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Abstract: The light weight and high strength-to-mass ratio of thin-walled boxed sections have incited
interest in their widespread use in the construction of domes. However, the installation of these
sections in forming the dome geometry has induced initial twists and curving features, to which their
mechanical response has rarely been explored. Therefore, the structural performance of a structure
with thin-walled twisted box sections is numerically studied in this paper, employing ANSYS, the
verification of which is carried out through a comparison with experimental results. Additional
components examined include the longitudinal stiffening rib, diaphragm, and web. The effects of
variations in the thicknesses of these member plates on the mechanical behaviors are investigated.
In general, the ultimate capacity of the structure is improved by increasing the thickness of the
longitudinal stiffening rib, diaphragm, and web, but the strengthening effect of the stiffener is limited
by a certain thickness enhancement. The common failure mode of the initial model is found to be an
overall elastic-plastic buckling. A reduction in the thickness of the stiffener or web creates a curving
deformation zone in the lower arch at the ultimate capacity, whereas the diaphragm thickness has
little effect on the failure mode of the model.

Keywords: twist-curved; thin-walled; dome; finite element; ultimate capacity

1. Introduction

With recent developments, thin-walled box-section structures have been extensively
used in engineering components thanks to their impressive performance, such as a high
stiffness-to-weight ratio and high torsional and bending rigidities [1–3]. For example,
box-section girders [4–6] and columns [7] are familiar applications of civil engineering
structures. Because the three-dimensional behavior of the thin-walled box-section structure
contains torsion, distortion, and bending in longitudinal and transverse directions, many
research works have focused on the practical optimal design and analysis of thin-walled
box-section structures [8–10]. Square sections with various internal topologies are com-
monly used in practice: a solid section, a foam-filled tube with monolithic walls, a hollow
tube with walls made from sandwich plates, and a hollow tube with walls reinforced by
internal stiffeners [11]. Depending on the design and requirements, thin-walled box-section
structures can be constructed in different box girder configurations, including straight
box-section structures [12] and curved box-section structures [13,14]. Due to their high
torsional rigidity, they are well suited for use in curved-shaped box-section structures.

If they have a light curvature, curved structures can be treated as straight ones [15].
However, this method, adopted to simplify the analysis and design procedure, has limita-
tions. Because high-capacity computational systems are available, it is possible to make
higher-level investigations. The influence of shear deformability on the mechanics of the
thin-walled composite curved beams with open and closed cross-sections was illustrated
by Piovan and Cortinez [16]. Peres et al. [17] presented the first-order GBT formulation for
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naturally curved thin-walled members with a constant ending curvature. It was noted that
due to the curved cross-section, shell-like buckling is a potential mode of failure. Jobbágy
and Ádány [18] extended their examination of buckling behavior and concluded that such
shell-like behavior is critical only in the case of unusual cross-section geometries. Peres
et al. [19] proposed a mixed finite element method based on GBT to analyze the first-order
behavior of naturally curved beams with the circular axis (without pre-twist) with de-
formable thin-walled cross-sections. Kim et al. [20,21] proposed an improved displacement
field formulation and the stiffness matrix for the spatially coupled stability analysis of
a thin-walled curved beam with non-symmetric cross-section subjected to uniform com-
pression. Its performance has been analyzed with the ANSYS shell elements. Razaqpur
and Li [22] proposed a new curved thin-walled multicell box girder element, extending
the computational ability to handle extension, flexure, torsion, torsional warping, distor-
tion, distortional warping, and shear lag effects based on both Vlasov’s thin-walled beam
theory and the finite element technique. Song et al. [23] presented a novel finite element
analysis of curved concrete box girders. It has been shown that shell and beam elements
can be efficiently used to reduce the number of elements, while maintaining the accuracy
of the model.

Even though much research has been carried out in the restricted area of the analytic
simplification of thin-walled box-section structures, predicting the behavior of the com-
ponents imposes a certain degree of challenge due to the extra torsional effects resulting
from their geometric configuration. In some early studies of beam element behaviors,
Dabrowski [13] proposed the use of the distortion angle to indicate the magnitude of
the cross-sectional distortion. Bazant and Elnimeir [24] introduced the skew-ended finite
element, permitting the implementation of the theory of non-uniform torsion. Yu et al. [25]
presented an asymptotically correct theory for initially twisted thin-walled composite
beams. They implemented a variational asymptotic method, applicable to all types of thin-
walled beams, including strips and closed or open sections. Their method comes without
the limitation of using a separate theory for different beam types, as required by traditional
techniques. Zhou et al. [26] investigated the effects of the pre-twisted angle ratio on the
structural behavior of steel box-section columns. Based on the concept of effective torsional
stiffness, Shen et al. [27] proposed a new method for calculating the post-cracking twist
angles in girders to predict maximum deflections in curved concrete. Arici and Granata [28]
analyzed the straight and curved thin-walled structures on elastic foundations using the
Hamiltonian structural analysis method and proposed a unified comprehensive theory for
closed and open thin-walled cross-sections, as well as compact sections, by considering
non-uniform torsion and distortion plus torsional moment deformation effects.

Due to valuable features such as the light weight and high strength of thin-walled
box-section structures, they have been broadly employed in the construction of domes.
The majority of classical analytical solutions are available to analyze the structural bearing
capacity and deformation modes of a hollow tube with walls. However, contemporary box
structures may differ in their shape and materials. Considering cross-sectional designs, the
geometric and material parameters of thin-walled box-section structures require further
study. Taking into account geometrical non-linearity, classical solutions lose their efficacy in
the prediction of the mechanical properties of elastomers. Most of these problems are solved
using semi-empirical and semi-theoretical formulas or finite element methods. Although
scientific efforts have been focused on specific irregular thin-walled structures, yielding
various efficient calculation methods, they are not applicable to arbitrary structures or
especially to those of complex types.

In forming the dome’s outer geometry, some degrees of twist and curviness have been
introduced to thin-walled box-section members. The analysis of thin-walled box-section
members with a composition of twists and bends, however, remains relatively rare. Due
to the influences of the spatial distortion of the components, coupled with the complex
stress formation in the existence of tension, bending, and shearing, it can be too subtle for
ordinary beam elements to stimulate and capture the effects accurately. Moreover, the flow
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of force in the member at the joint zone is inherently complicated, whereas the influence of
stiffeners may also be considered as an additional factor. To address the above-mentioned
limitations of existing beam elements, the application of shell elements is proposed in the
current study. The structural spatial deformation and complex stresses in the presence
of tension, bending, and shear, coupled with the influences of the addition of a stiffener,
diaphragm, and web in the structural configuration, introduce further challenges to the
analysis process. Hence, the structure can only be effectively modeled using shell elements.

This paper aims to study the structural performance of thin-walled twisted box-
section structures, focusing particularly on the ultimate capacity of the structure. The
effect of geometric nonlinearity is considered, and the effect of material nonlinearity is
also considered in the analysis of the ultimate bearing capacity. The examined parameters
include the thickness effects of the member plates, including those from the longitudinal
stiffening rib, diaphragm, and web in influencing the stress distribution, as well as the
corresponding deformation mode. Conclusions and major findings are then proposed at
the end of the paper.

2. Dome Model

The considered dome structure has been taken from the museum of Shandong, China,
as shown in Figure 1. The dome adopts thin-walled twisted box sections as its members.
The general form of the dome resembles a semi-ellipsoid, spanning 63 m with a height
of 21.5 m. In detail, the dome is made up of an outer arch (a four-layered arch structure
composed of thin-walled twisted box-section members), an inner reticulated shell, middle
braces, and beam string structures at the top with a total steel mass of about 1300 tons. Four
stacks of curving and twisted arches form the skeletal configuration of the dome with a
general geometrical central outline as described by the ellipsoid equation. The equation of
a general geometrical central outline is as follows:

X2/31.52 + Y2/31.52 + Z2/21.52 = 1 (units in m) (1)
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Figure 1. The dome with the stacking of the arches, (a) classification of arch layers, (b) top view of
the dome, (c) lateral view of the dome, (d) cross section of twisted box section beams with stiffening
ribs and cross section with stiffening ribs and diaphragms (units in mm).
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The stiffening ribs are arranged vertically in the middle of each web along the length
direction of the webs. Its specific dimensions are shown in Figure 1d. The horizontal
diaphragms with square holes are arranged along the length of the web, with a width of
200 mm and a thickness of 16 mm. From the first layer to the fourth layer, the spacing of
the diaphragm is 2.4 m, 3.2 m, 2.4 m, and 4.8 m, respectively. The geometrical and material
details of each arch layer are summarized in Table 1.

Table 1. Geometrical and material details of each arch layer.

Structure Height (mm) Arch Curvature
(mm−1)

Central Angle
(Corresponds to Arch

Curvature)

Thin-Walled Twisted
Box Section

Dimension (mm)
Material

Ring beam - 1.043 × 10−4 360◦ 1000 × 1000 × 16

Q235
First arch layer 1500 1.675 × 10−4 120◦ 1000 × 1000 × 16

Second arch layer 3200 1.163 × 10−4 130◦ 1000 × 1000 × 16
Third arch layer 3200 1.965 × 10−4 150◦ 1000 × 1000 × 16

Fourth arch layer 13,600 1.623 × 10−4 170◦ 1000 × 1000 × 20

The following load case is considered: prestress + 1.485 dead load + 1.078 live load,
as the dead load and live load are all taken as 1.0 kN/m2. The displacement and stress
distributions of the web, longitudinal stiffening rib, and diaphragm under a single applied
load magnitude (1P) are shown in Figure 2. The maximum displacement of the structure
under 1P is 22.53 mm. The maximum stress is 83 MPa at the bottom arch foot. The first- and
second-order deformation modes experienced by the dome are translational movements in
the horizontal X and Y directions, whereas the third-order mode is the torsional vibration.
The ultimate load that the structure can withstand is 9.41P, with a maximum displacement
of 322.8 mm.
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3. Finite Element Analysis of the Twisted Box-Section Model

Since the dome is symmetrical with a repetitive pattern of similar structural units,
a structure with a common juncture node connecting the second arch and the third arch
levels formed by four twisted thin-walled box members is considered for detailed analysis.
According to the initial analysis, the stress generated by the axial force in the members is
relatively large. To actively adjust the axial force of the structure, due to the inconvenience
of applying constraints on the upper part (for the experimental study described below), the
upper end of the second arch layer has been modified to form a cantilever.

3.1. Finite Element Model

For the analysis, a representative finite element model comprising thin-walled twisted
box-section members was created in ANSYS [29], as shown in Figure 3a. The FEA model
consists of a common node connecting the second arch and the third arch layers, and it is
connected to the joint by four twisted thin-walled box members. The specific dimensions
of the specimen are shown in Figure 4. The web thickness of the model is 6 mm. For
consistency, all components of the model use Q235 steel. In addition, the longitudinal
stiffening ribs, with a width of 75 mm and a thickness of 4 mm, are arranged vertically in
the middle of each web along the length direction of the curved beam webs. The horizontal
diaphragms with square holes are arranged along the length of the web, with a width of
75 mm and a thickness of 6 mm. The spacing of diaphragms arranged in the second and
third arch layers is 1200 mm and 900 mm, respectively. At the joint of the second and third
arch layer, the diaphragms are arranged compactly with a distance of 350 mm.
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loading directions (units in mm).

The model utilizes the SHELL181 element to simulate the twisted box member (includ-
ing internal stiffening ribs and diaphragms). The SHELL181 element is a four-node element
with six degrees of freedom per node, thus being suitable for the nonlinear analysis of thin
and medium-thick shells. Considering the accuracy and cost-of-calculation results, the
mesh size needs to be accurately defined. After the verification of convergence, the meshed
model converged with node and element numbers of 46,038 and 2120, respectively. The
bottom of the model is fixed. In order to make the stress of the local model consistent with
the stress of the global model under loads, the latter is continuously adjusted throughout
the model analysis. The adopted material properties are as follows. For the web and
diaphragm, the yield strength is 322.2 MPa, the elastic modulus is 206,000 MPa, and the
Poisson ratio is 0.3. For the longitudinal stiffening ribs, the yield strength is 313.6 MPa,
the elastic modulus is 201,000 MPa, and the Poisson ratio is 0.3. The loading points and
the corresponding magnitude on each point are displayed in Figure 4b and summarized
in Table 2. Loading points 8 and 9 are vertical to the arch, loading point 10 is parallel to
loading point 8, and loading point 11 is parallel to loading point 9.
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Figure 4. Specific geometrical details of the FEA model—(a) whole model, (b) lateral view of the
model (relative position in the dome), (c) cross-section with stiffening ribs, (d) cross section with
stiffening ribs and diaphragms (units in mm).

Table 2. Load magnitude associated with the loading point shown in Figure 3b.

Loading Point Load Magnitude, P (kN)

1 11.25
2 11.25
3 11.25
4 42.8
5 42.8
6 4
7 4
8 128.7
9 128.7
10 34.51
11 34.51
12 62.33
13 62.33

3.2. Numerical Results

The wall at the juncture node zone enters the plastic regime first at 2.8P, whereas
the diaphragm and longitudinal stiffening ribs in the same zone reach plasticity at 3.2P.
Plasticity is experienced by the diaphragm and the longitudinal stiffening rib in the lower
part of the lower arch at 3.4P and 3.8P, respectively. The increase in the applied plastic
zones in these two locations has brought the whole model to achieve the ultimate capacity
at 4.744P. Upon close inspection, there is no visible curving and plastic strain in the
longitudinal stiffening rib before the model fails. When the model reaches its ultimate
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capacity, the maximal plastic strain in the web, longitudinal stiffening rib, and diaphragm
are as listed in Table 3.

Table 3. Maximal plastic strain in each location.

Component Location Maximal Plastic Strain

Web
Node zone 1.6 × 10−2

Middle and lower part of the lower arch 4.9 × 10−3

Longitudinal stiffening rib Node zone 4.0 × 10−3

Middle and lower part of the lower arch 3.5 × 10−3

Diaphragm Node zone 4.46 × 10−3

Middle and lower part of the lower arch 2.25 × 10−3

Web Node zone 1.6 × 10−2

The contour diagrams of the displacement, plastic Mises stress, and plastic strain in
the top and bottom surfaces of the web in the ultimate-capacity case are shown in Figure 5.
The stress and plastic strain in the diaphragm and longitudinal stiffening rib are shown in
Figure 6 (a displacement magnification factor of five has been used to enhance the legibility
of the images).
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There is no visible curving deformation at the juncture node, as shown in Figure 6a. In
Figure 6c,d, the plastic zones of the web are concentrated in the node zone and lower arch.
Again, the bending deformation is absent in the diaphragm and longitudinal stiffening rib,
which have reached the plastic stage before the occurrence of the failure in the model. The
plasticity development in the diaphragm in the node zone is more obvious with a high
concentration at the corners, which is marked in Figure 6c.



Buildings 2022, 12, 12 9 of 20

3.3. Comparison of Experimental and Numerical Results

A laboratory specimen was fabricated to verify the finite element results, as shown
in Figure 7.
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Figure 7. (a) The specimen and (b) its geometrical details (units in mm).

Representative points at the a and b sections on the lower arch and c section have been
selected for strain comparison, as shown in Figure 8a–d, respectively. The a, b, and c sections
are marked in Figure 7b. Displacement plots of the juncture node in the horizontal (parallel
to the wall) and vertical directions (perpendicular to the wall) are shown in Figure 8e,f,
respectively.
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It can be observed that the differences between the finite element and test results of
most locations before 2.4P were very small, whereas some regions showed deviations after
that. The differences were mainly determined by the sliding in the foot of the specimen. In
the experiment, when the load reached 2.4 times the load case magnitude, the foot at the
left arch slipped in the radial direction, and at 3.8 times, the foot at the right arch slipped in
the radial direction.

4. Parametric Analysis

In order to investigate the mechanical behaviors of the model, the effect of the thick-
nesses of the longitudinal stiffening rib, diaphragm, and web were considered. The out-
of-plane stability of the web was improved via the installation of a longitudinal stiffening
rib. As a result, the ultimate bearing capacity of the structure was also enhanced. The
diaphragm worked as the lateral support for the longitudinal stiffening ribs, reducing
the span of the longitudinal stiffening ribs and the free length in case of instability under
pressure. When the wall thickness was small, the damage pattern of the structure included
elastic-plastic overall instability and local instability. In this paper, the thickness of the
initial model was Tls = 4 mm, Td = 6 mm, and Tw = 6 mm. For the parametric analysis, 0,
2 and 6 mm were selected as Tls for the performance comparison with the initial model
of thickness Tls = 4 mm. Four and eight millimeters were selected as Td values for per-
formance comparisons with the initial model of thickness Tw = 6 mm. Four and eight
millimeters were selected as Tw values for performance comparisons with the initial model
of thickness Tw = 6 mm.

Realizing these effects, their mechanical behaviors were then studied in terms of
deformation, stress, strain, ultimate capacity, and the failure mode of the model.

4.1. Thickness of Longitudinal Stiffening Rib, Tls

Three thicknesses, Tls = 0, 2, and 6 mm except the initial one, were proposed to study
the effects of the longitudinal stiffening rib on the ultimate capacity. The plastic strain in
the web and its amplified perspective are shown in Figure 9a,b. When the longitudinal
stiffening rib was omitted from the model, the web in the juncture node zone reached the
plastic stage at 2.6P, whereas the middle and lower parts of the lower arch reached this
state at 3.0P. Bending deformation was not visible in the model when the load level reached
3.6P. Differently, when the load attained 3.8P, the middle and lower parts of the lower
arch bend rapidly with a fast increment in plastic strain. The model reached its ultimate
capacity at 3.925P. There was a noticeable bending in the local part of the lower arch when
the model reached its ultimate capacity.

The corresponding plastic strain in the web and its amplified view are shown in
Figure 9c,d. When Tls = 2 mm, the longitudinal stiffening rib in the middle and lower
parts of the lower arch were the first parts to achieve the plastic stage at 2.0P. Then, the
longitudinal stiffening rib in the juncture node zone reached the plastic stage at 2.2P. The
web and diaphragm in the node zone attained their plastic behaviors at 2.6P and 3.2P,
respectively. Subsequently, the same members in the middle and lower parts of the lower
arch reached this state at 3.4P. When the load level was raised to 4.0P, there was an evident
bending in the longitudinal stiffening rib but no such occurrence in the web. The ultimate
capacity was achieved at 4.514P, with a gradual curving deformation in the web. The
longitudinal stiffening rib was buckled locally before reaching the model failure, as shown
in Figure 9d. Hence, the development of plastic strain in this member is evident.
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When Tls = 6 mm, the web in the juncture zone reached its plastic stage at 2.8P. The
same members in the middle and lower parts of the lower arch achieved plasticity at 3.8P.
Although the two plastic zones continued expanding with the increasing of the load, the
model attained its ultimate capacity at 4.826P. The longitudinal stiffening rib entered the
plastic stage at 4.3P, later than other members in this model did.

According to the presented outcomes, considering four thicknesses, the effects of a
longitudinal stiffening rib on the structure’s behavior can be summarized into four aspects:

1. Deformation

The load-displacement curves of several points are depicted in Figure 10. The points
were selected from the top flange and front web of the juncture node zone and the
curved zone.
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Figure 10. (a) Vertical displacement on the top flange, (b) horizontal displacement on the front web
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on the front web -in the curved location due to the change in the thickness of the longitudinal
stiffening rib.

According to Figure 10a,b, the load-deformation relationships in the juncture node
zone are close to each other, indicating that the effect of longitudinal stiffening rib on
deformation can be ignored in the juncture node zone and that the whole rigidity of the
model is less affected by the longitudinal stiffening rib. The deformation in the curved zone
of the lower arch in each situation is close to the initial model before 3.4P. Under a high load
and when the thickness is less than 4 mm, there are deformations (curved phenomenon) at
this zone, i.e., the top flange curves upward and the outer web dents inward. As depicted
in Figure 10c,d, the curves for 0 and 2 mm thicknesses deviate from the common behavior
when the load level is close to the ultimate capacity. This illustrates that the longitudinal
stiffening rib is key to the deformation in the curved zone.

2. Stress

According to the deformation analysis, there is a curving deformation in the lower
arch when the thickness of the stiffener is less than 4 mm. To identify the reason for this, the
axial, tangential, and shear stresses in the maximally curved part under 1P were analyzed,
as shown in Figure 11. The horizontal axis represents the loading points in the top flange
of the curved zone from left to right.
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Figure 11. (a) Axial, (b) tangential, and (c) shear stresses in the top flange of the curved zone under
1P loading.

In Figure 11a, the axial stress in the cases of Tls = 2 mm and Tls = 4 mm are close to
each other, which means that the M11 moment along the axis in the plane formed by the
axis and normal of the member plate was small. When the stiffener was omitted, the axial
stress in each point increased, and the maximal increment was 18.4 MPa.

In each situation, the in-plane stress was transformed to out-of-plane, which meant that
the resulting stress was small when the in-plane moment M22 along the normal of member
plate formed by the tangent and normal of member plate was larger. The tangential stress
in the model with Tls = 4 mm was close to the one with Tls = 2 mm. When the stiffener was
absent, the tangential stress increased visibly with the increasing of the difference between
the in-plane and out-of-plane stresses. Meanwhile, the M22 moment in the plane formed
by the tangent and normal of member plate increased visibly. This phenomenon illustrates
that the longitudinal stiffening rib can be considered a middle brace to the member plate
for reducing M22. As observed in Figure 11c, with the reduction of the stiffener thickness,
the difference in shear stress between the inner and outer plates increases.

The axial and tangential strains in the curved zone under ultimate capacity are shown
in Figure 12. In the initial model with 4 mm thickness, the difference between the axial
strain in the outside and inside surfaces is smaller when the difference of tangential strain
is larger. When the stiffener is omitted, the two differences are both larger because of the
curved plate.
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The moments M11 and M22 in the member plates with Tls = 4 mm are depicted in
Figure 13. M11 and M22 in the longitudinal stiffening rib of the initial model (Tls = 4 mm)
under 1P are both small. Nevertheless, when the stiffener is absent, the moments increase
greatly. In addition, the maximal moment in the initial model under ultimate capacity is
less than the maximal moment in the model with Tls = 0 mm under the same conditions.
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3. Failure mode

The failure modes in the proposed model can be described in three categories:
When the thickness of the stiffener is 4 mm, at the ultimate capacity, the plastic zones

in the juncture node zone and the lower arch have developed fully. In this state, the slopes
of load-displacement curves in the juncture node zone are all near to zero, thereby resulting
in overall elastic-plastic buckling.

When the thickness of the stiffener is extremely small or negligible, the middle and
lower parts of the model experience curving deformation at the ultimate capacity. In this
case, the failure mode includes two instability modes: overall buckling and elastic-plastic
local buckling.

When the thickness of the stiffener is in between the two above-mentioned cases,
the failure mode of the model may include the local buckling depending on the value of
thickness-at the ultimate capacity as the overall buckling mode always exists.

4. Strain and ultimate capacity

The relationship between the ultimate capacity and the thickness of the longitudinal
stiffening rib is shown in Figure 14. In addition, the maximal plastic strain in each part of
the model under the ultimate capacity is shown in Figure 15.
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The ultimate capacity of the model increases with the thickness, as displayed in
Figure 13. On the contrary, with an increase in thickness, the plastic strain in the web shows
different tendencies in the juncture node zone and the lower arch, as shown in Figure 15a.
In the node region, the plastic strain continues rising to a thickness of 4 mm. After that, the
strain remains around 0.015. In the lower arch, the plastic strain drops sharply with the
thickness up to 4 mm. A further increase causes only a small decrement in strain, down to
about 0.005.

A decrease in thickness causes a sharp rise in the plastic strain in the juncture zone
of the stiffener and an earlier buckling, as displayed in Figure 15b. During the loading
sequence, the plastic strain in the lower arch also ascends but only gradually. When the
thickness is greater than 4 mm, although the plastic strain variation is relatively smaller, its
descending trend is clear, whereas those of the web and diaphragm remain unchanged.

The plastic strain in the diaphragm in the juncture zone and lower arch decreases
quickly with the thickness, as shown in Figure 15c. This illustrates that the thinner the
stiffener, the greater the concentration of plastic deformation on the curved parts. With a
thickness of more than 4 mm, the changing tendency of the plastic strain in the diaphragm
is close to stagnancy.

4.2. Thickness of Diaphragm, Td

To examine the effects of the diaphragm on the mechanical behaviors, 4 and 8 mm
were selected as Td values for performance comparisons with the initial model of thickness
Td = 6 mm.

It is worth noting that the plastic strain with Td = 8 mm is less than that with Td = 4 mm
(not shown). When the diaphragm thickness of the initial model is changed from 6 mm to
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4 mm, the webs in the juncture node zone reach the plastic phase at 2.6P. The other parts
of the model arrive at plasticity successively: the diaphragms in the juncture node zone
and lower arch at 2.8P; the longitudinal stiffening rib in the juncture zone at 3.4P; the webs
in the lower arch at 3.6P; and the longitudinal stiffening rib in the lower arch at 4.3P. As
a result, the model attains its ultimate capacity at 4.339P. Before the model failure, there
is no visible curved phenomenon and little plastic strain in the longitudinal stiffening rib.
Compared with the initial model, only the diaphragm reaches the plastic phase in advance,
whereas the strains in other parts remain unchanged.

When the diaphragm thickness of the initial model is changed from 6 mm to 8 mm,
the webs in the juncture node zone reach the plastic phase at 2.8P. Then, the sequence of
plasticity initiation is ordered as follows: The longitudinal stiffening rib in the juncture
node zone at 3.2P; the webs and stiffener in the lower arch at 3.6P; the diaphragms in the
lower arch and node zone at 4.0P, whereas the model reaches its ultimate capacity at 5.0P.
Before the model failure, no curved phenomenon and only little plastic strain were detected
in the longitudinal stiffening rib. Compared with the initial model, only the diaphragm
reached the plastic phase, whereas the other parts remain unperturbed.

The effects of the diaphragm on the structural behavior can be described in two aspects
in accordance with the thickness changes:

1. Deformation

Load-displacement curves at several points of the model are depicted in Figure 16. In
order to provide a sound comparison with the stiffener effects, the points are the same ones
examined in Section 4.1.
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Figure 16. (a) Vertical displacement on the top flange, (b) horizontal displacement on the front web
of the point in the juncture node zone, (c) vertical displacement on the top flange, (d) horizontal
displacement on the front web of the point in the curved zone due to the change in the thickness of
the diaphragm.

It can be generally seen that all relationships for different thicknesses are practically
the same. This result illustrates that the diaphragm thickness scarcely contributes to the
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structural deformation. The failure mode of the proposed model is observed as an overall
elastic-plastic buckling.

2. Plastic strain and ultimate capacity

It is noted that the ultimate capacity increases linearly with Td. Such a trend occurs also
in the maximal plastic strain in the stiffener and web, in contrast to that in the diaphragm.
Furthermore, it is noted that the increasing of the diaphragm thickness does not change the
failure mode of the model.

4.3. Thickness of Web Tw

To investigate the effects of web thickness, Tw = 4 and 8 mm were selected and
compared to that of the initial model with Tw = 6 mm.

The plastic strain distribution contour plots in the web and stiffener are shown in
Figure 17. When the web thickness of the initial model is changed from 6 mm to 4 mm,
the web in the juncture node zone reaches the plastic phase at 2.0P first. The sequence of
plasticity attainment in other parts is: the web in the lower arch at 2.4P; the diaphragm
in the juncture node zone and lower arch at 2.8P; the longitudinal stiffening rib in the
juncture node zone and lower arch at 3.0P, whereas the model reaches its ultimate capacity
at 3.31P. Below 3.1P, there is no curving deformation in the web. There is an obvious
curved phenomenon in the structure when the ultimate capacity is reached.
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When the web thickness of the initial model is changed from 6 mm to 8 mm, the web
in the juncture node zone achieves the plastic phase at 3.4P first. The order of plasticity
initialization in other parts is arranged as follows—the diaphragm in the juncture node
zone at 3.6P, the diaphragm in the lower arch at 3.8P, the longitudinal stiffening rib in
the juncture node zone at 4.0P, and the web and stiffener in the lower arch at 4.4P. The
model reaches its ultimate capacity at 5.961P. Before failure, there is no visible curved
phenomenon and little plastic strain in the stiffener. Hence, the effects of the web on the
structural behavior can be summarized in three aspects:

1. Deformation

The load-displacement curves of the typical points were selected to study the web thickness
effects on deformation, as shown in Figure 18. In order to compare them with the influences of
the stiffener and diaphragm, the points were the same ones considered previously.
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Figure 18. (a) Vertical displacement on the top flange, (b) horizontal displacement on the front web
of the point in the juncture node zone, (c) vertical displacement on the top flange, (d) horizontal
displacement on the front web of the point in the curved zone due to the change in the thickness
of the web.

According to Figure 18a,b, the displacement in the juncture node zone and the slopes
of the three curves decrease visibly in an opposing trend if compared with the increment
of the web thickness. The slopes are near to zero when the load is close to the ultimate
capacity. The slopes for the load-displacement relationship of the curved zone decrease in
different levels with the web thickness enhancement, as displayed in Figure 18c,d. Thinner
sections cause changes in the displacement and curved or dented phenomenon in the plate
of the lower arch, resulting in lower ultimate capacity.

2. Failure mode

In addition to the overall elastic-plastic buckling in the initial model with Tw = 6 mm,
if the web thickness is sufficiently low, the failure mode includes two elastic-plastic buckling
modes: local and overall buckling.

3. Plastic strain and ultimate capacity

The ultimate capacity increases linearly with the thickness (not shown). When the web
is thinner, the plastic zone is concentrated on the lower arch. On the contrary, if the web
is thicker, the plastic zone is concentrated on the juncture node zone, whereas the plastic
strain in the zone below the node visibly decreases.

5. Conclusions

The influence of the parametric changes of initially curved and twisted box sections
on the structural responses of the partial part of a dome, especially on the ultimate capacity,
has been numerically investigated. Changes include the longitudinal stiffening rib, the
diaphragm, and the web thicknesses. The stiffener thickness is a critical factor for the
ultimate capacity. Omitting the stiffener causes the ultimate capacity to decrease, with a
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larger curved zone in the lower arch. If the thickness of the stiffener is too small, it deforms
prematurely and yields to premature failure. If the stiffener thickness is too large, the
ultimate capacity will not be effectively improved. In general, the stiffener is useful to
reduce the M11 moment in the plane formed by the axis and normal of the member plate.
It also can reduce the M22 moment in the plane formed by the tangent and normal of the
member plate. Nevertheless, the stiffener does not affect the overall rigidity of the model.

The ultimate capacity changes linearly with the change in the diaphragm thickness.
The enhancement in thickness leads to increases in the maximal strain of the stiffener and
web, while reducing the maximal strain of the diaphragm. The thickness increase can
only delay the plastic phase of the diaphragm but does not change the failure mode of
the structure. In addition, the diaphragm does not affect the overall rigidity of the model.
The ultimate capacity of the model changes linearly with the change in the web thickness.
A thinner web leads to the concentration of the plastic zone in the lower arch. When the
web is thickened, the plastic zone is concentrated in the juncture node zone. In accordance
with the load-displacement curve, the curve slope increases with the thickness. This proves
that the increasing of the web thickness can visibly improve the overall rigidity of the
proposed model.

The failure mode of the initial model is an overall elastic-plastic buckling. A thinner
stiffener or web induces a visible curved zone in the lower arch under the ultimate capacity.
In this case, the failure mode includes both local and overall buckling. The diaphragm
thickness has little effect on the failure mode of the proposed model.
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