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Abstract: Results of an experimental investigation aimed at studying the effect of steel fibers on the
shear behavior of concrete deep beams made with a 100% recycled concrete aggregate (RCA) are
presented in this paper. The study comprised testing of seven concrete deep beam specimens with a
shear span-to-depth ratio (a/h) of 1.6. Two beams were made of natural aggregates (NAs) without
steel fibers, two beams were made of a 100% RCA without steel fibers, and three beams were made
of RCA-based concrete with steel fibers at volume fractions (vf) of 1, 2, and 3%. Two of the beams
without steel fibers included a minimum shear reinforcement. Test results showed that the beam with
a 100% RCA without steel fibers exhibited a lower post-cracking stiffness, reduced shear cracking
load, and lower shear capacity than those of the NA-based control beam. The detrimental effect of the
RCA on the shear response was less pronounced in the presence of the minimum shear reinforcement.
The addition of steel fibers significantly improved the shear response of the RCA-based beams.
The post-cracking stiffness of the RCA-based concrete beams with steel fibers coincided with that
of a similar beam without fibers containing the minimum shear reinforcement. The use of steel
fibers in RCA beams at vf of 1 and 2% restored 80 and 90% of the shear capacity, respectively, of
a similar beam with the minimum shear reinforcement. The response of the RCA specimen with
vf of 3% outperformed that of the NA-based control beam with the minimum shear reinforcement,
indicating that steel fibers can be used in RCA deep beams as a substitution to the minimum shear
reinforcement. The shear capacities obtained from the tests were compared with predictions of
published analytical models.

Keywords: recycled concrete aggregates; steel fibers; shear behavior; deep beams

1. Introduction

Construction and demolition waste (CDW) resulting from the demolition of con-
crete structures that reach the end of their service life has a detrimental impact on the
environment [1]. Partial or full replacement of natural aggregates (NAs) with recycled
concrete aggregates (RCAs) in concrete construction would reduce the environmental
impact associated with the storage of CDW, consumption of natural resources, intake of
energy, and stress on landfills. Concrete mixtures made with RCAs, generally, possess
inferior mechanical properties relative to those of NAs [2–4]. Nevertheless, the effect of
RCA replacement on the shear response of large-scale reinforced concrete (RC) beams is
uncertain, since some researchers report an inferior shear behavior for RCA-based beams
relative to that of NA-based counterparts [5–9], while others reported an insignificant
variation in the shear response of NA- and RCA-based beams [10–13].

Arezoumandi et al. [5] reported a 12% reduction in the shear strength of beams with
a shear span-to-effective depth ratio (a/d) of 3 and a 100% RCA replacement percentage
compared to that of their NA-based counterparts. No difference was observed in the crack
morphology, crack progression, and deflection response of NA- and RCA-based concrete
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beams. Rahal and Alrefaei [6] reported shear strength reductions in the range of 13 to 18%
for RC beams with a/d of 3.4, with RCA replacement percentages in the range of 10 to
100%. In another study by the same authors [7], average reductions of 5 and 9% in the
shear strength of RC beams with a/d of 3 were reported at RCA replacement percentages
of 20 and 100%, respectively. A shear tension mode of failure was observed in all beams.
The beams with a 100% RCA exhibited higher deflections than those of the NA beams at
service and ultimate loads. This behavior was not evident for the beams with a 20% RCA
replacement percentage. Wardeh and Ghorbel [8] reported that the shear strength of RC
beams with a 100% RCA and a/d of 3 was 23% lower than that of their NA counterparts,
while for those with a/d of 1.5 the reduction was more than 10%, noting that the full shear
capacity of the NA-based beams with a/d = 1.5 was not reached due to the limited capacity
of the loading actuator used in the test. Beams with a/d of 1.5 tended to exhibit a shear
compression failure mode whereas a diagonal tension mode of failure was recorded for
the beams with a/d of 3. The RCA-based beams showed flatter slopes in the post-cracking
phase compared with those of the NA-based counterparts. The reduction in stiffness of
the RCA beams was attributed to the reduced elastic modulus and tensile strength of the
RCA-based concrete mixtures. Al Mahmoud et al. [9] reported a shear strength reduction
of 11% due to full replacement of NA with RCA in RC beams with a/d of 2.6. The stiffness
of the RCA-based beams was, however, comparable to that of the NA-based beams, and no
change was reported in the failure mode.

In contrast, Gonzalez-Fonteboa and Martinez-Abella [10] reported no significant
difference between the shear strength of NA-based concrete beams with a/d of 3 and
that of similar beams made with a 50% RCA replacement percentage. Nevertheless,
premature cracking and notable splitting cracks along the tension reinforcement were
observed in RCA-based beams. Fathifazl et al. [11] reported no major differences between
the failure mode, cracking pattern, and shear performance of RCA- and NA-based beams
with different a/d ratios of 1.5, 2.0, 2.7, and 4.0, and various RCA replacement percentages
of 0, 64, and 74%. Similarly, Khergamwala [12] reported comparable shear behavior for NA-
and RCA-based concrete beams with 25 and 50% RCA replacement percentages irrespective
of the a/d value that was in the range of 1.5 to 3. Short beams with a/d < 2.5 failed in a
shear compression mode of failure, whereases slender beams with a/d ≥ 2.5 failed in a
diagonal tension mode of failure. Ignjatović et al. [13] reported that the shear behavior of
RCA-based beams with a/d of 4.2 with 50 and 100% replacement percentages was very
similar to that of their NA counterparts. The difference between the service load deflection
of the beams with and without RCAs was within 10%. The shear failure modes of RCA
beams did not differ from that of their NA counterparts.

The aim toward wider use of RCAs in construction to promote the concept of sustain-
ability and circular economy led researchers to investigate different methods to improve
the performance of RCA-based concrete [14]. The inclusion of steel fibers in RCA-based
concrete reduces the development of microcracks and improves different tensile properties
of concrete mixtures [15–17]. Previous studies provided interesting findings on the shear
behavior of steel-fiber-reinforced NA-based slender concrete beams [18–21]. Dinh et al. [18]
reported a significant increase of 160% in the shear strength of RC beams with a/d of 3.5
due to the addition of steel fibers at vf of 0.75. Further increase in the steel fiber volume
fraction to 1 and 1.5% resulted in a marginal additional improvement in the shear capacity.
The length and type of the steel fibers had an insignificant effect on the shear response at
vf ≤ 1%. In contrast, at vf of 1.5%, beams with the longer steel fibers of 610 mm exhibited a
higher shear strength than those with fibers at a length of 381 mm. Sahoo and Sharma [19]
concluded that the addition of steel fibers in RC beams with a/d of 3.45 at vf of 0.75, 1, and
1.25% increased the normalized shear strength by 5, 6, and 28%, respectively, compared
to that of a control specimen without steel fibers. A steel fiber volume fraction of 0.75%
was sufficient to achieve a shear strength equal to or higher than that of the beam with
traditional steel stirrups. Amin and Foster [20] concluded that the addition of steel fibers
in RC beams with a/d of 2.8 at vf of 0.5 and 1% increased the shear strength by 42 and
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127%, respectively, compared to that of a similar beam without steel fibers. Beams with
steel fibers exhibited a smaller crack width than that of the control beam without fibers.
The number of shear cracks increased with an increase in the fiber volume fraction. The
use of steel fibers at a high dosage (vf = 2%) resulted in a significant shear strength gain of
155% at a/d of 2.8 [21].

Steel fibers have a potential to improve the shear response of RC deep beams, noting
that beams with a shear span-to-depth ratio (a/h) ≤ 2 are classified as deep beams [22].
The addition of steel fibers at vf of 1.5% in RC deep beams with a/d of 2 and a concrete
cylinder compressive strength (f′c) of 37 MPa resulted in a shear strength gain of 12%
whereas similar beams with f′c = 19 MPa experienced a shear strength gain of 54% [23].
In another study by Kang et al. [24], it was concluded that the addition of steel fibers to
RC deep beams with a/d of 2 at vf of 0.5 and 0.75% resulted in shear strength gains of 16
and 18%, respectively. An improvement in the beams’ stiffness was also observed due
to the addition of steel fibers [24]. The use of hybrid steel fibers (i.e., a combination of
steel fibers with different shapes and geometry) can effectively bridge shear cracks in RC
deep beams at both the micro- and macro-scale levels, thus improving the shear strength
and deformation capacity [25]. The shear capacity of a concrete deep beam with a/d of
0.9 with a hybrid vf of 2% (1.5% long fibers and 0.5% short fibers) was two times that of a
similar beam without fibers [25]. The performance of a deep beam with hybrid steel fibers
without internal shear reinforcement outperformed that of a similar beam with internal
shear reinforcement [25]. Recently, Garcia et al. [26] reported a shear strength gain of
approximately 17% for a deep beam with a/h of 0.5 due to the inclusion of steel fibers at
vf of 1%. Beams with a/h to 0.8 and 1 exhibited an average shear strength gain of 15%.
Do-Dai et al. [27] reported up to a 55% increase in the shear strength of RC beams with
a/h of 1.6 due to the use of steel fibers with vf in the range of 0.4 to 0.85%. Beams with
steel fibers were stiffer than the control beam. The use of steel fibers also reduced the shear
crack width by up to 11 times.

To date, little effort has been devoted to investigating the shear behavior of RCA-based
concrete beams containing steel fibers, despite their ability to bridge cracks and improve
the post-cracking tensile resistance of concrete. Chaboki et al. [28] investigated the effect of
the addition of steel fibers at vf of 1 and 2% to improve the shear strength of slender beams
with a/h of 2.5 made with 50 and 100% RCA. The inclusion of steel fibers enhanced the
shear behavior of RCA-based concrete beams. In the absence of stirrups, the addition of
steel fibers resulted in a significant increase in the shear capacity. Nevertheless, the shear
strength gain was less pronounced for beams with traditional transverse reinforcement.

To the best of the knowledge of the authors, no information is available in the literature
on the shear behavior of steel-fiber-reinforced RCA-based concrete deep beams (i.e., beams
with a/h ≤ 2). They are commonly used as transfer girders in high-rise buildings and
are vulnerable to fail in shear before reaching their flexural capacity. Further research is
required to better understand the shear behavior of steel-fiber-reinforced RCA deep beams
and advocate for a wider use of RCAs in structural applications. The present work aims to
fill this gap by providing unique experimental evidence on the shear behavior of concrete
deep beams made of a 100% RCA and different steel fiber volume fractions. Results of RCA-
based concrete deep beams are compared to those of conventional deep beam specimens
made of NA with and without stirrups. The accuracy and validity of published analytical
models to predict the shear capacity of the tested beams were examined by comparing
their predictions with the shear capacities obtained from the experiment.

2. Research Objectives

The widespread use of RCA in the construction industry is hindered by the lack of
knowledge and contradicting information published in the literature on the structural
behavior of RCA-based concrete members. The inclusion of steel fibers in RCA-based
concrete structures would improve the structural performance, which would advocate
for a wider acceptance of RCA for structural use, thus, supporting the concept of circular
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economy and sustainability. This research aims to investigate the shear behavior of steel-
fiber-reinforced RCA-based concrete deep beams, commonly used as transfer girders in
high-rise buildings and other important structural applications. Locally abundant desert
dune sand is used in this work as fine aggregates to emphasize the contribution toward
sustainable construction. The main objectives of the study are:

• Investigate the effect of using a 100% RCA on the shear behavior of concrete deep
beams with and without traditional shear reinforcement.

• Examine the effectiveness of using steel fibers at different volume fractions to improve
the shear behavior of RCA-based concrete deep beams.

• Investigate the potential use of steel fibers as a substitution to traditional shear rein-
forcement in RCA-based concrete deep beams.

• Examine the accuracy and validity of published analytical models to predict the shear
capacity of the tested beams.

3. Experimental Program

The study comprised testing of seven RC deep beam specimens with a/h of 1.6. Details
of the experimental program are presented in the following subsections.

3.1. Materials

The concrete constituent materials included ASTM type I ordinary Portland cement
(OPC), coarse aggregates, fine aggregates, and tap water. Coarse aggregates were in the
form of NAs and RCAs. The NAs were crushed dolomitic limestone with a nominal
maximum particle size (NMS) of 19 mm, obtained from the Emirate of Ras Al Khaimah,
United Arab Emirates (UAE). The RCAs were collected from a local concrete recycling plant,
located in the Emirate of Abu Dhabi, with an NMS of 25 mm. The concrete recycling plant
crushes old concrete structures with an unknown compressive strength. The fine aggregates
were locally abundant desert dune sand with a bulk density of 1663 kg/m3, surface area
of 116.8 cm2/g, specific gravity of 2.77, and fineness modulus of 1.45. Dune sand was
used as a fine aggregate in all concrete mixtures to promote the concept of sustainable
construction. The detailed physical properties of the NAs and RCAs are presented in
Table 1. Compared to NAs, RCAs had lower bulk density, higher water absorption, higher
LA abrasion mass loss, lower specific gravity, and higher fineness modulus. Properties
of RCAs were within the acceptable limits except for the water absorption, which was
higher [29–33]. The gradation curves of the coarse aggregates are shown in Figure 1a.
The particle size distributions of coarse aggregate were within the upper- and lower-limit
bounds of ASTM C33 [34].

Table 1. Physical properties of coarse aggregates.

Property Bulk
Density

Water
Absorption

LA
Abrasion

Surface
Area

Soundness
(MgSO4)

Specific
Gravity

Fineness
Modulus

Unit kg/m3 % % cm2/g % - -

ASTM test C29 C127 C131 C136 C88 C127 C136

NA 1635 0.62 16 2.49 1.2 2.82 6.82
RCA 1563 6.63 32.6 2.5 2.78 2.63 7.44

The measured yield strength of the longitudinal reinforcing steel bars used in the
beam specimens was 539 MPa, whereas the shear reinforcement had a measured yield
strength of 505 MPa. The Young’s modulus of the reinforcing steel bars was 200 GPa.
Dramix® 3D 65/35BG hooked-end steel fibers, supplied by Bekaert, Dubai, UAE, were
used in the current study. They are low-carbon, cold-drawn round steel fibers with a
tensile strength of 1345 N/mm2, Young’s modulus of 210 GPa, diameter (Df) of 0.55 mm,
length (lf) of 35 mm, and an aspect ratio (lf/Df) of 65 [35]. Figure 1b shows a photograph of
the steel fibers used in the present study. It should be noted that the manufacturer does
not recommend a maximum dosage of steel fibers in concrete mixtures. Generally, the
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maximum dosage of steel fibers depends on the concrete composition, placing method,
and type of application. In the present study, trial mixes were carried out prior to casting of
the beams to ensure adequate workability of the concrete and a homogeneous distribution
of the steel fibers within the concrete mixture. Segregation, bleeding, and agglomeration
of steel fibers were not observed in any of the mixtures. Similarly, preliminary trial mixes
and tests should be done in a practical setting to evaluate fresh and hardened properties
of designed steel-fiber-reinforced concrete mixtures with different dosages of steel fibers
before adopting a particular mix design in construction projects.
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Figure 1. Materials: (a) gradation curves of the NAs and RCAs; (b) steel fibers.

3.2. Mixture Proportioning

The concrete control mixture was prepared based on the concrete mix design procedure
of ACI 211.1 [36] to develop a design compressive strength of f′c = 30 MPa. Table 2 presents
the proportions of the concrete mixtures used in this study. The mixtures are labeled
RX-SFY, where ‘X’ denotes the RCA replacement percentage and ‘Y’ refers to vf. The RCA
replacement percentage is defined as the mass ratio of RCA relative to the coarse aggregates.
For instance, R100-SF1 is the designation of the mixture made with a 100% RCA with the
incorporation of steel fibers at vf of 1%. The total amount of coarse aggregates, cement,
dune sand, and water were kept constant in all mixtures.

Table 2. Mixture proportions of different concrete mixtures (kg/m3).

Mixture No. Mixture
Designation Cement RCA NA Dune Sand Water Steel Fibers

1 R0-SF0 470 0 1130 570 230 0

2 R100-SF0 470 1130 0 570 230 0

3 R100-SF1 470 1130 0 570 230 78

4 R100-SF2 470 1130 0 570 230 156

5 R100-SF3 470 1130 0 570 230 234

3.3. Specimens Preparation

Concrete mixture constituents were mixed in a laboratory mechanical mixer. The
quantity of water needed in the mix design (Table 2) was based on using the aggregates in
a saturated surface dry (SSD) condition. To account for the water absorption capacity of the
NAs and RCAs, the dry aggregates were first placed into the mixer. The amount of water
needed for the aggregates to reach the SSD condition was then added and mixed with the
coarse aggregates for 3 min. The steel fibers, if present, were then mixed with the coarse
aggregates to ensure a uniform dispersion of fibers. The cement and dune sand were then
added at a later stage and mixed for another 2 min. Finally, the amount of free water, per
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the mix design, was gradually added and mixed with other components for an additional
2 min. This mixing procedure ensured a homogenous and uniform mixture. Wooden
molds were used in the fabrication of the deep beam specimens. The reinforcement cages
were placed in their designated positions. The concrete mixture was placed, compacted by
a vibrator, and then leveled. The concrete surface was smoothened using a finishing trowel.
Segregation, bleeding, and agglomeration of steel fibers were not observed during casting.
The deep beam specimens were cured using wetted burlaps for seven consecutive days,
then air-cured for a minimum of 28 days. Concrete cylinders and cubes were also sampled
for characterization of concrete mechanical properties, compacted on a vibration table,
demolded after 24 h, and then water-cured for 28 days. Figure 2 shows photographs of
steel-fiber-reinforced concrete mixtures during placement and after being trowel-finished.
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Figure 2. Casting of steel-fiber-reinforced concrete beams: (a) placement of concrete; (b) a trowel-finished concrete beam.

3.4. Properties of Concrete Mixtures

The fresh concrete slump was measured directly after mixing, following the procedure
of ASTM C143 [37]. The compressive strength characteristics of the concrete used in this
study were determined from three 150 mm cubes and three cylinders 150 mm × 300 mm
(diameter and height), tested in accordance with BS 12390-3 [38] and ASTM C39 [39], re-
spectively. The modulus of elasticity was obtained in accordance with ASTM C469 [40]. The
splitting tensile strength was obtained from three cylindrical specimens with dimensions of
150 mm × 300 mm (diameter and height) and tested as per ASTM C496 [41]. The average
values along with the corresponding standard deviation of the 28-day concrete cylinder
compressive strength, f′c, cube compressive strength, fcu, modulus of elasticity, Ec, and
splitting tensile strength, fsp, are reported in Table 3.

Table 3. Properties of concrete mixtures.

Mixture
No.

Mixture
Designation

Slump
(mm)

f′c
(MPa)

fcu
(MPa)

Ec
(GPa)

fsp
(MPa)

1 R0-SF0 228 36.4 ± 1.5 40.5 ± 1.8 34.7 ± 1.8 3.1 ± 0.2

2 R100-SF0 183 23.6 ± 0.4 24.7 ± 1.0 19.8 ± 2.4 2.1 ± 0.2

3 R100-SF1 85 25.8 ± 0.3 32.2 ± 0.6 21.5 ± 2.9 3.1 ± 0.1

4 R100-SF2 60 25.6 ± 1.4 30.0 ± 1.0 20.7 ± 2.5 3.4 ± 0.2

5 R100-SF3 20 25.0 ± 0.8 28.3 ± 0.7 21.1 ± 1.6 4.1 ± 0.6

3.5. Deep Beam Test Specimens

Seven RC deep beam specimens were tested under four-point loading. The test matrix
is given in Table 4. The deep beams are designated using the notation BRX-SFY, where ‘X’ is
the RCA replacement percentage and ‘Y’ is vf. The notation BRX-SFY-S designates a beam
specimen with traditional shear reinforcement. Two beams were made of NA without
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steel fibers, two beams were made of a 100% RCA without steel fibers, and three beams
were made of a 100% RCA and steel fibers at vf of 1, 2, and 3%. Two of the beams without
steel fibers included a minimum amount of traditional shear reinforcement. Concrete
dimensions and details of reinforcement of beam specimens with and without traditional
shear reinforcement are shown in Figure 3a,b, respectively. All beams had a rectangular
cross-section of 150 mm in width and 500 mm in depth. The length of the beam was
3300 mm with an effective span of 2900 mm. A distance of 200 mm from each side of the
beam was left free to provide a sufficient development length for the longitudinal steel
reinforcement. The a/h was 1.6, resulting in a shear span of 800 mm and a constant moment
region of 1300 mm. The beams were reinforced with four no. 25 (25 mm in diameter)
longitudinal steel reinforcing bars at the tension side and two no. 25 (25 mm in diameter)
bars at the compression side. The concrete cover to the center of the steel reinforcement
was 50 mm, rendering an effective depth of d = 450 mm. This arrangement of steel
reinforcement was decided to ensure that the beams would fail by shear. The traditional
shear reinforcement, when employed, was detailed in accordance with the minimum shear
reinforcement provisions of ACI 318-14 [22] for deep beams, resulting in an 80 mm stirrup
spacing of 5 mm diameter placed in the horizontal and transverse directions. Steel plates
(150 mm × 150 mm × 20 mm) were placed at the load and support points.

Table 4. Test matrix of the deep beam specimens.

Specimen Designation RCA
(%)

vf
(%)

Presence of Traditional
Shear Reinforcement

BR0-SF0 - - -

BR0-SF0-S - -
√

BR100-SF0 100 - -

BR100-SF0-S 100 -
√

BR100-SF1 100 1 -

BR100-SF2 100 2 -

BR100-SF3 100 3 -
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3.6. Test Setup

Two actuators, 1300 mm apart, were used to apply the load to the top surface of the
beam. The applied loads of the actuators were recorded by two load cells. Initially, the
tests were conducted under a load control rate of 0.5 kN/s. At approximately 80% of the
expected shear capacity, the loading scheme was switched to a displacement control at a
rate of 0.6 mm/min for safety considerations. Three linear variable differential transducers
(LVDTs) were placed below the beam, one at midspan and one at each support, to measure
the net midspan deflection. The net midspan deflection was calculated as the difference
between the measured deflection at the midspan and the average of the deflection at the
supports. Four strain gauges (SGs), 5 mm long each, were bonded to the bottom layer of the
longitudinal steel reinforcing bars within the shear span at a spacing of 200 mm to measure
the tensile steel strain. Three SGs, 5 mm long each, were installed on one horizontal and
two vertical stirrups located at the center of each shear span with shear reinforcement.
Figure 3b shows the location of the strain gauges attached to steel reinforcing bars and
stirrups. Five SGs, 60 mm long each, were bonded to the concrete surface to measure
the concrete strains. The concrete SGs were placed longitudinally at the midspan and
under the loading points and diagonally at the middle of each shear span. Figure 3a shows
the location of the concrete SGs attached to the concrete surface. Concrete SGs were also
attached to the concrete surface of the beams with stirrups, but are not shown in Figure 3b
for clarity. The load cells, LVDTs, and SGs were connected to a data acquisition system.
Before conducting the tests, the front surfaces of the beams were painted white to facilitate
tracing of cracks. Cracks developed during testing were marked, and the corresponding
load values were recorded.

4. Experimental Results and Discussion

The shear behavior of the tested deep beams is evaluated in this section based on the
shear load–deflection response, shear cracking load, shear capacity, crack pattern, failure
mode, and strain measurements.

4.1. Deflection Response

The shear load–deflection responses of the beams without steel fibers are depicted in
Figure 4a. Specimens BR0-SF0 and BR100-SF0, without traditional shear reinforcement,
exhibited a load decay at the onset of shear cracking followed by a significant change in
slope of the deflection response. Conversely, specimens BR0-SF0-S and BR100-SF0-S, with
traditional shear reinforcement, exhibited a quasilinear response till the peak load. The
RCA-based specimens BR100-SF0 and BR100-SF0-S exhibited a lower stiffness than those
of their NA-based counterparts BR0-SF0 and BR0-SF0-S, respectively. Yet, the reduction in
the beam stiffness was less pronounced in the presence of traditional shear reinforcement.
For instance, at 150 kN, the midspan deflection of specimen BR100-SF0 was 6 mm, whereas
specimen BR0-SF0 exhibited a midspan deflection of 4 mm only. At the same load of 150 kN,
specimens BR100-SF0-S and BR0-SF0-S exhibited midspan deflections of 4 and 3.5 mm,
respectively. The midspan deflection values at shear cracking, ∆cr, and that recorded at
shear capacity, ∆max, are reported in Table 5. The RCA-based specimens reached their
shear capacity at midspan deflections higher than those of their NA-based counterparts.
The increase in the deflection of RCA-based beams can be attributed to the lower Young’s
modulus of the RCA-based concrete mixtures and the porosity of the RCA used [16,17].

Figure 4b shows the shear load–deflection response of the RCA-based concrete beams
with and without steel fibers. It is evident that the addition of steel fibers improved the
shear response of the RCA-based beams. Such specimens did not exhibit a load decay or a
significant change in slope at the onset of shear cracking. The midspan deflection values
at shear cracking loads of the RCA-based specimens with steel fibers were higher than
those of the beams without fibers and further increased by increasing the fiber volume
fraction (Table 5). Increasing the steel fiber volume fraction in RCA-based beams with
steel fibers increased the deflection at the shear capacity. The RCA-based beams with
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steel fibers exhibited a quasilinear deflection response similar to that of the specimens
with traditional shear reinforcement. This behavior can be attributed to the effect of steel
fibers on restricting crack growth in the post-cracking phase. Additionally, the stiffness
of specimens BR100-SF1 and BR100-SF2 with vf of 1 and 2%, respectively, coincided with
that of BR100-SF0-S, with traditional shear reinforcement, while that of specimen BR100-
SF3 with vf of 3% was superior to that of BR100-SF0-S. In fact, the stiffness of BR100-SF3
coincided with that of BR0-SF0-S, with NAs and traditional shear reinforcement. The
improved stiffness of the RCA-based specimens with steel fibers could be ascribed to the
bridging effect of the fibers, which acted as a crack arrestor during the post-cracking stage.
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Table 5. Summary of test results.

Specimen
Shear Cracking Stage Ultimate Stage

Vcr/Vmax Gain in Shear Capacity *
Vcr (kN) ∆cr (mm) Vmax (kN) ∆max (mm)

BR0-SF0 120 2.6 203 7.2 0.59 -

BR0-SF0-S 136 3.2 306 9.7 0.44 -

BR100-SF0 90 2.9 193 9.0 0.47 -

BR100-SF0-S 120 3.2 300 10.7 0.40 55%

BR100-SF1 160 4.6 235 8.2 0.68 22%

BR100-SF2 180 5.2 271 9.8 0.66 40%

BR100-SF3 250 7.1 400 15.6 0.63 107%

* With respect to the shear capacity of BR100-SF0.

4.2. Shear Cracking Load and Shear Capacity

The shear cracking load, Vcr, and shear capacity, Vmax, along with the corresponding
deflections, are reported in Table 5. The table also compares the ratio of Vcr/Vmax and the
gain in the shear capacity of the tested specimens caused by the addition of steel fibers at
different volume fractions. The shear cracking load, Vcr, is defined as the load at which the
first visible shear crack appears in the shear span. The shear cracking and capacity of the
RCA-based specimen BR100-SF0 were 25 and 5% lower than those of BR0-SF0, respectively.
The impact of using a 100% RCA rather than NAs was less significant in the presence
of traditional shear reinforcement since only 12 and 2% reductions in the shear cracking
load and capacity were recorded, respectively. Specimens with RCAs also exhibited lower
Vcr/Vmax ratios than those of their counterparts with NAs. The reductions in the shear
cracking load and capacity of the RCA-based specimens can be attributed to the inferior
mechanical properties of the RCA-based mixture.
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Table 5 also shows that the inclusion of steel fibers in the RCA-based beams resulted
in a remarkable increase in their shear cracking load to a level even higher than that of
the NA-based specimen BR0-SF0-S with traditional shear reinforcement. The RCA-based
specimens with steel fibers also exhibited higher Vcr/Vmax values than that of the beam
specimens with traditional shear reinforcement, owing to the ability of steel fibers to delay
the initiation of shear cracks. The shear capacity of the RCA-based beams with steel fibers
was also improved. Specimens BR100-SF1, BR100-SF2, and BR100-SF3 exhibited shear
capacity gains of 22, 40, and 107%, respectively, relative to that of BR100-SF0 without fibers.
The increase in shear capacity can be attributed to the improved post-cracking resistance
of the steel-fiber-reinforced specimens and their ability to restrict crack propagation and
growth. The shear capacities of BR100-SF1 and BR100-SF2 were approximately 80 and
90% of that of specimen BR100-SF0-S with traditional shear reinforcement, respectively.
Specimen BR100-SF3 with vf of 3% exhibited a shear capacity even higher than those
of BR0-SF0-S and BR100-SF0-S, which had traditional shear reinforcement. This finding
indicates that the use of steel fibers in RCA-based beams has great potential to substitute
the minimum traditional shear reinforcement specified by ACI 318-14 [22].

4.3. Crack Pattern and Failure Mode

Figure 5 shows the crack patterns observed at failure. All beams failed in shear as
planned in the design. Initially, the beams experienced inclined shear cracks at the mid-
height of the shear span. As the load progressed, the cracks propagated toward the load
and support points. Specimens BR0-SF0 and BR100-SF0, which had neither traditional
shear reinforcement nor steel fibers, exhibited splitting cracks in the shear span parallel to
the longitudinal steel reinforcing bars. At the onset of failure, specimen BR0-SF0 exhibited
an additional diagonal crack in the west shear span accompanied by crushing of concrete
at the top part of the diagonal concrete strut in the west shear span (Figure 5a). Specimen
BR100-SF0 also exhibited a diagonal crack parallel to the initially formed major shear crack
during testing, then eventually in a shear compression mode of failure due to crushing
of the concrete above the head of the major diagonal crack developed in the shear span.
Spalling of concrete was also observed at the level of the longitudinal tensile reinforcement
at crack intersection points (Figure 5c). The two specimens, BR0-SF0-S and BR100-SF-S,
with traditional shear reinforcement but without steel fibers exhibited a band of multiple
cracks within the shear span, then eventually failed due to crushing of the concrete along
the diagonal concrete strut as shown in Figure 5b,d, respectively.

The steel fibers in RCA-based beams played a role similar to that of the traditional
shear reinforcement, since they delayed initiation and propagation of diagonal shear cracks
and prevented formation of premature splitting cracks along the tensile reinforcement.
Following crack initiation, the steel fibers controlled widening of cracks, delayed their
propagation, and helped to maintain the integrity of the beams until failure occurred.
Specimen BR100-SF1 with vf of 1% exhibited one major crack in the shear span in addition
to a very fine crack that was observed at the onset of failure (Figure 5e). Specimen BR100-
SF1 failed due to fracture of concrete across the major diagonal crack developed in the shear
span accompanied by crushing of the top and bottom parts of the diagonal strut. Specimens
BR100-SF2 and BR100-SF3 with vf of 2 and 3%, respectively, failed due to crushing of the
diagonal concrete strut in the shear span (Figure 5f,g).

4.4. Sirrup Strains

The relationship between the shear load and stirrup strains is illustrated in Figure 6.
The maximum measured strains in the shear reinforcement are plotted in Figure 7. The
stirrup strain profile can be divided into two or three phases depending on whether stirrups
have yielded or not. The first phase represents the pre-cracking stage, while the second
phase signifies the post-cracking stage, i.e., from shear crack initiation to stirrup yielding
or beam failure. The third phase occurs only in the case of yielded stirrups, i.e., the post-
yielding phase. From Figure 6, it can be noted that the shear reinforcement was not strained
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in the first stage. Meanwhile, in the second stage, the strain in the shear reinforcement
increased almost linearly, although some load decays were observed in some cases, possibly
due to the development of new shear cracks at the location of the SGs. The third phase, if it
existed, exhibited a significant increase in the stirrup strain with an insignificant increase
in load. From Figure 6a, it can be seen that two vertical stirrups, one at each shear span, in
addition to a horizontal stirrup in the west shear span of specimen BR0-SF0-S, have yielded
prior to failure. Figure 6b shows that all measured strains in the shear reinforcement of
BR100-SF0-S, except one reading for the horizontal stirrups in the west shear span, reached
the yield strain at the peak shear load. Figure 7 shows that the rate of increase in stirrup
strain of specimens BR0-SF0-S and BR100-SF0-S was insignificantly different. Only one
vertical stirrup in specimen BR0-SF0-S exhibited a lower rate of stirrup strain than that
experienced by other stirrups. The variation in the rate of increase in stirrup strain may be
ascribed to the location of SG with respect to the location of the shear cracks. Strain gauges
that are intersected by major shear cracks are expected to exhibit higher strains than those
away from the cracks. Strain measurements confirmed the yielding of shear reinforcement
at different locations in specimens BR0-SF0-S and BR100-SF0-S prior to failure.
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4.5. Tensile Steel Strains

The tensile steel strain profiles of the tested specimens at four different loading stages,
25, 50, 75, and 100% of the shear capacity, are shown in Figure 8, whereas the maximum
measured tensile steel strains at the shear capacity are presented in Table 6. It is evident
that the steel strains in all beams were less than the yield strain as planned in the design
(εyield = 2695 µε). The steel strain values increased at all locations as the load increased.
The specimens exhibited almost a uniform steel strain profile within the shear span which
confirmed the occurrence of the deep beam action. Specimen BR100-SF0 (Figure 8c) showed
a slightly different trend. It exhibited an almost uniform strain profile within the shear
span until it reached approximately 50% of the shear capacity. At higher values of load,
local spalling of concrete caused by the intersection of cracks at a distance of 200 mm
from the support resulted in an increase in the steel strain at this location to a level higher
than those recorded at other locations with the shear span. Additionally, in specimen
BR100-SF0-S (Figure 8d), the strain did not increase at the same rate at 600 mm from the
support after reaching 25% of the shear capacity, possibly due to the absence of major
cracks that intersected the longitudinal reinforcement at this location.
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Table 6. Strain measurements at shear capacity.

Specimen
Concrete Strain (µε) Max. Longitudinal Steel

Strain εs (µε)
εs/εy

Max. Longitudinal Strain Max. Diagonal Strain

BR0-SF0 2125 400 1286 0.48

BR0-SF0-S 1850 425 1864 0.69

BR100-SF0 1400 730 2452 0.91

BR100-SF0-S 2090 815 1988 0.74

BR100-SF1 1650 1150 1689 0.63

BR100-SF2 1670 1130 1686 0.63

BR100-SF3 3150 2280 2340 0.87

The maximum measured tensile steel strain at the shear capacity reported in Table 6
was almost proportional to the load capacity of the tested specimens. Specimen BR100-SF0
was an exception since it exhibited the highest steel strain at the shear capacity, possibly
due to the local spalling of concrete that occurred at the crack intersection located at a
distance of 200 mm from the support, which left the steel exposed, and thus increased
the steel strain values. It is worth noting that specimen BR100-SF3 exhibited the highest
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steel strain at the shear capacity among the steel-fiber-reinforced specimens and those with
traditional shear reinforcement. This behavior can be attributed to the presence of steel
fibers in the concrete mixture, which allowed the beam to sustain higher loads, and hence,
higher tensile steel strains at shear capacity.

4.6. Concrete Strains

The maximum longitudinal and diagonal concrete strains measured at the shear
capacity are reported in Table 6. It can be seen that the RCA-based control specimens BR100-
SF0 and BR100-SF0-S exhibited higher maximum diagonal concrete strains compared to
those of the NA-based control specimens BR0-SF0 and BR0-SF0-S, respectively, possibly
because of the reduced Young’s modulus of the RCA-based concrete. This behavior was less
evident for the longitudinal concrete strains of the counterpart specimens. The maximum
concrete strains at the shear capacity of the specimens with traditional shear reinforcement
were significantly different than those of their counterparts without shear reinforcement,
except for the longitudinal concrete strain values of the counterpart specimens BR100-
SF0 and BR100-SF0-S, which showed higher strains at the shear capacity in the presence
of stirrups.

The steel-fiber-reinforced RCA specimens exhibited higher maximum longitudinal
concrete strains at the shear capacity than those of the control RCA-based specimen BR100-
Sf0. Their diagonal concrete strains at the shear capacity were higher than those of all
other specimens. Specimen BR100-SF3 with vf of 3% exhibited the highest longitudinal
and diagonal concrete strain values at the shear capacity. The higher concrete strain values
exhibited by the steel-fiber-reinforced RCA specimens can be ascribed to the confinement
effect provided by the steel fibers and their ability to increase the strain capacity of the
diagonal strut.

5. Analytical Procedure

The nominal shear capacity of RC deep beams can be expressed by Equation (1), where
Vc is the concrete contribution to the shear resistance including the dowel action and effect
of steel fibers, and Vsh is the contribution of the internal shear reinforcement to the shear
capacity. The concrete contribution to the shear capacity, Vc, including the influence of steel
fibers and dowel action, is affected by mechanical properties of the concrete, fiber volume
fraction (vf), flexural steel reinforcement ratio (ρ), and a/d. The contribution of the internal
shear reinforcement, Vsh, is influenced by the type of steel, area of shear reinforcement bars,
and number of shear reinforcing bars intersected by the critical shear crack.

Vn = Vc + Vsh (1)

Narayanan and Darwish [42] proposed the empirical formula of Equation (2) for
the average concrete shear stress at shear failure (i.e., ultimate shear stress), vu, which is
defined by Vc/bd, where b is the beam width and d is the effective depth of the beam (i.e.,
distance between the compression face and centroid of the tension steel reinforcement).
The magnitude of e in Equation (2) depends on a/d; e = 1 when a/d > 2.8 and e = 2.8(d/a)
when a/d ≤ 2.8, whereas df is a bond factor that accounts for the bond characteristics of
steel fibers and equals 0.5 for round fibers, 0.75 for crimped fibers, and 1 for indented fibers.
The parameter τ is the average fiber matrix interfacial bond stress, 4.15 MPa.

vu = e [0.24fsp + 80ρ(d/a)] + 0.41τ (lf vf df/Df) (2)

Ashour et al. [43] proposed Equation (3) to predict the ultimate shear stress of RC
beams with a/d ≥ 2.5 and Equation (4) for beams with a/d < 2.5.

vu =
[
2.11 3

√
f ′c + 7

(
l f v f d f D f

)]
[ρ(d/a)]1/3; for a/d ≥ 2.5 (3)
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vu =
[
2.11 3

√
f ′c + 7

(
l f v f d f D f

)]
[ρ(d/a)]1/3 [2.5(a/d)] + 0.41τ

(
l f v f d f D f

)
[2.5− (a/d)]; for a/d < 2.5 (4)

Kwak et al. [44] proposed Equation (5) as a modified version of that developed earlier
by Narayanan and Darwish [42] to predict the ultimate shear stress of RC beams. The
factor k in Equation (5) depends on a/d; k = 1 for a/d > 3.4 and k = 3.4(d/a) for a/d ≤ 3.4.

vu = 3.7k(fsp)2/3[ρ(d/a)]1/3 + 0.8[0.41τ (lf vf df/Df)] (5)

The contribution of the internal shear reinforcement to the shear capacity, Vsh, can
be expressed by Equation (6), proposed by Kong et al. [45] and adopted by the CIRIA
guide [46], where Cs is an empirical coefficient equal to 100 MPa for plain round bars
and 225 MPa for deformed bars, h is the beam depth, and Ast is the area of an individual
web steel bar, y is the depth of the intersection between the web steel bar and a potential
critical shear crack measured from the compression face of the beam, and α is the angle of
intersection between the web steel bar and the potential critical shear crack. The potential
critical shear crack in RC deep beams is typically assumed to be developed in the direction
of the natural load path, which is the line connecting the inner points of the load and
support plates.

Vsh = Cs ∑[(Ast × y)/h] sin2α (6)

The shear capacities predicted analytically are compared to those obtained from
the tests in Table 7. The analytical approach of Narayanan and Darwish [42] provided
reasonable predictions for the shear capacity of the tested beams, except for BR100-SF1 and
BR100-SF2, where their shear capacities were overestimated by 17 and 26%, respectively.
The ratio of predicted-to-measured shear capacity (Vn/Vmax) of the model by Narayanan
and Darwish [42] was on average 1.07, with a corresponding standard deviation (Std Dev)
of 0.11 and coefficient of variation (COV) of 11%.

The analytical approach by Ashour et al. [43] provided conservative predictions for
the shear capacity of all of the tested beams, except BR100-SF2, where its shear capacity
was overestimated by 14%. The deviation between predicted and experimental results
was more significant for the beams without steel fibers. The model by Ashour et al. [43]
computes the contribution of the plain concrete to the shear resistance as a function of
the concrete compressive strength, f′c, rather than the splitting tensile strength, fsp. This
fact may explain why the model by Ashour et al. [43] tended to provide conservative
predictions for the shear capacity. The value of Vn/Vmax of the model by Ashour et al. [43]
was on average 0.9 with a corresponding Std Dev of 0.14 and COV of 15%.

The model by Kwak et al. [44] overestimated the shear capacity of the majority of the
tested beams. The value of Vn/Vmax of the model by Kwak et al. [44] was in the range of
0.95 to 1.27 with an average of 1.12, Std Dev of 0.13 and COV of 11%.

The difference between experimental results and those predicted by the models is
considered within the typical margin of error considering the variability in shear test
results. As such, it can be concluded that the three analytical models can provide reasonable
predictions for the nominal shear capacity of the RC deep beams tested in the present
study, noting that the model by Narayanan and Darwish [42] provided the most accurate
prediction for the beams without steel fibers and that by Ashour et al. [43] provided the
most accurate prediction for the beams with steel fibers.
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Table 7. Comparison between analytical and experimental results.

Specimen
Experimental

Results
Vmax (kN)

Analytical Results
Vn (kN) Ratio (Vn/Vmax)

Narayanan and
Darwish [42] Ashour et al. [43] Kwak et al. [44] Narayanan and

Darwish [42] Ashour et al. [43] Kwak et al. [44]

BR0-SF0 203 218 169 258 1.07 0.83 1.27

BR0-SF0-S 306 305 * 256 * 345 1.00 0.84 1.13

BR100-SF0 193 192 146 200 0.99 0.76 1.04

BR100-SF0-S 300 280 * 233 * 286 0.93 0.78 0.95

BR100-SF1 235 275 230 287 1.17 0.98 1.22

BR100-SF2 271 341 310 332 1.26 1.14 1.23

BR100-SF3 400 416 389 398 1.04 0.97 1.00

Average 1.07 0.90 1.12

Std Dev 0.11 0.14 0.13

COV (%) 11 15 11

* Contribution of internal shear reinforcement is calculated based on Equation (6).

6. Conclusions

This research examined the shear behavior of steel-fiber-reinforced RCA concrete deep
beams. The effect of full replacement of NAs with RCAs on the shear response of the deep
beam specimens with and without traditional shear reinforcement was elucidated (objective
one). The effectiveness of using steel fibers at different volume fractions to improve the
shear behavior of RCA-based concrete deep beams was revealed (objective two). The
potential use of steel fibers as a substitution to traditional shear reinforcement in RCA-
based concrete deep beams was investigated (objective three). A comparative analysis has
been conducted to examine the accuracy and validity of three different analytical models
published in the literature to predict the shear capacity of the tested beams (objective four).
The main conclusions of the work are summarized hereafter:

• Concrete deep beam specimens with a 100% RCA without steel fibers exhibited a
lower stiffness, reduced shear cracking load, lower shear capacity, and higher midspan
deflections than those of their NA-based counterparts. This is a new finding since no
information is available in the literature on the shear behavior of RCA-based concrete
deep beams. Nevertheless, this conclusion is in line with data published in the
literature for slender beams [5–9], indicating the inferior structural shear performance
for RCA-based concrete slender beams.

• The impact of using a 100% RCA rather than NAs on the shear response was less
significant in the presence of traditional shear reinforcement. The shear cracking
load and shear capacity were reduced by 25 and 5% in the absence of traditional
shear reinforcement due to the full replacement of NA by RCA. Nevertheless, only 12
and 2% reductions in the shear cracking load and shear capacity, respectively, were
recorded in the presence of traditional shear reinforcement. The negligible shear
strength reduction observed in the present study for RCA-based beams with internal
shear reinforcement is consistent with that reported in the literature for beams with
internal steel stirrups with a/h of 2.5 [28].

• The inclusion of steel fibers in RCA-based deep beam specimens significantly im-
proved their post-cracking stiffness. The stiffness of the RCA-based specimens with
vf of 1 and 2% coincided with that of their RCA-based counterpart with traditional
shear reinforcement. The inclusion of steel fibers at vf of 3% further improved the
beam stiffness to a level even higher than that of its counterpart with traditional shear
reinforcement. The improvement in the post-cracking stiffness of RCA-based beams
due to the addition of steel fibers is a new finding, despite being consistent with other
findings published in the literature for NA-based concrete deep beams [23–27].

• The inclusion of steel fibers in the RCA-based beams resulted in a remarkable increase
in their shear cracking load to a level even higher than that of the control NA-based
containing traditional shear reinforcement. The addition of steel fibers also improved
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the shear capacity of the RCA-based beams. The RCA-based beams with vf of 1, 2, and
3% exhibited respective shear capacity gains of 22, 40, and 107%, relative to that of
the control RCA-based counterpart without fibers. The feasibility and effectiveness
of using steel fibers at volume fractions of up to 3% to improve the shear response
of RCA-based deep beams demonstrated in the present study are new findings that
have not been reported previously in the literature. Nevertheless, the improved
shear capacity of the RCA-beams with fibers is in line with findings of a single study
conducted previously on the shear behavior of RCA-based beams with a/h of 2.5,
where a 56% increase in the shear capacity of RCA beams without steel stirrups was
reported at vf of 2% [28].

• The use of steel fibers in RCA-based beams has great potential to substitute the
minimum traditional shear reinforcement. The shear capacities of the RCA-based
beams with vf of 1 and 2% were approximately 80 and 90% of that of their RCA-based
counterpart with traditional shear reinforcement. The deep beam specimen with vf
of 3% exhibited a shear capacity even higher than those of the RCA- and NA-based
counterparts containing traditional shear reinforcement. The viability of using steel
fibers as a replacement to internal shear reinforcement in RCA-based deep beams is a
new finding, despite being reported previously in the literature for NA-based concrete
deep beams with a/h of 0.9 [25].

• Shear strength prediction of three published analytical models were compared to those
obtained from the experiments. The analytical model by Narayanan and Darwish [42]
tended to provide reasonable predictions for the shear capacity, although it overes-
timated the capacity of two beams by up to 26%. The model by Ashour et al. [43]
provided conservative predictions for the shear capacity of the tested beams, except
for one where the shear capacity was overestimated by 14%. Despite being conser-
vative, the difference between measured and predicted shear capacities was more
significant for the beams without steel fibers. The model by Kwak et al. [44] tended
to overestimate the shear capacity by up to 27%. The ratio of predicted-to-measured
shear capacity of the model by Narayanan and Darwish [42] was, on average, 1.07,
whereas the models by Ashour et al. [43] and Kwak et al. [44] had respective values of
0.90 and 1.12. The Std Dev of the models was in the range of 0.11 to 0.14 whereas the
COV was in the range of 11 to 15%.

This research provided an insight into the structural performance of RC deep beams
made with RCA and steel fibers at different volume fractions. Replacement of NA by
RCA would preserve natural resources, reduce the cost, and diminish the environmental
impacts associated with the storage of construction and demolition waste. The use of steel
fibers in RCA-based concrete structures as a substitution to traditional shear reinforcement
could compensate for the initial cost of the steel fibers, eliminate congestion of steel, reduce
the risk of defects and cracks, and therefore prolong the service life. Future research
should investigate the environmental and economic impact of replacing NAs with RCAs
to produce sustainable concrete with different steel fiber volume fractions and cement
replacement materials (e.g., fly ash, slag, silica fume, and microsilica). The use of such
cement replacement materials would reduce the consumption of cement and emissions
of CO2.
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