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Abstract: The unsafe behavior of construction workers is one of the main causes of safety accidents
at construction sites. To reduce the incidence of construction accidents and improve the safety
performance of construction projects, there is a need to identify risky factors by monitoring the
behavior of construction workers. Computer vision (CV) technology, which is a powerful and
automated tool used for extracting images and video information from construction sites, has been
recognized and adopted as an effective construction site monitoring technology for the identification
of risky factors resulting from the unsafe behavior of construction workers. In this article, we
introduce the research background of this field and conduct a systematic statistical analysis of the
relevant literature in this field through the bibliometric analysis method. Thereafter, we adopt a
content-based analysis method to depict the historical explorations in the field. On this basis, the
limitations and challenges in this field are identified, and future research directions are proposed. It
is found that CV technology can effectively monitor the unsafe behaviors of construction workers.
The research findings can enhance people’s understanding of construction safety management.

Keywords: computer vision; construction workers; monitoring; unsafe behavior; literature review

1. Introduction

The construction industry is one of the most dangerous sectors in the world. Con-
struction accidents cause deaths, injuries and other major direct and indirect losses of
construction workers [1,2]. According to the statistics of the Ministry of Housing and
Urban–Rural Development of the People’s Republic of China (MOHURD), there were
773 production safety accidents related to housing and municipal engineering projects
in China in 2019, which led to the deaths of 904 workers [3]. Occupational safety in the
construction industry is a global problem, not unique to any country. According to the
census data of the U.S. Bureau of Labor, there were 970 and 965 fatal construction accidents
in the United States in 2016 and 2017, accounting for about 19% of all occupational deaths
in that year [4]. In addition, the incidence of nonfatal occupational injuries and diseases
in the construction industry is 30% higher than the industry average, especially for some
fall injuries and musculoskeletal diseases [5]. Given the high incidence of fatal and non-
fatal injuries in the construction industry, it is imperative to provide for effective safety
management at construction sites [1].

Heinrich et al. [6] found that 88% of construction accidents are caused by the unsafe
behavior of construction workers, while the rest of them result from the unsafe conditions
of objects, which are also mostly caused by the unsafe behavior of workers. The “unsafe
behavior” of construction workers refers to dangerous behavior that violates organiza-
tional discipline, operating procedures and methods in professional activities, and an
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“unsafe state” refers to the material conditions that lead to accidents, including material
and potential hazards in the working environment. These hazards are often caused by
human operations; that is, the unsafe behavior of workers [7,8]. Consequently, the key to
safety management at construction sites is to effectively manage on-site people and objects.
Previous studies have shown that behavior-based security (BBS) is a widely used method
in security research [9]. The use of BBS can help researchers to directly observe and identify
people’s unsafe behavior and eliminate these unsafe behaviors through feedback informa-
tion [2,10]. Although BBS has achieved great success in the research field of construction
safety management, this behavior measurement method, which mainly relies on human
observation, has gradually shown many shortcomings. Han and Lee [11] summarized
the three limitations of using BBS: (1) measurement is time-consuming [12]; (2) a large
number of samples are needed to ensure the validity of conclusions [13]; (3) workers’ active
participation and manual observation are needed [14].

To solve these constraints and limitations, the use of computer vision (CV)-assisted
technology is becoming popular. This technology provides an effective method to automat-
ically capture and identify individuals’ unsafe behavior at construction sites [10,11,15–17].
By using images or videos, CV technology can enhance project stakeholders’ understand-
ing of the information at construction sites, such as the location and movement status
of workers and construction equipment. Compared with other sensor technologies (e.g.,
radio frequency identification technology (RFID), the Global Positioning System (GPS),
ultra-wideband (UWB)), CV technology does not need to install sensors on each entity,
which means savings in both time and cost. Additionally, given that CV technology is
fast and accurate in detection, it has great potential for working as a safety and health
monitoring tool at construction sites [18].

With the advancement of CV technology, an increasing number of researchers are using
such technology to explore the topic of safety monitoring at construction sites. Seo et al. [18]
made the first proposal for a general framework for computer-vision-based safety and
health monitoring, which include object detection, object tracking and action recognition.
This general framework provides a scene–location–action-based risk identification method.
Target detection is a preliminary step of object tracking and action recognition. When
the project entity appears in a scene, its spatial position can be tracked from continuous
video frames according to the time progress using the object-tracking algorithm. The
extracted position information can be used to identify unsafe conditions and behavior
of entities. When there is a project entity with a cohesive structure (e.g., skeleton-based
workers or component-based equipment), the action recognition technology will identify
the posture of workers and equipment through static or continuous images to determine
whether unsafe behavior exists or not. On the basis of this framework, Zhang et al. [19]
divided the monitoring objects of CV into two aspects: (1) workers themselves and (2) the
interactions between workers and the external environment. Fang et al. [10] reviewed the
application of CV technology based on deep learning to monitor workers’ unsafe behavior.
Guo et al. [1] summarized the application of CV technology in the field of building health
and safety monitoring, including monitoring workers and objects at construction sites (e.g.,
equipment, tools, resources) and construction activities (e.g., excavation, lifting, hoisting).
Mostafa and Hegazy [20] pointed out that one of the main research directions of the image
technology is for use in monitoring building safety, which mainly focuses on the three
subtopics of the target detection technology used, the detected object and the resolution of
the related security problems.

In this paper, we conduct a holistic literature review of the field relating to the use of CV
technology in monitoring the unsafe behavior of workers at construction sites. On this basis,
we identify the research gaps in the studied field and suggest corresponding future research
directions to address these gaps. It is expected that the research will enhance construction
stakeholders’ understanding about the application of CV technology in monitoring the
unsafe behavior of construction workers. In contrast to prior studies, such as [1], this
research focuses more on the supervision of unsafe behavior of workers at construction
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sites and reviews literature from the two perspectives of individual workers and worker–
environment interactions. Additionally, unlike some historical studies (e.g., [10]) that
only review the use of CV technology based on deep learning, this research examines the
application of CV technology in a more comprehensive manner by using the traditional
machine learning and deep learning methods.

This paper has six sections. The second section provides an overview of CV technology.
In the third section, scientometric tools are adopted to summarize the historical explorations
in this field. The fourth section, by using content analysis, provides a more detailed
description about the studied field. On this basis, research discussions are provided and
future research directions are proposed. In the final section, the research results and
significance are summarized.

2. Background
2.1. Overview of Computer Vision

Computer vision (CV) is an interdisciplinary research field, and it mainly explores
the methods to make a machine “see”. Instead of using human eyes, CV technology
uses cameras and computers to recognize, track and measure. It processes graphics
into images that are more suitable for human eyes to observe or transmit to instruments
for detection [10,21–23]. With the advancement of machine learning, computers have
been trained to better understand what they “see”. Machine learning focuses more on
the methodology issues, while CV studies the application of technologies in real-world
scenarios. Machine learning methods have been widely used in the CV field, such as
the statistical machine learning represented by support vector machine (SVM) and the
deep learning represented by artificial neural network (ANN) [24,25]. These two methods
have played crucial roles in promoting the continuous development of CV technology in
monitoring construction sites.

The original form of natural data processing process is cumbersome, which leads to
the difficulties in achieving simplicity and automation. The traditional statistical machine
learning method was widely used in the CV field [10]. Statistical machine learning relies on
the preliminary understanding of data and the analysis of learning purposes. It uses engi-
neering knowledge and expert experience to design feature descriptors, select appropriate
mathematical models, formulate hyperparameters, input sample data and use appropriate
algorithms for training and prediction. Its process is shown in Figure 1.
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To simplify the process of detection and recognition, an expression method based on
deep learning (DL) has been developed. By learning from multiple data, this method can
automatically extract complex features from end to end [25]. The structure of DL is com-
prised of layers (input layer, hidden layer, and output layer), neurons, activation function
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“a” and weight {W, b}. Neurons play the role of feature detectors, and they are divided
into low-level neurons and high-level neurons. The lower layers detect basic features and
transfer them into higher layers before identifying more complex features [26]. The widely
used deep learning methods in the construction safety field include convolutional neural
networks (CNN) and recurrent neural networks (RNN) [26].

CNNs promote the development of image recognition technologies, and it is com-
prised of multiple layers of ANN [27]. Each layer of the network includes a two-dimensional
plane, and each plane has multiple independent neurons. Besides the conventional input
layer, output layer and activation layer, a CNN also has a convolutional layer and a pool-
ing layer (as shown in layers 2 to 7 in Figure 2). The convolutional layer uses different
two-dimensional filters and gradually slides to all positions of the two-dimensional image
to achieve the inner product of the pixels of the image. The pooling layer is added after the
convolutional layer. It reduces the output size of the convolutional layer by calculating the
average and maximum values of the image at different pixels [27].
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CNN can extract local features by adding a convolution operation to the neural
network and obtain global features. On this basis, CNN uses a classifier to identify entities.
CNN usually uses spatial characteristics (e.g., spatial locality) without considering temporal
characteristics. However, a lot of real-world data are time-series-based (e.g., a piece of
text), which means that these data must be organized in order and that the order cannot be
randomly disrupted. Therefore, these data cannot be directly used and learned by CNN
due to their temporal characteristics. As a result, RNNs that can process time series data
are developed [28]. As RNNs add loops to the neural network, they have the advantage of
limited short-term memory. Its structure is shown in Figure 3.
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The traditional RNN model only has the function of short-term memory. However,
many real-world scenarios, especially the scenarios at construction sites, are complex and
changeable and require a network with the long-term memory function. Thus, the long
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short-term memory (LSTM) model is developed [29]. At construction sites, researchers
usually integrate CNN and LSTM to extract the spatial and temporal information of
individual unsafe behavior (e.g., abnormal climbing and bending). The specific process is
shown in Figure 4.
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2.2. Roles of Computer-Vision-Based Methods at Construction Sites

Currently, the research on CV technology in the construction industry mainly focuses
on building structure monitoring and productivity analysis [26]. There is still a lack
of research on identifying unsafe behavior by using such technology. The traditional
identification and control of unsafe behavior mainly rely on manual methods. Nevertheless,
the performance of manual methods is poor, especially given that a large number of images
taken by the monitoring camera cannot be processed automatically and effectively. The
development of CV technology provides support for the automatic identification of unsafe
behavior. In particular, the CV technology does not need to attach equipment to workers.
This not only helps to reduce costs and but also decrease the potential impacts on workers.
At the same time, the CV technology can also process a large number of image data quickly.
Therefore, the CV technology is suitable for construction sites. As mentioned above, the
BBS method can recognize unsafe behavior through human observation and use feedback
information to change the unsafe behavior so as to enhance safety performance. The
feedback information relies on the perceptions and cognitive abilities of observers [31].
Observers understand the different construction scenes through their own perceptions,
such as the recognition of human bodies and objects, and the visual processing of temporal
and spatial relationships. The perceived information is compared with safety rules, policies
and previous relevant experience, which helps to identify unsafe conditions and behavior.
However, the CV technology is limited to extracting unsafe information and cannot be
used to evaluate information to identify unsafe behavior and conditions. Therefore, the
unsafe behavior monitoring method developed by using the CV technology should not
only consider the extraction of construction information but also combine with existing
policies and relevant experience [18]. This requires a more systematic framework to discuss
how the CV technology is applied to the complex construction sites.

As there are diverse unsafe conditions and behavior at construction sites, and they
have unique characteristics, different CV technologies need to be used. Seo et al. [18]
classified CV-based methods into three categories, including scene-based methods, location-
based methods, and action-based approaches. The corresponding CV technologies are
object detection, object tracking and action recognition.

Firstly, the scene-based approach is used to understand and evaluate any potential
risks in a static scene by examining the scene in a safe context. Scene understanding refers
to the integration of the information of various components at construction sites [32]. Its
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main purpose is to understand “what is in the scene (e.g., people, materials, machines,
etc.)”. Therefore, object detection technology is applied in this method. This technology
searches the image through the known object model, and the object of interest can be
detected based on the semantic information. Only when the project entity of interest is
confirmed can follow-up in-depth research be carried out. In general, the scene-based
approach is the first step, and it is also the cornerstone of the entire research [18]. For
instance, it can be used to detect whether workers’ safety protection equipment is in place
and whether workers are working in an unsafe area [33,34]. Secondly, as the construction
workers and equipment are dynamic and their positions change with time at construction
sites, this requires the use of a location-based method to evaluate potential risks in different
scenes. The location information of related entities can be obtained through tracking, which
is of great importance to the identification of unsafe conditions and behavior, such as
improper working positions (e.g., the proximity between equipment and workers) and
incorrect equipment utilization (e.g., an excessive equipment speed) [18]. Finally, the
action-based method focuses on the analysis of unsafe actions (e.g., bending, squatting,
climbing, weight lifting) of construction workers. These actions are the main causes of
workers’ musculoskeletal diseases (MSDs) and ergonomic injuries [35]. The recognition of
workers’ actions helps to remind workers to improve their inappropriate work postures,
which improves workers’ health and safety.

In summary, CV based methods can be divided into three categories, including object
detection, object tracking and action recognition. The use of these methods makes it
possible to intelligently monitor unsafe behavior and conditions at construction sites.

Object detection can be used to identify unsafe behavior and conditions at construction
sites. The most common method is to divide a captured large image window into small
spatial areas for analysis. Features will be extracted from small areas, and the retrieved
features can be classified [36]. Its speed and accuracy are constantly improving from
manual extraction to automatic extraction and from SVM to CNN. The probability of
discovering unsafe behavior is also greatly increased.

Object tracking can create the time track of detected objects when moving in the
scene and identify its real-time position. There are two main kinds of research, including
CV-based 2D tracking and 3D tracking [37]. 2D tracking mainly tracks a target by matching
the feature points and shape contours in the video frame, while 3D tracking mainly uses
3D tracking sensors to establish 3D coordinates to obtain movement information (e.g., path,
velocity, acceleration, direction, etc.) [18]. From the perspective of space, this method can
comprehensively detect unsafe behavior of workers.

Action recognition is the process of labeling action labels on images. This method can
extract human features from images, such as shape and time motion, which is conceptually
similar to the feature extraction of target detection. But it is a more complicated process
because some specific motion vectors are added (e.g., joint position, joint angle). This
method has the advantage of better extracting small actions [35,38]. These three methods
can monitor construction sites well, identify the unsafe behaviors of workers and make
great contributions to the improvement of construction safety management.

3. Research Methods and Material Preparation

The aim of this study is to comprehensively reveal the research status of CV technology
in the field of monitoring unsafe behavior of construction workers through a comprehensive
literature review. This study adopted the comment method based on content analysis. This
method is a recognized method of carrying out literature review through synthesizing
findings of historical studies [19]. In this section, on the basis of a systematic bibliometric
analysis, the academic relationships and research hotspots of CV in the field of building
safety are mapped. In addition, the research theme is highlighted and determined, and the
previous research framework and context are corroborated. In addition, the applicability
and quality of the obtained literature are ensured through the selection of topics and
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research fields and periodical screening. This provides a foundation for the content-based
analysis in the next section.

3.1. Literature Search and Selection

A bibliometric search was conducted in the Web of Science (WOS) database. WOS
has powerful analysis abilities, which can quickly locate high-impact papers and identify
research directions concerned by global researchers, especially the Science Citation Index
Expanded (SCIE) and Social Science Citation Index (SSCI) in the core collection of WOS.
These two academic journal paper citation index databases contain the most comprehensive
high-impacting academic journals in the world [39]. In addition, the conference proceeding
Citation Index-Science (CPCI-S) in the core collection of WOS covers the annual meeting
minutes of various industry authorities, which is also leading edge and guiding. Therefore,
the SCIE, SSCI and CPCI-S databases in the core collection of WOS are used as reference
sources. To ensure a comprehensive research result, the different keywords and Boolean
operators “AND” and “OR” are adopted. Based on the “advanced search” function of
WOS, the searching strategy used in this study is: “TS = ((construction worker *) AND
((safety) OR (risk) OR (health)) AND ((machine learning) OR (deep learning) OR (computer
vision *) OR (vision-based)))”. The search was limited to the time period 2000–2021. The
search was conducted on March 1, 2021, and 134 papers were obtained, including journal
papers and conference papers.

Criteria were also developed to select appropriate papers for this study. These criteria
are: (1) a paper focusing on the health and safety monitoring of construction site workers;
(2) a paper focusing on CV technology or technology integrated with CV; (3) a paper
written in English. Finally, 122 papers were identified and used in this study.

3.2. Literature Analysis Based on Statistical and Bibliometric Tools

Firstly, the publication trend in years was analyzed (Figure 5). As shown in Figure 5,
only a few papers were published in this field before 2016. Nevertheless, the increased
research interest can be found after 2016. Especially, a larger number of papers were
published in the field in 2018–2020, with the largest number of publications arriving at
35 in 2020. This trend indicates that the interest of exploring related topics in the studied
field is increasing in recent years, which has been promoted by various factors, such as
the continuous development of computer technologies (especially the application of deep
learning) and the growing importance of “safe production” and “people-oriented”.
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This study also analyzed the publication sources of the used literatures (Figure 6).
It can be seen from Figure 6 that most of the studies were retrieved from engineering
management journals such as “Automation in Construction”, “Advanced Engineering
Informatics”, “Journal of Construction Engineering and Management” and “Journal of
Computing in Civil Engineering”.
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By using the visual bibliometric software of VOSviewer, the author cooperation
network map in this field was developed (Figure 7). The node size indicates the number
of papers, and the connection length indicates the degree of cooperation. In addition,
a keyword hotspot map was also developed by using the VOSviewer (Figure 8). As
shown in Figure 8, the research hotspots mainly include CV, deep learning, workers, safety,
construction, equipment, recognition, tracking and identification. This result also confirms
that the main research contents focus on “using the CV technology to detect, track, and
identify workers and entities at construction site for safety prediction and prevention”.
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4. Content-Based Literature Review
4.1. The Perspective of Workers Themselves

It is difficult to manage work-related factors, and these factors are one of the main
causes of construction accidents and physical injuries. The application of CV technology to
monitor workers mainly focuses on two aspects, including the detection of workers’ use of
personal protective equipment and the recognition of worker behavior and movements.

4.1.1. Use of Personal Protective Equipment

When workers perform construction activities, they are surrounded by various risks,
such as falling objects, construction equipment collisions and falls from heights caused
by imbalance [19]. The appropriate use of personal protective equipment (PPE) has been
confirmed as one of the effective methods to reduce construction incidents [40,41]. In
the field of construction safety management, the current research mainly focuses on the
detection of three types of equipment, including helmets, seat belts and safety vests.
Researchers often use the image-based object detection technology to monitor the PPE use
of construction workers.

Because deep learning has not been widely used, the PPE detection scheme based on
image features mainly relies on the traditional statistical machine learning. Researchers
generally use the gradient direction histogram (HOG) detector and the SVM classifier
to detect and classify the PPE use of workers. The general process is divided into four
steps, including detecting the human body, detecting the protective equipment (e.g., safety
helmet), matching the detected human body with the equipment and evaluating the
performance of the above three steps through measuring the detection accuracy and recall
rate. Regarding the human testing, the HOG is the most popular and successful human
body detector (Figure 9). The HOG uses “global” characteristics to describe a person instead
of a collection of “local” characteristics. This means that a human body is represented
by one feature vector instead of many feature vectors to represent smaller parts of the
body. The HOG human detector uses a sliding detection window to move around the
image and calculates HOG descriptors at each position of the detection window. Thereafter,
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this descriptor is displayed to the trained classifier who classifies it as “human” or “non-
human” [42]. The detection methods for PPE are diversified, and suitable methods can
be selected for the detection of the salient features of protective equipment (e.g., shape,
color). Common detection methods include HOG feature detection [16], color-based
feature extraction, circular Huffman transform (CHT) [43] and HSV color detection [44]. By
matching the detected human body with PPE, it can help to make the judgement whether
a worker is wearing PPE correctly or not.
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With the continuous development of computer technologies, the use of target detection
technology that relies on deep learning is becoming more and more popular. It can be
divided into two categories, including two-stage detection methods based on candidate
regions and one-stage detection methods based on regression [36,46]. The two-stage
methods include R-CNN, Fast-R-CNN, Faster-R-CNN and other detection methods. These
methods need to generate candidate regions and classify and locate these candidate regions.
A close examination of the historical studies found that the most used detection model is
Faster-R-CNN. This model can ensure the accuracy of detection when facing constantly
changing scenes and objects. Compared with traditional HOG + SVM, Faster-R-CNN has a
short calculation time and can perform real-time detection. Fang et al. [15], Fu et al. [47],
and Fang et al. [48] used the Faster-R-CNN model to optimize the convolution network
structure and network training parameters in order to detect construction site staff and
their protective equipment.

The one-stage methods mainly include single shot multibox detector (SSD) detection
methods and YOLO series (YOLO, YOLO 9000, YOLO v3) detection methods. These
methods can directly and simultaneously predict the category and location of targets by
only using the CNN network, and they have shown good real-time performance. The
network structure of the two-stage target detection algorithm that relies on the candidate
area is complex. Although its detection accuracy is high, its detection speed is relatively
slow. This shortage means that the two-stage target-detection algorithm cannot meet
the real-time requirements of the construction industry. In contrast, the one-stage target-
detection algorithm can complete the target-detection in time. For classification tasks,
the entire network is only comprised of convolutional layers, and the input image passes
through the network only once. This means that the detection speed is fast, which perfectly
meets the real-time requirements of production practices [46]. Li et al. [49] proposed a
CNN-based SSD-MobileNet algorithm to detect whether workers are wearing helmets
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or not. Huang et al. [46] used the YOLO v3 algorithm to deal with the helmet-wearing
problem of construction workers. Table 1 summarizes the research on PPE-use identification
in workers.

Table 1. Research details of worker PPE-use detection.

Reference Object(s) Algorithm
Model Methods Contributions Limitations

Park et al.
[16] hardhat

Statistical
Machine
Learning

(1) Human body detection
(background subtraction +
HOG feature)

(2) Safety helmet detection
(HOG feature)

(3) Match between the
detected human body and
the helmet

(4) Evaluate the detection
performance through
accuracy and recall rate

(1) Facilitate the safety
monitoring work
of the safety
inspectors at the
construction site

(2) With an overall
accuracy of 94.3%
and a recall rate of
89.4%

(1) The detection
template can only
detect standing
workers

(2) The problem of
occlusion

Rubaiyat
et al. [43] hardhat

Statistical
Machine
Learning

(1) Image segmentation
(Gaussian mixture model
GMM)

(2) Human body detection
(HOG)

(3) Use color-based feature
extraction and circular
Hough transform (CHT)
features for helmet
detection

(4) Classification (SVM)

(1) Safety helmets
composed of
specific colors such
as yellow, blue, red
and white can be
detected

(2) It can distinguish
between ordinary
hats and safety
helmets

(1) The overall
detection accuracy
needs to be further
improved, and
deep learning
techniques need to
be used

Seong
et al. [44] vest

Statistical
Machine
Learning

(1) Color space (HSV) +
classifier

(1) Use the color of
the safety vest as a
key feature for
detecting, locating,
tracking and
monitoring
workers

(1) Since only color
detection is used,
detection errors
may occur

Fu et al.
[47]; Fang
et al. [48]

hardhat Deep Learning

(1) Use Faster-R-CNN to
automatically detect
image features

(1) Real-time
detection with
high precision and
high recall rate can
be achieved in
different scenarios,
which can reach
95.7% and 94.9%
respectively

(2) It can effectively
detect the staff in
the far-field
surveillance video

(1) When faced with
problems of
occlusion and
weak light, the
detection accuracy
is very low

Fang et al.
[15] harness Deep Learning

(1) Faster-R-CNN for
detecting the presence of
workers

(2) Deep CNN used to
identify the harness

(1) The detection
accuracy is as high
as 99%

(2) Overcoming the
difficulty of using
the detection
harness

(1) Affected by light
and object
occlusion



Buildings 2021, 11, 409 12 of 27

Table 1. Cont.

Reference Object(s) Algorithm
Model Methods Contributions Limitations

Li et al.
[49] hardhat Deep Learning

(1) SSD-MobileNet algorithm
based on CNN

(1) The real-time
performance and
speed of detection
have been greatly
improved

(2) It does not require
manual feature
selection, has
better image
feature extraction
capabilities, and
has higher
accuracy and recall

(1) When the image is
not very clear, the
helmet is too small
or the background
is too complicated,
the detection
performance is
poor

(2) Affected by object
occlusion

Huang
et al. [46] hardhat Deep Learning

(1) Use the YOLO v3
algorithm to locate the
head area

(2) Calculate the color pixels
of general helmets

(3) Assignment
(4) Calculate the confidence

of wearing standard
(5) Compare the test results

(1) In a complex
construction scene,
it can be judged
whether the
hardhat exists in
the screen and
whether it is worn
on the head area

(2) Real-time
performance is
very good

(1) The function of the
algorithm is still
not powerful
enough and needs
to be extended
(such as the
recognition
function of
personnel, etc.)

These studies show that CV-based object detection technology can effectively monitor
the PPE use of workers at construction sites. The technology also provides early warning
in time and obtains the photos and videos of construction sites through multi-directional
cameras. This will not affect the construction process, and the scope of its monitoring is
very wide. It becomes convenient to not have managers walking around and patrolling.
In addition, from the statistical machine learning method that relies on feature detector
+ SVM to the deep learning method that depends on CNN, its accuracy and speed of
target detection are also improving; nevertheless, it still has some technical limitations and
challenges, such as insufficient in-depth understanding of the scene, some visual masking
problems and the inaccurate recognition and detection of small targets (e.g., protective
gloves, goggles, etc.).

4.1.2. Posture Recognition during Construction

In previous studies, many scholars stated that the inappropriate working postures
of construction workers are the main cause of safety accidents [19,38]. Behavior-based
safety (BBS) has become a trend in safety research. Traditional BBS requires managers to
conduct human observation and on-site monitoring to understand unsafe behavior and
postures that cause accidents [2,10,11]. Nevertheless, this manual observation method
has some limitations, such as high costs and low efficiency [10]. The computer vision
behavior monitoring methods can help to address these limitations. For this kind of
research, CV-based action recognition technology has achieved remarkable results [10,50].

Workers are a dynamic subject at construction sites, and they perform different activi-
ties and have varied action patterns (e.g., bending, lifting, climbing). It is of great impor-
tance to identify these actions for the purpose of effective safety management. To prevent
false detection of human bodies appearing in the static background area, Peddi [51] pro-
posed a human action recognition method based on the background subtraction. Although
this method is not restricted by certain conditions (e.g., light source), the image quality ob-
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tained is rough (Figure 10). Combined with the follow-up research of Seo et al. [38] and Liu
et al. [52], this behavior detection method can be divided into four steps, including tracking
the main body of workers, using the algorithm model to check the background perform
segmentation, using histograms to extract features and using classifiers to classify data.
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Figure 10. Background subtraction legend. Reproduced with permission from ref. [45]. Copyright
2012 Elsevier.

While CV-based deep learning has not been widely used, researchers used depth
images and stereo cameras to obtain dynamic image information of workers so as to obtain
higher-resolution images. In particular, the use of Kinect and RGB-D motion sensors
has enabled researchers to extract clear and rich human motion information. Different
from two-dimensional images, researchers can capture more details about the postures of
different parts through the three-dimensional images. The most representative one is the
extraction of the 3D human skeleton model proposed by SangUK Han [53]. Han et al. [53]
proposed a basic framework for motion classification, which contains three basic elements,
including three-dimensional motion information data collection, feature extraction and
motion classification. This framework is the foundation of the subsequent research on the
motion classification prediction. Many subsequent studies used the method of extracting
3D human skeleton model from motion data to further analyze and process the data and
classify, identify and predict the workers’ actions [11,35,50,54]. The process can be divided
into five steps, including extracting 3D motion data information (Figure 11), reducing the
dimensionality of the motion data (dimensionality reduction), using a suitable model such
as Gaussian Process Dynamic Model (GPDM) to model the average trajectory of samples in
low-dimensional space, using related algorithms (e.g., dynamic time warping) to measure
the distance between the average trajectory and the motion data set, and classifying actions
based on distance (support vector machine SVM is generally used).
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Nowadays, deep learning has been used to explore the behavior recognition of con-
struction workers [30,54–56]. In the field of deep learning, the development of various
neural networks has made the recognition of workers’ actions more automated. A close
examination of the historical studies found that some common deep learning methods,
such as a convolutional neural network (CNN), a deep neural network (DNN) and a re-
current neural network (such as LSTM), have been applied in the field of worker behavior
recognition. For instance, Zhang et al. [56] and Chu et al. [57] used 2D camera to obtain
images and combined them with multi-stage CNN to extract 3D joint information so as
to make classification judgment on workers’ postures. Ding et al. [30] proposed a hybrid
deep learning model based on CNN and LSTM to automatically identify workers’ unsafe
behavior. Son et al. [58] proposed the use of depth residual network (Resnet-152), which
is one of the classic CNN models, to detect construction workers accurately and quickly
in different poses and background in image sequences. Kong et al. [59], Yu et al. [60],
Yu et al. [61] and Yu et al. [62] proposed an automatic workload evaluation method by
combining CV-based deep learning with intelligent insole pressure sensor and biomechan-
ical analysis. Zhao et al. [63] proposed the use of a DNN model to identify the postures
of construction workers based on the motioning data captured by the wearable inertial
measurement unit (IMU) sensor. Table 2 summarizes the research in the field of worker
behavior recognition.

Table 2. Research details of behavior recognition.

Reference Algorithm
Model Methods Type of

Data Contributions Limitations

Seo et al. [38];
Liu et al. [52]

Statistical
Machine
Learning

(1) Online tracking
(2) Background subtraction

and Region of Interest
(ROI)

(3) Feature extraction based
on shape and radial
histogram

(4) Sports classification
(using K-Nearest
Neighbor or SVM)

2D
image

(1) The classification
accuracy of
unsafe postures
is better than
human
observation

(2) The practical
performance is
also good

(1) The image is not
clear enough

(2) The ability to
distinguish
between
different
postures still
needs to be
improved
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Table 2. Cont.

Reference Algorithm
Model Methods Type of

Data Contributions Limitations

Han and Lee
[11]; Seo et al.

[35]; Han
et al. [50];
Han et al.

[64]

Statistical
Machine
Learning

(1) Extract 3D human
skeleton model from
motion data; common
motion capture systems
include VICON, JVC 3D
Everio Camcorder,
Microsoft Kinect Senor,
RGB-D Senor

(2) Kernel PCA is usually
used to reduce the
dimensionality of motion
data

(3) Model the average
trajectory of samples in
low-dimensional space,
such as using Gaussian
Process Dynamics Model
(GPDM)

(4) Use the DTW algorithm to
measure the distance
between the average
trajectory and the motion
data set

(5) Use a classifier to classify
according to distance
(SVM is the main)

3D
image

(1) The visual
capture system is
easy to use and
low cost

(2) Uninterrupted
labor movement

(3) Wide tracking
range

(4) The detection
accuracy of
unsafe actions is
high, especially
when combined
with joint
direction
information data,
the accuracy is as
high as 99.5%

(1) Sensitive to light
source, not
suitable for
outdoor
construction
detection

(2) The accuracy of
the 3D skeleton
extracted from
the video needs
to be verified

(3) Various types of
unsafe behaviors
need to be tested

(4) Two-
dimensional
pose estimation
needs to verify
the generalized
training data set

(5) Privacy issues of
video recording

Zhang et al.
[56];Chu et al.

[57]

Deep
Learning

(1) Use a single 2D camera to
obtain a 2D skeleton

(2) Using multi-stage CNN
structure to extract 3D
joint positions and joint
angles as classification
features

(3) Train the postures of the
arms, back and legs and
perform classification
evaluation

3D
image

(1) The recognition
accuracy of the
three body parts
is as high as
98.6%, 99.5% and
99.8%

(2) This method can
realize reliable
and accurate
efficacy
evaluation

(1) Errors in the
position
information of
some joints and
bones will cause
classification
errors

Ding et al.
[30]

Deep
Learning

(1) Use CNN to extract visual
features from video

(2) Sort the learning features
supported by the LSTM
model

2D
image

(1) Ability to
automatically
extract and
classify unsafe
behaviors

(2) The accuracy of
behavior
detection
exceeds the
current
state-of-the-art
method

(1) Further
understanding
of the
background of
spatio-temporal
information is
needed

(2) Need to pay
attention to the
actions of
multiple equip-
ment/workers in
the video frame
at the same time
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Table 2. Cont.

Reference Algorithm
Model Methods Type of

Data Contributions Limitations

Son et al. [58] Deep
Learning

(1) Extract feature maps
through the deep residual
network (ResNet-152)

(2) Bounding box regression
and labeling of the
original image through
Faster regions with CNN
feature (R-CNN)

2D
image

(1) Using ResNet
can accurately
and quickly
detect multiple
workers in the
image without
relying on
limited
assumptions
about the
worker’s posture,
appearance and
background

(1) Accuracy,
precision and
recall rate still
need to be
improved

Kong et al.
[59]; Yu et al.
[60]; Yu et al.
[61]; Yu et al.

[62]

Deep
Learning

(1) Use DL algorithm
(hourglass network) to
estimate
three-dimensional joint
coordinates

(2) Estimate external load
based on plantar pressure
data

(3) Estimation of joint bearing
capacity based on
anthropological
parameters

(4) Calculate joint torque
based on joint
three-dimensional
coordinates and external
load

(5) Evaluate workload based
on joint torque and joint
capacity

3D
image

(1) Combining CV,
pressure sensor
technology and
biomechanical
analysis, a new
automatic
workload
assessment
method is
proposed

(1) There is still a
certain error in
the measurement
of the joint
position

Zhao et al.
[63]

Deep
Learning

(1) Using a DNN model that
integrates CNN and two
LSTM layers, it can
automatically perform
feature engineering and
sequential pattern
detection

2D
image

(1) The
convolutional
LSTM model is
better than the
traditional
ML-based model

(1) Insufficient
sample size

(2) Model
performance still
needs to be
improved

According to these studies, CV-based action recognition has developed rapidly in
recent years. From the background-subtraction-based rough estimation to the development
of the depth camera and the current depth learning methods, the capture of human
postures is becoming more and more accurate. At the same time, with the addition of time
information, real-time detection has also been greatly improved. However, the motion
postures of human body are changeable, and the current motion data set cannot include all
of these postures. In addition, the measurement of motion vectors involving human bones
and joints will produce certain errors (e.g., rotation angle, spatial orientation), which will
affect the detection accuracy. The research in this field still faces many challenges.
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4.2. Interaction between Workers and External Environment

A construction site is a dynamic and complex system, which is characterized by
the interaction of construction workers with the external environment that includes con-
struction equipment, materials and other objects [19]. When workers interact with the
external environment in an inappropriate manner, they expose themselves to dangerous
environments [10]. Historical investigations revealed that around 58% of occupational
safety accidents are caused by construction equipment collisions [65] and about 40% of
them are caused by falls from heights [66,67]. These two types of accidents are the most
common ones at construction sites. It is a research hotspot to explore the use of computer
technologies in effectively monitoring and pre-controlling these two types of accidents at
construction sites.

4.2.1. Monitoring of Collision Accidents

Hinze et al. [68] found that collision accidents are associated with equipment, workers
and environment, and the authors stated that the combined effects of these three had a
significant impact on the occurrence of collision accidents. Zhang et al. [69] pointed out
that the two main factors that lead to collision accidents include close contact between
workers and construction equipment and the overcrowding of workers and equipment
during construction. Researchers use real-time positioning and tracking of workers and
construction equipment to detect their locations in order to measure their proximity. When
there is a potential inappropriate spatio-temporal relationship, there will be real-time
warnings provided to workers to minimize the occurrence of collision accidents. In this
process, resource location and tracking technology has become the core. To prevent
construction accidents, previous studies have also explored the use of sensor technologies
(e.g., GPS, RFID, UWB) to determine the proximity between workers and equipment and
compare preset thresholds to detect the risk of collision [69]. The construction site has a
large area and includes a large number of people, and the installation of sensors is time-
consuming and costly. Because of the low cost and applicability of CV-based object tracking
technology, it has been widely used in the monitoring of such accidents.

The monitoring of collision accidents is usually to detect and track the entities (e.g.,
workers, equipment) at construction sites and determine the potential danger caused
by proximity or crowding. When CV-based deep learning has not been widely used,
researchers tend to combine video cameras with HOG + color feature description, HOF
optical flow histogram, SIFT and other methods to detect the existence of building site
entities. This method heavily relies on the manual feature extraction from traditional
machine learning and pattern recognition [17]. With the development of deep learning
(especially CNN) technology, the monitoring of entities in building scenes has gradually
become automated [70].

Based on the CV and fuzzy reasoning, Kim et al. [71,72] proposed a safety assessment
system in the moving entity collision accident scene. The system uses image acquisition
and wearable devices to detect and track a scene entity and evaluates the safety level of each
object based on fuzzy reasoning, which provides early warnings to workers through the
danger information displayed by the visualization module. Based on the research findings
of Kim et al. [71], Zhang et al. [69] fused CV-based deep learning with the fuzzy reasoning
process. Kim et al. [73,74] proposed a visual monitoring method based on unmanned
aerial vehicle (UAV) to automatically measure the proximity between construction units,
which can detect the risks around workers in advance through UAV + computer vision to
facilitate timely intervention. Tang et al. [75] and Cai et al. [76] designed a context-aware
LSTM method that used visual data with rich context information to predict workers’
trajectories. This model integrated individual movement information and context infor-
mation (including entity movement information, work group information and potential
destination information). Jeelani et al. [77,78] combine eye-tracking technology with CV,
collect the workers’ gaze points on three-dimensional point clouds by using wearable eye
movement instruments, automatically locate their gaze points to analyze their viewing
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behavior and calculate their attention distribution. This method of using workers’ first per-
spective (FPV) is helpful to design safety measures and strengthen safety training. Jeelani
et al. [79] applied the deep learning algorithm to the semantic segmentation of the visual
scene around workers, which improves the accuracy of danger detection. Yan et al. [37]
proposed a three-dimensional space congestion estimation method, which generates a
3D space from 2D video frames for proximity and congestion calculations. Son et al. [80]
proposed a real-time early warning system that used monocular cameras on both sides
of heavy equipment to acquire data in three dimensions (3D) and estimate the location
of workers to detect possible collisions. Fang et al. [81] combined semantics and prior
knowledge into monocular vision to derive the location information of construction-related
entities at construction sites. By using the excavator as an example, Yuan et al. [17] used the
three-dimensional tracking and positioning technology to prevent workers from moving
close to hazards. Guo et al. [82] detected the dense vehicles in UAV images by using
the CNN end-to-end method. Luo et al. [83] proposed the use of CV and deep learning
technologies to track the location and operation status of different types of building equip-
ment in surveillance video and designed an automatic estimation framework. Table 3
summarizes the research on the collision risk between workers and construction entities.

Table 3. Research details of collision between workers and construction entities.

Reference Test Purpose Methods Contributions Limitations

Kim et al.
[71,72]

On-site safety
assessment for

collision
accidents of

moving entities

(1) Use GMM as
background
subtraction

(2) Kalman filter for target
tracking

(3) Fuzzy theory set to
simulate the reasoning
process of experts

(1) Fusion of CV
technology and fuzzy
reasoning

(2) Automatic utilization
of professional safety
knowledge

(3) The interaction of
multiple risk factors
can be displayed
through the
visualization module

(1) The vision processing
algorithm still needs to
be improved, and the
detection accuracy and
tracking consistency
need to be improved

(2) Affected by light and
occlusion

Zhang et al.
[69]

On-site safety
assessment for

collision
accidents of

moving entities

(1) The Faster-R-CNN
model constructs fast
regions for detection

(2) Use the Matlab fuzzy
inference toolbox to
take the proximity and
congestion in the
digital image as the
main information

(1) Fusion of CV
technology and fuzzy
reasoning

(2) Set thresholds to
improve collision risk
management
capabilities

(3) Non-contact
measurement

(4) Automatically identify
workers and
equipment through
images

(1) The effect of real-time
warning is not good

(2) The evaluation is based
on a 2D scene, which is
deviated from the real
3D scene

(3) Equipment types are
not diversified enough

Kim et al. [73]

Proximity
analysis

through UAV
system

(1) Deep neural network
YOLO-v3 for target
positioning

(2) Develop an image
correction method that
allows to measure the
actual distance of the
2D image collected
from the drone

(1) Estimated average
absolute distance error
<0.9 m, average
absolute percentage
error 4%

(2) Able to predict the
collision hazard around
workers in advance

(1) The calculation
efficiency of the
rectification method
needs to be improved

(2) Need to build an IoT
cloud integration
system
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Table 3. Cont.

Reference Test Purpose Methods Contributions Limitations

Tang et al.
[75]

Predict the path
of workers and
equipment to

prevent
proximity
collision
hazards

(1) Long-term prediction
through the
embedding of LSTM
and contextual clues

(2) Collect large-scale
trajectory data set
Voyager to verify

(1) The displacement error
is smaller than the
model that only
depends on the target
movement

(2) The pixel value of the
positioning error is also
very small

(1) Not suitable for
long-distance trajectory
prediction

(2) The accuracy of the
location still needs to
be improved

Jeelani et al.
[77,78]

Wearable
technology
real-time

tracking and
danger warning

(1) Use SIFT feature
extraction and 3D
reconstruction to
pre-identify the region
of interest

(2) Analyze gaze behavior
and identify
predefined hazards

(1) Save time
(2) High degree of

automation and high
recognition accuracy

(1) The experiment time is
too short

Jeelani et al.
[79]

Wearable
technology
real-time

tracking and
danger warning

(1) Worker positioning
(2) Use Mask-R-CNN to

semantically segment
the visual scene around
workers

(1) The detection accuracy
rate of workers
approaching danger
exceeds 93%

The system cannot determine
the distance between the
worker and the dynamic
dangerAny visible danger in
the frame will trigger an
alarm

Fang et al.
[81]

Proximity
analysis of

related entities

(1) Use Mask-R-CNN to
identify and segment
related entity
structures

(2) Using a priori
knowledge model to
estimate the location of
equipment, workers
and materials in
various scenarios

(1) The positioning errors
for excavators, workers
and steel piles are
reduced to 0.367, 0.132
and 0.148 m
respectively

(1) The occlusion of key
parts will affect the
results

Yan et al. [37]

Analysis of
workers’

congestion in
construction

scenes

(1) Faster-R-CNN detects
workers

(2) Worker 3D joint
position estimation

(3) Extraction of view
invariant features to
estimate the distance
between the worker
and the camera lens

(1) Average error of
two-dimensional
proximity between
workers <0.4 m

(1) The problem of
occlusion

(2) Long-distance
measurement problem

Yuan et al.
[17]

Heavy
equipment

positioning to
prevent

approach
hazards

(1) Use optical flow
estimation for edge
extraction and
two-dimensional
detection

(2) 2D tracking and 3D
triangulation

(1) Provide a template
generation method
based on geometric
shapes and motion
constraints to detect
architectural entities

(1) Different tracking
speed and distance will
affect drift error

(2) The problem of
occlusion of nodes

Guo et al. [82]
Congestion of

equipment
(dense vehicles)

(1) DL-based end-to-end
network OAFF-SSD for
feature detection

(1) Adding the fusion
feature module, the
detection accuracy is
higher

(1) Real-time performance
is not good enough
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These studies prove that the CV-based resource tracking and positioning technology
can obtain the time track and real-time positions of detection objects at construction site. It
helps to avoid the constraints of traditional resource trackers and plays important roles
in the analysis of workers’ proximity risk and crowding. However, a construction site
is a dynamic system, which is more complex than expected. This means that there are
difficulties in the measurement of trajectory and positions, and different kinds of errors
may occur. In addition, when the attributes of tracking objects are complex (e.g., tracking
a group, a specific position of the body), it performs not well. These problems should be
addressed in future studies.

4.2.2. Monitoring Fall Accidents

The main cause of fatal injuries is the fall of workers from high places. A close examina-
tion of historical studies found that there are few explorations about monitoring the falling
accidents by using the CV technology. Kolar et al. [67] stated that as unprotected edges
are the cause of workers falling from height, the focus should be on real-time detection of
safety barriers. This study proposed a CNN-based security guard rail detection model. The
data set is generated and trained by adding background images to the three-dimensional
model of guardrail. The basic feature extraction of neural network is constructed by using
VGG-16 and verified by images. Fang et al. [84] pointed out that the main reason for falling
and falling from height are that workers walk on unstable engineering structures (e.g., steel
bars, concrete). To solve this, Fang et al. [84] developed an automatic CV method, and this
method uses a Mask-R-CNN to detect individuals who pass through the structure support
during construction. The method includes the two modules: (1) the Mask-R-CNN module
used to detect structural support and personnel and an (2) overlapping detection module
used to identify the relationship between human and structural support.

5. Research Challenges and Future Study

Although CV technology has been widely used to monitor the unsafe behavior of
workers at construction sites and has made a considerable contribution to the improvement
of construction site safety, its development and application in this field still face some
challenges. This sector discusses the common problems in the use of CV technology to
monitor the unsafe behavior of construction workers. On this basis, this study suggests
potential solutions and future research directions.

5.1. Object Detection Level
5.1.1. Deeper Scene Understanding

Through sorting and summarizing previous studies, it was found that object detection
technology can detect some specific and interested project entities from images of construc-
tion sites and further evaluate their possible unsafe behaviors. However the understanding
of scenes is often not comprehensive in project management. The object detection technol-
ogy can only detect objects in certain scenes, and the understanding of “the whole scene” is
still complex and challenging. This requires the in-depth mining, extraction, understanding
and reasoning of scene semantic information, and few studies explored such areas.

To obtain more comprehensive scene understanding information, scholars should
further combine CV technology with some professional knowledge theory sets, such
as fuzzy reasoning [69]. Scholars should also reveal the interaction between multiple
risks through more comprehensive visualization module information. In addition, 3D
reconstruction technology (e.g., the 3D point cloud technology) can also obtain more
comprehensive scene space information [77,79].

5.1.2. Visual Occlusion Problem

Visual occlusion is the most common problem when using CV technology. When a
worker is partially or completely obscured by some objects, most vision-based methods
cannot detect and monitor the worker. In addition, when the worker’s back is towards
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the camera, the joints of his body’s limbs will be blocked by his own body. This is the
“self-occlusion” phenomenon [11]. In this situation, some postures of the worker cannot be
accurately identified and classified.

There are two currently proposed solutions to deal with this problem, including
adjusting the camera positions and increasing the number of cameras [16]. By adjusting
the camera positions (e.g., placing the camera as high as possible), the whole body of a
worker can be observed as comprehensively as possible, and this can reduce the chance
of occlusion. In addition, by placing multiple cameras at construction sites, a wide site
coverage can be provided. This helps to reduce some monitoring blind spots. However,
when a construction site is crowded with workers and equipment, the multi-camera method
becomes ineffective. The second type of method is adopting more optimized deep learning
methods (e.g., Faster-R-CNN) [10]. Even if some workers’ movements are not detected
immediately due to partial occlusion, the relatively fast processing speed of such algorithms
can still detect these workers’ movements in the next video frame [15]. However, it should
be noted that even the best algorithms still cannot detect some occluded entities accurately
due to the constraints of technologies, which should be one of the future research directions
in this field.

5.1.3. Detection of Small Objects

The current object detection technology is able to capture some objects in construction
scenes, and its detection accuracy is also very high. However, when it detects some objects
with small unit volume, it shows low accuracy. Researchers changed the distance between
cameras and workers to solve this problem. Thus, cameras are placed near workers to
detect small objects [50,64]. However, this method cannot solve the fundamental problem
and can only monitor a small range of workers.

Most researchers believed that improving the resolution of video images is the key to
solve this problem. When images are clearer, it will be easier for researchers to capture some
small targets. Therefore, future research should focus on reconstructing the corresponding
high-resolution images from the observed low-resolution images. This means there is a
need of more in-depth research on the “super-resolution technology” [85–87].

5.2. Action Recognition Level
5.2.1. Larger Action Sample Size

Many historical studies mentioned the problem of sample size and data set. When
workers are performing construction activities, their movement postures are constantly
changing, and there are also diverse types of action involved. Nowadays, most of the
algorithm models contain relatively fixed target motion in the motion data set [88]. For
example, the data set selected by Kim and Cho contains 14 kinds of target motions. Al-
though this motion data set contains various target motions, more than half of them are
walking-related [88]. There are many other movements that have been ignored.

Therefore, future research needs to collect more general and larger data sets from
actual construction workers. Deep networks can capture sufficient visual features from
data sets [89]. Especially by using long-term and short-term memory (LSTM) model [30],
deep networks can obtain time series data sets containing action repetition and duration
information. Therefore, with the support of DL method, the motion image information
contained in the worker motion data sets will be more comprehensive.

5.2.2. Problems of Detection Accuracy

In recent years, with the continuous development of deep learning, the accuracy of
worker action recognition is getting higher and higher. Nevertheless, the measurement of
human bodies will inevitably produce errors, especially the measurement of some motion
vectors involving human bone joints, such as joint rotation angle, rotation direction and
bearing pressure and load. This will have impacts on detection accuracy.
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Therefore, it is suggested that future research can continue to explore more advanced
depth learning algorithms and combine them with some other technologies (e.g., biome-
chanical analysis, pressure sensor, gravity accelerometer, etc.) [59,60,62,90–92] to realize
more automatic human physical information extraction and more accurate pose estimation.

5.3. Object Tracking Level
5.3.1. Construction of 3D Space

When tracking moving entities at construction sites, many researchers prefer viewing
construction sites as a 2D plane, as most of the motion modes are linear. Nevertheless,
as a construction site is a 3D space, the danger faced by workers may come from all
directions. Consequently, there will be corresponding errors in the prediction of distance
and trajectory.

Therefore, the future research should be devoted to tracking target entities in the
context of 3D space and applying the 3D sensing equipment to the monitoring system [69],
which helps to detect the surrounding hazards in a more comprehensive manner.

5.3.2. Irregularity of Object Motion

In the process of object tracking, some physical properties of tracked objects affect the
tracking accuracy due to the irregularity of motions.

The first is the deformation of tracking objects. In the process of moving objects, its
appearance will change constantly. At this time, the filter is constantly updated, and the
updated filter cannot guarantee to fully track the target of the next frame, which usually
leads to tracking drift [93]. Therefore, it is suggested that future research focus on two
aspects: (1) constantly updating the apparent model of objects to adapt to the changes of
the apparent model and (2) control the update of filters.

The second is the scale transformation of tracking objects. Scale transformation refers
to the phenomenon of scale change from far to near or from near to far during the movement
of targets. Predicting the size of a target frame is also a challenge in object tracking. How
to predict the scale change coefficient of the target quickly, accurately, and directly affects
the accuracy of tracking [94]. In response to such problems, there are some methods. For
instance, when generating candidate samples in the motion model, a large number of
candidate boxes with different scales can be generated. Or, objects on multiple targets with
different scales can be tracked, which helps to generate multiple prediction results and
select the best one as the final prediction target. These methods also point out directions
for further research in the future.

In addition, there is also the problem of motion blur, which refers to the blurring of a
target area caused by the movement of objects or cameras. This will make the tracking effect
poor. To deal with such a problem, the mean shift tracking method can perform well [95]. It
can obtain information from fuzzy motions and complete the object tracking task. Therefore,
to address this problem, the future research can still focus on the CV + mean shift algorithm.
It is worth mentioning that some new tracking algorithms need to be developed.

5.4. Some Supplements at Other Levels

Construction activities are complex and dangerous, which depends on the coordina-
tion of various parties. Many countries educate their construction workers safety skills
through training programs and check safety knowledge through qualification and certifi-
cation tests. However, there are still many construction workers who have not received
the corresponding certification, which poses various threats to construction safety [96,97].
In future research, it is suggested to use vision-based personal identification to address
such challenge. Face recognition is carried out through the visual system. Once workers
who have not obtained the corresponding safety certification or construction workers
who violate safety regulations are found, the system will provide real-time warnings and
formulate relevant punishment measures. This will help to strengthen construction safety.
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Therefore, in future research, CV-based worker identification and construction qual-
ification certification technology should also be developed that can not only prevent
irrelevant personnel from entering construction sites but also ensure a high level of
construction safety.

6. Conclusions

Computer vision (CV) technology has been used to monitor the unsafe behavior of
construction workers. Using bibliometrics and content-based literature analysis methods,
this paper provides a comprehensive literature review of historical related studies in this
field. On this basis, the study points out the existing limitations and challenges and
suggests future research directions.

First of all, this study briefly described background on developing CV technology
and the roles of CV technology in monitoring construction sites. In addition, the collected
studies were statistically analyzed by using the bibliometric methods, and the research
trends and hotspots in this field were also clarified. Moreover, the historical research con-
tents were explained from two perspectives, including workers’ own perspective and the
perspective of the interaction between workers and construction environment. In summary,
the study reveals the existing research on the application of CV technology in monitoring
the unsafe behavior of construction workers in a systematic and comprehensive manner.

Although the application of CV-based object detection, object tracking and action
recognition technologies have made progress in the field of construction safety monitoring,
it still has limitations and challenges. In terms of object detection, research on scene under-
standing, visual occlusion and small target detection is still not deep enough. Regarding
object tracking, its accuracy is affected by the complex 3D building environment and the
irregularity of tracking object motions. In terms of action recognition, the lack of sample
size of motion data sets and the accuracy of human posture capture often bring confusion
to relevant researchers. In view of these limitations and challenges, the corresponding
research directions have been suggested. It is hoped that these limitations and challenges
can be solved in future research.

It is expected that this article will not only enhance stakeholders’ understanding the
use of CV technology in monitoring the unsafe behavior of construction workers but also
provide valuable insights for the CV-based safety and health management in practice.
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