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Abstract: Buttressed arches represent some of the most vulnerable elements in historical masonry
buildings under seismic actions. Given their structural, architectural and often artistic importance, it is
paramount to investigate effective retrofitting measures which satisfy reversibility and compatibility
requirements for historical heritage. Among these, Fibre-Reinforced Mortar (FRM), characterised
by enhanced ductility, has recently emerged in the scientific literature. In this paper, a numerical
investigation aimed at exploring the effectiveness of this seismic retrofitting technique, when applied
at intrados or extrados of various typologies of buttressed arches, is presented. An automatic tool
for limit analysis is described and validated against a nonlinear Discrete Macro-Element modelling
approach. This precedes an extensive parametric analysis, which has highlighted the effect of various
geometrical features of the system on both collapse mechanism and maximum acceleration in the
unreinforced configuration, and the high increase in seismic capacity provided by the retrofitting.
This is particularly remarkable in case of local mechanism, i.e., wholly within the arch, in which case
the FRM may be responsible of an overall shifting to a semi-global failure type.

Keywords: limit analysis; Fibre Reinforced Mortar; fracture energy; collapse; historical buildings

1. Introduction

Most historical and artistical heritage in Europe and worldwide is made of unrein-
forced masonry (URM). Palaces, worship places and infrastructures represent distinctive
features of any inhabited territory, and ought to be assessed, preserved and, if needed,
enhanced in order to withstand anthropic and natural actions expected during their life.
Focussing on seismic loading, masonry arches and vaults represent some of the most
vulnerable elements of ancient structures [1] and thus in the last decades a significant
research effort has been devoted to their assessment and retrofitting. Some recent studies
have targeted the very common configuration constituted by semicircular arches with but-
tresses [2–4], highlighting the need for further developments regarding seismic vulnerabil-
ity assessment and retrofitting design of this structural typology. Parametric investigations
on the seismic capacity of URM buttressed arches of different shapes are reported in [5,6],
also providing a comparison between different modelling methods.

The main traditional retrofitting techniques used in practice to increase the structural
capacity of arches and vaults are tie rods or buttresses counteracting the thrust, which
produce a significant change in the aesthetics and mechanical behaviour of the original
structure. Other methods as Fibre Reinforced Polymers (FRP) in form of sheets or plates
have proved very effective in terms of strength increment [7], but they do not satisfy com-
patibility and reversibility prescriptions for heritage structures. Furthermore, delamination
often precedes failure of reinforcement, whose larger strength cannot thus be achieved;
also, epoxy resins, in addition to the high costs and the need for specialised personnel in
the installation, suffer from degradation in case of exposure to high or low temperatures,
fire, ultraviolet rays, water and alkaline environment. Studies involving experimental tests
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and analytical/numerical modelling of FRP-reinforced arches and their main failure modes
are reported in [8,9].

From the point of view of compatibility with existing materials, the use of lime-based
mortar as re-pointing or surface treatment would represent the optimal material, but its
low tensile strength and high brittleness make it unsuitable as a retrofitting technique. For
this reason, lime-based or cementitious mortar is usually coupled to polymeric [10,11]
or natural [12,13] meshes that act as embedded reinforcement and modify the structural
strength and ductility (Fabric-Reinforced Cementitious Matrix, FRCM). In [14], an extensive
set of over 400 tests from the literature is analysed to determine the effectiveness of
inorganic composite materials to enhance in-plane shear capacity of URM walls, with the
proposal of shear stress amplification factors. The widespread use of FRCM as retrofitting
technology is also testified by the release of standards ruling acceptance criteria for FRCM
application [15] and design and construction of strengthening systems [16]. Another
innovative approach recently proposed is the introduction of short fibres of various type
in the mortar paste [17]. The role of the fibres mainly consists of ensuring a more ductile
post-cracking performance of the Fibre Reinforced Mortar (FRM) system. Factors that
affect the retrofitting capability of FRM are the matrix composition (cement, lime, gypsum,
pozzolana, additives, the presence of short fibres, etc.), type of fibre (carbon, glass, PBO,
steel, basalt, etc.), fibre size and fibre orientation. This reinforcement method has been
recently proposed for retrofitting masonry walls [18] and arches and vaults [19] leading
to very promising results, even though in some cases high stiffness and strength of the
reinforcement led to a significant brittleness and unexpected failure modes in the arch. The
use of lime-based composites with low strength and stiffness and high ductility seems
the most indicated approach for reinforcement of ancient vaults and arches, satisfying
compatibility and reversibility requirements and providing effective enhancement to the
seismic behaviour of the system.

In this paper, an extensive numerical investigation on the seismic behaviour of un-
reinforced masonry arches with buttresses and the effectiveness of FRM reinforcement is
presented. An ad-hoc automatic tool was created for parametric limit analysis of arches
with reinforcement in the form of FRM mortar layer applied at intrados or extrados of the
arch. The role of buttresses in the collapse mechanism is analysed on various typologies
of arches, from semicircular to various pointed arches, with the aim of highlighting the
configurations where such reinforcement can be more appropriate.

2. Methods
2.1. Limit Analysis of Buttressed Arches

The most advanced methods of analysis for arches and vaults are based on Finite
Element [20] or Discrete Macro-Element [21] modelling, with several variants existing
in the literature. These approaches allow for a detailed geometrical and mechanical
description of the system, but present two main problematic aspects: (1) the complete set of
material parameters may be difficult to obtain, and uncertainty in some of them may have
unexpected effects on the response prediction [22]; (2) realistic masonry materials have
characteristics (softening, anisotropy, brittleness) which induce additional concerns on the
computational side, and often simulations suffer from lack of robustness. For this reasons,
parametric analyses, for instance aimed at informing large-scale assessment methods,
should be based on simple, robust yet reliable methods with reduced number of input
parameters [23]. Among these, since the seminal work of Heyman [24], limit analysis is
particularly suitable for the analysis of masonry arches and for this reason it is still widely
used in research and professional communities [25,26], even in combination with more
advanced methodologies [27].

Limit analysis of masonry structures is based on Heyman’s hypotheses:

1. Masonry does not have any tensile strength;
2. Masonry has infinite compressive strength;
3. Masonry has infinite shear strength, i.e., sliding between masonry parts cannot occur.
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In buttressed arches subjected to vertical and seismic loadings, the development of
a series of four flexural hinges, alternatively opening on the intrados or extrados, is a
necessary and sufficient condition to generate a collapse mechanism. In particular, three
mechanism types can be activated [28] (Figure 1):

(I) Local mechanism (L), with the formation of four hinges A, B, C and D within the
thickness of the arch, whose locations are identified through the angles αA, αB, αC
and αD, measured with respect the horizontal line;

(II) Global mechanism (G), characterised by the presence of two hinges at the pier basis
A (internal) and D (external) and two hinges B and C within the thickness of arch,
whose positions are defined by the angles αB and αC, respectively;

(III) Semi-global mechanism (S); characterised by the presence of one hinge D at the base
of the pier (external) and three hinges A, B and C within the thickness of the arch,
whose positions are identified by the angles αA, αB and αC.
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The development of the flexural hinges on the system leads to the identification of
three blocks, each of which rotates around its own centre of absolute rotation by an angle
ϑi. To maintain compatibility of displacements, the three rotations depend on a single
Lagrangian parameter ϑ, which without loss of generality may be set equal to the keystone
displacement. In the framework of small displacements, the rotations ϑi are linear functions
of ϑ, and are obtained from kinematic chains after identifying the position of the individual
centres of rotations Ci, i = 1, 2, 3. While centres C1 and C3 are easily located as the points A
and D, respectively, C2 comes from the sufficient and necessary condition of collinearity
between absolute and relative centres of rotation for all blocks.

Limit analysis can be carried out according to either the static or kinematic method.
In this paper, the second approach is used. According to the kinematic theorem of limit
analysis [28], given a loading state characterised by N constant static forces FS

i and M
incrementally increasing forces λFI

j , the multiplier λk for a pre-defined mechanism k is
obtained by writing the Principle of Virtual Works (PVW):

Wk
ext =

N

∑
i=1

FS
i · uk

i + λk
M

∑
j=1

FI
j · uk

j = Wk
int (1)
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where Wk
ext, Wk

int are the works done by external and internal forces for the virtual dis-
placements of the mechanism k, respectively, and uk

i is the displacement at the loading
application point i. From Equation (1) λk is evaluated as:

λk =
Wk

int(ϑ)− ∑N
i=1 FS

i · uk
i (ϑ)

∑M
j=1 FI

j · uk
j (ϑ)

(2)

If the static loads are the weight of the structure and the increasing loads are horizontal
forces proportional to the mass, Equation (2) specialises into:

λk =
Wk

int(ϑ)− ∑N
i=1 Wi · vk

i (ϑ)

∑N
i=1 Wi · uk

i (ϑ)
(3)

where Wi is the weight of the i-th block, and uk
i and vk

i are its horizontal and vertical
displacement at centroid, respectively.

Equation (2) for a given mechanism represents an equilibrium condition, and in
general the PVW may be applied to any deformed configuration to evaluate the multiplier
of a certain set of variable applied forces in order for them to be in equilibrium with the
constant loads. If the Lagrangian parameter ϑ univocally identifies the deformation of the
system, the solution providing the minimum multiplier among all the possible deformation
shapes is also the real solution of the structural problem:

λtrue(ϑ) = min
k

λk(ϑ) (4)

Wk
int in Equation (2) represents the internal work, and given its positiveness, always

represents an additional term to the collapse multiplier. We can identify different cases:

1. Elastic behaviour. In this case, the internal work reads Wk
int =

∫
Ω σσσ : εεε dΩ where Ω is

the domain volume. Since at collapse plastic deformations are usually much larger
than elastic, this contribution on the overall energy is usually disregarded and the
blocks are assumed to be rigid.

2. Perfectly plastic hinges. In this case a constant distribution of stresses is assumed
along the crack, equal to tensile strength σt (Figure 2a); the displacement profile is
linear and equal to u(x) = u0

t x, where u0 is the maximum crack opening, u0 = γt
with γ angular opening of the hinge, t the member thickness and x the local axis
parallel to the crack. The internal work of the i-th hinge becomes:

Wk
int,i =

1
2

σttu0(ϑ) (5)
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3. Not resisting hinge. This is the usual case in the analysis of masonry structures at
collapse. The internal work of the i-th hinge is null, Wk

int,i = 0.
4. Perfectly plastic reinforcement at intrados or extrados (Figure 2b). In this case, it is

possible to assume that upon crack opening the reinforcement is able to provide a
force equal to Fi = frein f · trein f with frein f tensile strength of the reinforcement and
trein f its thickness. The virtual work is Wk

int,i = Fi · u0(ϑ) if the hinge opens on the side
of the reinforcement, zero otherwise, since the contribution of FRM reinforcement can
usually be neglected in compression.

Focussing now on the plastic cases 2–4, in Equation (2) the dependence on the La-
grangian parameter ϑ is given by a first-degree homogeneous function for the displace-
ments uk and u0 in case of small rotations. If Wk

int is also first-degree homogeneous function
in ϑ, the dependency cancels out and the multiplier λk is independent on the amplitude of
the mechanism: this is the case of perfectly plastic hinge (2), not resisting hinges (3) and
perfectly plastic reinforcement (4). The perfectly plastic hinge is not relevant to masonry,
which is always characterised by quasi-brittle post-elastic behaviour in tension, and thus
will not be considered in the following.

2.2. An Automatic Tool for Limit Analysis of Buttressed Arches

Equation (4) represents an optimisation problem, where the load multiplier λ is
minimised by identifying the corresponding position of the four flexural hinges. To solve
the problem, an automatic tool aimed at finding the location of the hinges in the masonry
arches with side piers was implemented in the software Gmsh [29]. Gmsh is an open-source
3D finite element mesh generator with a built-in CAD engine and post-processor, with
the possibility of scripting. In particular (Figure 3), given a trial position of the hinges
αk = [αA, αB, αC, αD], a low-level script draws both the undeformed structure of the arch,
and the structure after the activation of the mechanism, simplifying the identification of the
blocks with the applied vertical and horizontal forces and centroid displacements uk

i , vk
i in

Equation (3), and allowing for the evaluation of the load multiplier λk(ϑ). The minimisation
of Equation (4) is carried out within Gmsh by a higher-level script by systematically
exploring various hinge positions α. The admissible hinge position is from 0◦ to 180◦, with
the addition of the base of the left pier, assumed conventionally as αA = −90◦, and the
base of the right pier, conventionally αD = 270◦.
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Figure 3. Flowchart of the Gmsh scripts to evaluate the arch collapse multiplier. 

The input data (Figure 4) concerns: 
a. the geometrical and material features of the structure including the reinforcement, in 

the form of a perfectly plastic layer at intrados, extrados or both sides. It is possible 
to define the tensile strength, the thickness and the ultimate displacement of the re-
inforcement layer, whose contribution is evaluated by introducing the relevant inter-
nal work in Equation (3) as per Section 2.1. 

b. the type of hinge: Not resisting or Fully plastic. Following the discussion in Section 2.1, 
the hinge constitutive behaviour modifies the internal work contribution; 

c. the type of variable horizontal forces: Concentrated in a point or Proportional to masses; 
d. optional additional static vertical forces;
e. the type of analysis: Evaluate, to evaluate a multiplier for a specific hinge position; 

Minimise, to evaluate the collapse multiplier solving the minimisation problem (4);
f. the discretisation Δα for the hinges, used in the collapse multiplier exploration; 
g. the user-defined keystone displacement; 

Set arch-pier geometry 
and input data 

Set trial αk 
Draw the underformed 

structure 

Subdivide structure at hinge position, 
identify blocks and centres of absolute 

rotation, apply rotations ( ) 

Evaluate displacements ui and multiplier 
λk 

Store λk 

Find collapse multiplier 
min(λk) and mechanism 

Higher-level script 

Lower-level script 

Figure 3. Flowchart of the Gmsh scripts to evaluate the arch collapse multiplier.
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The input data (Figure 4) concerns:

a. the geometrical and material features of the structure including the reinforcement, in
the form of a perfectly plastic layer at intrados, extrados or both sides. It is possible
to define the tensile strength, the thickness and the ultimate displacement of the
reinforcement layer, whose contribution is evaluated by introducing the relevant
internal work in Equation (3) as per Section 2.1.

b. the type of hinge: Not resisting or Fully plastic. Following the discussion in Section 2.1,
the hinge constitutive behaviour modifies the internal work contribution;

c. the type of variable horizontal forces: Concentrated in a point or Proportional to masses;
d. optional additional static vertical forces;
e. the type of analysis: Evaluate, to evaluate a multiplier for a specific hinge position;

Minimise, to evaluate the collapse multiplier solving the minimisation problem (4);
f. the discretisation ∆α for the hinges, used in the collapse multiplier exploration;
g. the user-defined keystone displacement;
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The output provided by the script consists of the weight, centre of mass and displace-
ment for each block into which the structure is divided by the hinges, the participating mass
ratio, the collapse multiplier and the ultimate keystone displacement. This is defined as the
keystone displacement for which the arch capacity loses the reinforcement contribution,
and, given the linearity of the system, is proportional to the ultimate displacement capacity
of ductile mortar, defined as input. This latter parameter is the maximum displacement at
which mortar still sustains the maximum strength in tension. The dimensionless ductility
of the arch δ∗ is defined as the ratio between ultimate keystone displacement δu, k and the
ductility capacity of mortar δu,m:

δ∗ =
δu, k

δu,m
(6)
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The participating mass ratio e* is calculated as [30]:

e∗ =

[
∑N

i=1 Wi · uk
i (ϑ)

]2

∑N
i=1 Wi · ∑N

i=1 Wi ·
[
uk

i (ϑ)
]2 (7)

Hence, the acceleration a* that activates the identified collapse mechanisms, related to
the specific value of λ, can be therefore calculated through:

a∗ =
λ · g

e∗
(8)

2.3. Parametric Analysis Settings

The automatic tool developed in Gmsh and previously described was exploited to
perform an extensive parametric analysis on the seismic capacity of buttressed arches and
to evaluate the expected enhancement due to the application of a FRM reinforcement at the
intrados, extrados or both side of the arch only, i.e., not on the buttresses.

The geometrical characteristic of analysed arches can be completely defined by the
following parameters (Figure 5):

- span (S), or, alternatively, half-span (s);
- arch thickness (t);
- eccentricity (e);
- arch rise (h);
- pillars base (B);
- pillar height (H).
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The geometrical parameters investigated have been defined as functions of the half-
span of the arch (s), which has been assumed in the analysis equal to 7.00 m. The different
typologies of arch investigated (semicircular arch and three configurations of pointed
arch, namely drop, equilateral and lancet), are therefore characterised by the ratio e/s, i.e.,
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between eccentricity, expressed as the distance of the centre of each half-arch that composes
it with respect to the central axis of the arch, and the half-span of the arch.

In order to perform comparative analyses, the following geometries were considered:

- e/s = 0 (Semicircular arch);
- e/s = 0.5 (Drop pointed arch);
- e/s = 1 (Equilateral pointed arch);
- e/s = 1.5 (Lancet pointed arch).

The thickness of the arches was instead defined by the following ratios:

- t/s = 0.125;
- t/s = 0.15;
- t/s = 0.175;
- t/s = 0.2.

The lowest value is slightly higher than the minimum thickness according to Heyman
for a semicircular arch to withstand its own weight (t/s = 1/9 = 0.11), while the highest
value roughly corresponds to a typical thickness observed in ancient Roman bridges.

From the Middle Ages derives the most widespread empirical rule for the sizing of the
piers, attributed to Father Dérand by Rondelet [31]: dividing the round or the pointed arch
in three equal parts, four points A, B, C and D are determined (Figure 6). With centre in the
extreme D and drawing a circle of CD radius, the projection of CD on the horizontal axis
determines the minimum thickness of the piers. It is possible to see that the application of
this rule to circular arches leads to a ratio B/s = 0.5 (t’ in Figure 6), while a pointed arch of
equal span needs a smaller pier thickness (t).
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Based on these considerations, pier thickness and height were defined based on the
semi-span as:

- B/s = 0.4;
- B/s = 0.5;
- B/s = 0.6;
- h/H = 0.5;
- h/H = 0.75;
- h/H = 1.

The specific weight of masonry was set equal to w = 19 kN/m3. The 144 configurations
identified were analysed in unreinforced conditions (UN), with reinforcement at intrados
(RI), at extrados (RE), or on both sides (RI-E). In the latter three cases, the reinforcement
was characterised by a thickness treinf = 30 mm, and a tensile strength freinf = 0.70 MPa,
which are typical though conservative design values for FRM mortar applications [17,32].
Given the difficulty of defining a typical ultimate displacement capacity of ductile mortar
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(δu,m), the results are then provided as dimensionless ductility of the arch δ∗, according to
Equation (6).

3. Results
3.1. Validation of the Automatic Tool

A validation of the automatic tool was performed considering the analytical results
shown in [33] regarding the limit analysis of semicircular buttressed arches. The system
having H

Rav
= 1.0, B

Rav
= 0.5, e = 0.0 was analysed at increasing t

Rav
. Consistently with [33],

the average radius Rav = R + t
2 is considered for the parametric analysis. The search for

the hinge location corresponding to the minimum load multiplier is performed by using
an angle interval equal to 15◦. The results are shown in Figure 7.
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The comparison with [33] shows a very good agreement, with only some minor
differences observed for low values of t

Rav
. This is due to the finite discretisation of the

possible hinge location, as opposed to the continuous minimum search in the analytical
formulation. The tool also correctly captures the change in collapse mode, from local to
semi-global, approximately observed at t

Rav
= 0.18, and the consequent stabilisation of the

collapse multiplier. This will be confirmed in the analyses in Sections 3.2 and 3.3
A further investigation on the results of the automatic tool for limit analysis of but-

tressed arches was performed considering the unreinforced system shown in Figure 8a.
To investigate the influence of various material parameters on the collapse multiplier, the
limit analysis results were compared with the results of a Discrete Macro-Element Model
(DMEM), created by means of Histra Arches and Vaults software [21]. The DMEM approach
entails the discretisation of the arch by means of plane irregular articulated quadrilateral
elements, endowed with an internal shear deformability and nonlinear behaviour. The
interaction between adjacent elements is modelled by means of nonlinear zero-thickness
interfaces, with appropriate constitutive relationships which allow for the representation
of typical arch failure modes, i.e., sliding and flexural failures (Figure 8b).
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The material parameters considered for DMEM, listed in Table 1, correspond to two
types of masonry, i.e., weak and strong respectively, and have the following meaning:

• specific weight w;
• elastic behaviour: Young’s modulus E, shear modulus G;
• compressive behaviour: strength fc, fracture energy Gc with linear softening (Figure 9a);
• shear behaviour of the block: elastic-plastic Turnsek–Cacovic criterion with shear

strength τ0 and ultimate shear strain γu (Figure 9b);
• sliding behaviour: elastic-plastic Mohr–Coulomb criterion with cohesion c, friction

coefficient µ and fracture energy Gf, assumed very high to simulate the elastic-
perfectly plastic behaviour as an approximation of the frictional behaviour of the
joints (Figure 9c).

It must be pointed out that the elastic properties must be representative of the ho-
mogenised continuum, since the quadrilateral macro-elements do not have any exten-
sional deformability.

Table 1. Material parameters for the arch used in the validation.

Masonry
Type

w
(kN/m3)

E
(Mpa)

G
(Mpa)

fc
(Mpa)

Gc
(N/mm)

τ0
(Mpa)

γu
(-)

c
(Mpa)

µ
(-)

Gf
(N/mm)

Weak 19 690 230 1.0 3.0 0.018 0.005 0.018 0.6 2.0
Strong 19 1800 600 4.6 3.0 0.13 0.005 0.13 0.6 2.0
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To investigate the influence of tensile behaviour on the force-displacement plot, a
parametric analysis was performed on tensile strength ft and tensile fracture energy Gt. In
particular, three levels of ft = 0.05, 0.10, 0.15 MPa with fixed Gt = 0.01 N/mm, and three
levels of Gt = 0.01, 0.025, 0.05 N/mm with fixed ft = 0.10 MPa were considered for both
weak and strong masonry models. Even though fracture energy is usually related to tensile
strength (as in the simplified formulations reported in [34]), in this section tensile strength
and fracture energy were investigated separately to isolate the individual contribution to
the force-displacement plot. Variable distributed loads proportional to mass were applied to
the structure, while the self-weight was maintained constant. The nonlinear static problem
is solved in Histra by means of an implicit solver based on modified Newton–Raphson
iterative procedure, enhanced by arc-length integration method.

The same structure was then modelled with the automatic tool described in Section 2.2.
The angle interval for the exploration of the mechanisms was fixed equal to 15◦.

In Figure 10, the load multiplier-key displacement plots of the different analysed
models are displayed. The effect of tensile strength is evident on the peak load, but not
much on the post-peak branch (Figure 10a,c). On the contrary, increasing fracture energy
modifies both the peak load and the overall ductility of the system (Figure 10b,d). It is
possible to appreciate that independently from the material parameters, all models tend
to a common collapse multiplier for large keystone displacement values, i.e., when the
post-peak hinge strength is exhausted. This λ value is well-approximated by the value λLA
= 0.189 provided by limit analysis. This is reasonable, since once the residual strength of
the crack approaches zero, masonry behaves like an assemblage of rigid blocks connected
at the hinges, following thus Heyman’s hypotheses. The only exception is represented by
the strong-masonry model with ft = 0.1 MPa, Gt = 0.05 N/mm, in the following referred
to as Model 1, which shows a larger multiplier even at u = 15 mm (λ = 0.215). It is clear
that increasing the crack tensile fracture energy, failure occurs with a much more diffused
damage within the arch, and the rigid-block approximation becomes less realistic.

In Figure 11a–c, the deformed shape at failure given by DMEM and the hinge position
by limit analysis are respectively shown. For all values of ft and Gt, the same deformed
configuration displayed in Figure 11a was observed, with the exception of Model 1, which
exhibited the deformed shape shown in Figure 11b. The comparison between Figure 11a
and c shows that the position of hinges is globally captured by limit analysis, even though
some differences are observed for the hinges on the left, which are respectively placed at
αA = 15◦ and αB = 75◦. This configuration provides a force multiplier λmin = 0.189. The
position of cracks in the DMEM model would correspond to αA = 0◦ and αB = [90◦]−, where
the minus indicates a hinge position immediately on the left of αB = 90◦. This configuration,
evaluated by the automatic tool, provide λ = 0.193, which is very close to λmin. Given
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the small sensitivity of the load multiplier to variation in αA and αB, the position of the
hinges given by limit analysis can be considered accurate. Incidentally, the configuration
of Figure 11b corresponds to the hinge distribution provided by the automatic tool in case
of fully resisting plastic hinge (Case 2 in Section 2.1) and any value of ft.

A final consideration regards the evolution of plastic strains, representing the opening
of cracks, and the effect of fracture energy on hinge position. In Figure 11 (d and e) the
plastic strain at peak load for weak-masonry models with ft = 0.1 MPa and respectively
Gt = 0.01 N/mm and Gt = 0.05 N/mm are displayed. While for low fracture energy values
(Figure 11d) the plastic strain contour plot is mostly coincident with the final position of the
cracks (Figure 11a), with two some other hinges yet to open, the model with higher Gt shows
a plastic strain concentration, i.e., the onset of cracking, at both pier bases (Figure 11e).
This crack layout is not matched by the final position of the hinges (Figure 11a), and thus
implies a redistribution of plastic strain during loading, which in turn is responsible of the
overall higher strength shown by high-Gt models. The crack at left base may eventually
close with increasing keystone displacement, determining the final collapse configuration
displayed in Figure 11a, or remain active as in the configuration of Figure 11b, which
represents Model 1 collapse configuration.
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These considerations highlight the possibility of shift of the hinge location along the
loading history and may raise some doubts on limit analysis procedures which try to
identify hinge position based on the elastic stress state [25]. Given the large uncertainty
on tensile strength and fracture energy quantification in existing masonry, the use of
limit analysis (and thus the focus on the collapse state only) for parametric studies aimed
at investigating the effectiveness of reinforcement in comparative terms was deemed
reasonable hereinafter.

3.2. Unreinforced Buttressed Arches

In Figures 12–14 the seismic capacity of the unreinforced arches is expressed in terms
of peak ground acceleration a* by dividing the force multiplier λ by the participating mass
ratio. The obtained a* values are displayed against the t/s ratio and presented following
the B/s and h/H ratios. In addition, local (L) or semi-global (S) and global (G) mechanisms
are highlighted.
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semi-global mechanism (S) are highlighted.



Buildings 2021, 11, 406 16 of 25Buildings 2021, 11, 406 17 of 27 
 

 
Figure 14. Values of a* for each considered eccentricity, each h/H configuration and B/s = 0.6, ex-
pressed with respect to the t/s ratio: (a) h/H = 0.5, (b) h/H = 0.75 and (c) h/H = 1.0. Local mechanism 
(L) or semi-global mechanism (S) are highlighted. 

It is worth noticing that only local and semi-global mechanisms have occurred in the 
considered geometries, i.e., global mechanism has never provided the minimum value of 
λ. As global mechanisms appear when the buttresses are weaker than the arch, this be-
haviour is expected in case of the structural typology investigated here, where the arch 
thickness is usually smaller than pier width. Conversely, the global mechanism is more 
likely in the case of diaphragm arches. The same conclusions about the admissible failure 
mechanisms were reached in [33] for circular barrel vaults. 
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(e.g., B/s = 0.6; h/H = 1), the arch becomes the weakest part of the buttressed system, and 
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semi-global mechanism (S) are highlighted.

It is worth noticing that only local and semi-global mechanisms have occurred in the
considered geometries, i.e., global mechanism has never provided the minimum value of λ.
As global mechanisms appear when the buttresses are weaker than the arch, this behaviour
is expected in case of the structural typology investigated here, where the arch thickness is
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usually smaller than pier width. Conversely, the global mechanism is more likely in the
case of diaphragm arches. The same conclusions about the admissible failure mechanisms
were reached in [33] for circular barrel vaults.

From Figures 12–14, it is possible to appreciate how, for lower values of relative width
and height of the piers, semi-global mechanisms are 100% frequent (e.g., B/s = 0.4; h/H = 0.5),
while local collapse mechanisms are 100% frequent for geometrical configuration with
higher values (e.g., B/s = 0.6; h/H = 1). It is clear that the activation of local mechanisms
increases as the contribution of piers increases, to the point that, for certain values (e.g.,
B/s = 0.6; h/H = 1), the arch becomes the weakest part of the buttressed system, and local
mechanisms occur for all t/s configurations considered.

Intuitively, the influence of the thickness of the arch is positively related to the collapse
acceleration when the collapse is local (see for instance B/s = 0.6 and h/H = 1.0), meaning that
an increase of thickness is beneficial to the system lateral capacity. Conversely, in case of
semi-global collapse type, this trend is not visible and may be even opposite (e.g., B/s = 0.4
and h/H = 0.5). The very low acceleration (0.05–0.06 g) observed for the semicircular arch
in all configurations for the lowest thickness value t/s = 0.125 derives from the choice of a
lower bound slightly higher than the minimum thickness necessary to withstand the arch
self-weight (t/s = 1/9).

In the configuration B/s = 0.4 and h/H = 0.5, the semicircular arches show the worst
seismic behaviour, with lower acceleration values as the t/s ratio increases. This is the only
case where this happens, while in all other cases with t/s > 0.125 the semicircular arch is
always the typology performing best under horizontal actions. In addition, the masonry
arches subjected to vertical loads produce greater lateral thrusts as the rise is lowered,
therefore requiring larger pier thicknesses to counteract the thrusts. Thus, the buttressed
pointed arch, and in particular the drop one, has better performances than the semicircular
ones for the stockiest configuration of the abutments, i.e., B/s = 0.4, h/H = 0.5.

The given results are summarised in Figure 15, for each value of eccentricity. From the
graphs, it is evident that when the collapse mechanism is local, the variation of the width
and the weight of the piers do not influence the a* value.
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3.3. Retrofitted Buttressed Arches

The same configurations were analysed considering the reinforcement at intrados (RI),
extrados (RE) and both sides (RI-E), with a total of 144 × 3 additional analyses performed.
As far as the types of activated mechanisms are concerned, once again only local and
semi-global mechanisms occurred in the reinforced geometries. However, provided that
the reinforcement was conceived to be placed on the arch only and not on the pier, in many
cases (up to the 23% in the RI-E configuration) the mechanisms occurred in the reinforced
geometries changed from local to semi-global, meaning that the formation of hinges in the
arch was properly limited (Figure 16).
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buttressed arches.

The results obtained, for each eccentricity and reinforcement configuration (RI, RE
and RI-E), are depicted in Figures 17–19, in terms of increase of the a* values (thin lines)
with respect to the unreinforced (UN) configuration (bars). The a* values are presented
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following the t/s, B/s and h/H ratios and L- or S-mechanisms in the reinforced configuration
are highlighted.
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configuration and B/s value. Local mechanism (L) or Semi-global mechanism (S) are highlighted.

In all the reinforced cases (RI, RE and RI-E), for lower values of width and height of
the piers (e.g., B/s = 0.4; h/H = 0.5), as well as for the lowest value of t/s, S-mechanisms
are 100% frequent. On the contrary, only for (RI-E) buttressed arches, S-mechanisms are
100% frequent for the stockier configuration of the piers and arches (e.g., t/s = 0.2, B/s = 0.6;
h/H = 1). As in the UN arches, in all the cases in which a* is constant with changing
buttresses’ dimensions, local mechanisms occurred.

As regards the percentage increment of a* values, higher values were obtained for
(RI-E) buttressed arches. In all the reinforcement configurations, for the lowest value of t/s,
the contribution of the mortar seems to be more effective for semicircular buttressed arches:
for example, in the case of a semicircular arch with t/s = 0.125, B/s = 0.6 and all h/H values,
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an a* increase of 120% (RI and RE), up to almost 200% (RI-E) was recorded, represented by
the thin lines in Figures 17–19.

In Figure 20 some statistics on the percentage increase in capacity are shown, according
to the modification in the collapse mechanism due to the reinforcement. More generally,
larger increases in the acceleration values a* were recorded in those cases where the
activated mechanism remained of L-type, from the unreinforced to the reinforced condition.
In particular, an increment up to an average percentage of nearly 50% for (RI) and (RE)
buttressed arches, and up to more than 80% for (RI-E) buttressed arches, can be observed
(∆a*L,L). This underlines the usefulness of this type of reinforcement, which does not
involve the piers, for buttressed arches more vulnerable to L-mechanisms. If the mechanism
was local in the UN configuration and shifted to semi-global, the average capacity increase
was on average equal to 22% for reinforcement on one side (RI or RE) and 40% for RI-E.
Conversely, low average increments (from 8 to 17%) of a* can be observed for buttressed
arches whose mechanisms remained of S-type, from the (UN) to the (RI), (RE) and (RI-E)
cases (∆a*S,S).
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Figure 20. Percentage ∆a* increment ± standard deviation of (RI), (RE) and (RI-E) buttressed
arches, classified according to the variation of the activated mechanisms with respect to the (UN)
buttressed arches.

According to Equation (6), it is possible to define a dimensionless ductility of the
buttressed arch δ∗ as the ratio between the horizontal key displacement when mortar
reaches its ductility limit δu, k and mortar capacity δu,m. In Figure 21, the average and
standard deviation for δ∗, which identify the ductility of (RI), (RE) and (RI-E) buttressed
arches, are depicted. The contribution of the mortar seems more convenient in the case
of (RE) buttressed arches. This ductility reserve together with increase in acceleration at
collapse can be exploited for seismic retrofitting of buttressed arches.

Buildings 2021, 11, 406 25 of 27 
 

 
Figure 21. Dimensionless ductility of (UN), (RI), (RE) and (RI-E) buttressed arches. 

Seen in Figure 21, the RI-E configuration appears less effective than RE in average. 
This unintuitive result may be explained with the fact that when the reinforcement is ap-
plied either at intrados or extrados only, it may change the collapse mechanism in a way 
that the largest crack opening occurs on the opposite side (extrados or intrados, respec-
tively). The ductility is thus limited by the attainment of ultimate crack opening (i.e., ulti-
mate displacement of the reinforcement) in a crack which is not the most opened among 
the four which characterise the mechanism. When FRM is applied on both sides the ulti-
mate mortar displacement is attained always at the largest crack opening, and thus this 
may limit the overall ductility. Of course, RI-E also implies larger strength, as evident in 
Figure 18, so this must not be seen as an argument against RI-E configuration. 

4. Conclusions 
In this paper, the seismic performance of buttressed arches with and without FRM 

retrofitting is parametrically investigated. The analyses were performed by means of an 
ad-hoc script in Gmsh software able to build the model and evaluate the plastic multiplier 
through the kinematic theorem of limit analysis. The validation of the script was per-
formed comparing the results with DMEM predictions. 

The results of the parametric analysis show that for this type of structure global 
mechanisms are unlikely, since for typical geometric ratios the arch is always weaker than 
the piers. This means that arch retrofitting by means of FRM may be an appropriate option 
to increase the seismic behaviour of the system. Semicircular arches show the best perfor-
mances to horizontal actions compared to pointed arches, unless the thickness of the arch 
is close to the minimum thickness to withstand self-weight (t/s = 1/9). Pier dimensions and 
arch thickness have a positive influence on the seismic capacity in terms of maximum 
horizontal acceleration respectively in the case of semi-global and local mechanisms. 

The application of a 30 mm-thick FRM reinforcement with ductile behaviour and 0.70 
MPa tensile strength leads to a shift of collapse modes towards the semi-global type. This 
is particularly evident if the reinforcement is applied on both sides (81% S-mechanism, 
against 58% of the unreinforced case). Rather intuitively, the retrofitting is mostly effective 
when the mechanism remains local, with average acceleration capacity increasing up to 
80%. On the contrary if the mechanism was already semi-global in the UN configuration, 
remarkably lower effectiveness was recorded (8–17%). It must be added that in case of 
semi-global or, even more, global mechanisms the strength of the pier should be en-
hanced, and thus different retrofitting technologies should be explored [35]. 

The increase in acceleration capacity is always coupled with a system ductility en-
hancement which depends on the characteristics of the mortar. Experimental testing ac-
tivities currently undergoing will provide quantitative data and validation of the present 
preliminary analysis on the retrofitting technology both at material and structural level. 

Figure 21. Dimensionless ductility of (UN), (RI), (RE) and (RI-E) buttressed arches.



Buildings 2021, 11, 406 23 of 25

It must be pointed out that under the usual hypothesis of limit analysis, the attainment
of collapse load corresponds to the creation of a collapse mechanism in an unreinforced
masonry system. It follows that the ductility, meant as the maximum displacement at
ultimate load, would be theoretically infinite, only limited by either second-order effects or
compressive failure at the hinge. This is also evident in the DMEM simulations shown in
Figure 10. The ductility as it is referred to in Figure 21 represents the ability of the system to
sustain the strength increment due to the reinforcement, and as such is of course null in the
UN configuration. After exhausting this strength surplus, the system strength is expected
to reduce to that of the UN configuration until the mentioned conditions (second-order
effects or compressive failure) are met.

Seen in Figure 21, the RI-E configuration appears less effective than RE in average. This
unintuitive result may be explained with the fact that when the reinforcement is applied
either at intrados or extrados only, it may change the collapse mechanism in a way that
the largest crack opening occurs on the opposite side (extrados or intrados, respectively).
The ductility is thus limited by the attainment of ultimate crack opening (i.e., ultimate
displacement of the reinforcement) in a crack which is not the most opened among the four
which characterise the mechanism. When FRM is applied on both sides the ultimate mortar
displacement is attained always at the largest crack opening, and thus this may limit the
overall ductility. Of course, RI-E also implies larger strength, as evident in Figure 18, so
this must not be seen as an argument against RI-E configuration.

4. Conclusions

In this paper, the seismic performance of buttressed arches with and without FRM
retrofitting is parametrically investigated. The analyses were performed by means of an
ad-hoc script in Gmsh software able to build the model and evaluate the plastic multiplier
through the kinematic theorem of limit analysis. The validation of the script was performed
comparing the results with DMEM predictions.

The results of the parametric analysis show that for this type of structure global
mechanisms are unlikely, since for typical geometric ratios the arch is always weaker
than the piers. This means that arch retrofitting by means of FRM may be an appropriate
option to increase the seismic behaviour of the system. Semicircular arches show the best
performances to horizontal actions compared to pointed arches, unless the thickness of the
arch is close to the minimum thickness to withstand self-weight (t/s = 1/9). Pier dimensions
and arch thickness have a positive influence on the seismic capacity in terms of maximum
horizontal acceleration respectively in the case of semi-global and local mechanisms.

The application of a 30 mm-thick FRM reinforcement with ductile behaviour and 0.70
MPa tensile strength leads to a shift of collapse modes towards the semi-global type. This
is particularly evident if the reinforcement is applied on both sides (81% S-mechanism,
against 58% of the unreinforced case). Rather intuitively, the retrofitting is mostly effective
when the mechanism remains local, with average acceleration capacity increasing up to
80%. On the contrary if the mechanism was already semi-global in the UN configuration,
remarkably lower effectiveness was recorded (8–17%). It must be added that in case of
semi-global or, even more, global mechanisms the strength of the pier should be enhanced,
and thus different retrofitting technologies should be explored [35].

The increase in acceleration capacity is always coupled with a system ductility en-
hancement which depends on the characteristics of the mortar. Experimental testing
activities currently undergoing will provide quantitative data and validation of the present
preliminary analysis on the retrofitting technology both at material and structural level.
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