the multilayer neural network algorithms of the same series
show different prediction performance even under the same conditions. Therefore, when
applying a multilayer neural network algorithm to a project, an appropriate algorithm that
can obtain the best results must be selected by considering the type and amount of data to
be predicted.
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5. Conclusions

In this study, the ability of twelve multilayer neural network algorithms under the
same conditions were compared and evaluated to predict the energy consumption of an
absorption heat pump in an air conditioning system. A predictive model using twelve
shallow multilayer neural network algorithms was developed. The monthly heating opera-
tion data of the absorbent heat pump were compared and evaluated with the prediction
performance of each algorithm according to data training size.

The energy consumption was compared and evaluated with the prediction perfor-
mance of various shallow multilayer neural network training algorithms based on backprop-
agation algorithms using measured data and confirmed that the prediction performance
differs for each model. LM and BR, which are generally known to be suitable for nonlin-
ear regression predictions, exhibited the best predictive performance among the models
studied because they satisfy ASHRAE Guideline 14 and also had low error percentages
in the results. On the other hand, the error in the prediction results for GDM and GD, the
gradient-based methods, was large, and their prediction performance was poor enough
not to satisfy ASHRAE Guideline 14 under all conditions.

Based on these results, the prediction performance may differ for each model, even for
multilayer neural network training algorithms that are based on the same backpropagation
algorithms. Applying the prediction algorithm to the field may change the amount of
collected data and the prediction period, so stable results must be obtained even if the ratio
of training and testing period changes. In the field of HVAC facilities, energy consumption,
heating and cooling loads, etc., which are major predictions, are in the form of time series,
so it would be advantageous to apply nonlinear regression prediction models such as
Levenberg–Marquard backpropagation (LM) and Bayesian regulation backpropagation
(BR). In addition, despite the use of a small amount of data of (251 data points) for train-
ing, it was confirmed that predictive performance that satisfies the criteria of ASHRAE
guideline 14 could be obtained by selecting an appropriate algorithm. Therefore, in order
to carry out the project and obtain the best results, an appropriate model must be selected
in consideration of the characteristics of the project.

Machine learning algorithms work well for data used to train models, but overfitting
may occur that is not properly generalized in new data. In this study, the amount of data
was limited, so it was not possible to test whether the model was overfit. In future studies,
more dates will be secured to conduct research on the development of better performance
prediction models.
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