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Abstract: The latest earthquakes in Europe exposed some critical problems in the connections of
cladding panels in industrial precast reinforced concrete (PRC) structures. These connections did
not perform as desired, causing the panels to fall, leading to significant nonstructural damage that
resulted in the loss of human life and significant socio-economic impacts due to the interruption of
business. Furthermore, in addition to the behavior of the cladding system itself, it is still not clear to
what extent it can influence the overall seismic performance of the main structure. Making use of a
simplified macroelement, the present study assesses the seismic performance of commonly employed
cladding-to-structure connections, as well as the interaction of cladding panels with industrial PRC
buildings. The analyses were carried out considering a PRC building representative of a Portuguese
industrial park, studied with and without cladding panels. The seismic behavior of the structure was
assessed considering both nonlinear static and dynamic procedures.

Keywords: precast reinforced concrete; industrial buildings; cladding panels; connections; seismic
behavior

1. Introduction

In Europe, industrial precast reinforced concrete (PRC) buildings represent a signifi-
cant part of the industrial building stock [1,2]. Recent earthquakes have exposed the main
vulnerabilities of PRC buildings, highlighting both structural and nonstructural damage,
mostly related to the deficient transfer of horizontal loads at the connections between
elements [1]. The inadequate design of these connections may have caused the cladding
panels (with weights of up to 10 tons) to collapse, representing a potential risk for humans,
even during evacuation procedures [3], as well as significant economic losses [4].

The recent earthquakes in Italy, such as L’Aquila in 2009 and Emilia in 2012, high-
lighted some critical issues associated with the behavior of the cladding-to-structure devices
utilized in the past [5]. It was observed that the different cladding-to-structure fastenings
play key roles in the safety, performance, and the economics of both the cladding system
as well as the main structure itself. Several authors reported heavy damage related to
cladding panels [4,6-8]. In particular, Bournas et al. [9] reported that approximately 75%
of industrial PRC buildings designed without seismic provisions exhibited damage and
detachment of the exterior cladding panels, as shown in Figure 1a.
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Figure 1. Cladding panels failure [1]. (a) Horizontal cladding panel failure and (b) connection failure on cladding panels

(top view).

The undesirable behavior and contribution of the cladding panels to the seismic
response of buildings occur due to the high stiffness of the panels when compared with
the stiffness of the connections, and because these connections are not ductile enough to
accommodate the displacement demand imposed by the structure [10].

The current design practice for industrial PRC buildings is based on bare-frame
models and the cladding-panel contribution is generally neglected; therefore, no interaction
between the panels and the structure is considered [1]. Furthermore, it was observed in
a recent survey carried out on Portuguese PRC buildings [11] that cladding panels, both
in old and recent buildings, are generally not considered in the design, not even with
simplified procedures, ignoring the interaction with the frame and it is considered that
they do not contribute to seismic behavior. Several authors, however, have demonstrated
that cladding panels can have a significant contribution to the seismic response [1,4,12-16].

In a Portuguese industrial park, the most current arrangement of observed cladding
panels is the horizontal one (Figure 2), which has been identified by several authors
([10,17,18]) as the most vulnerable arrangement, based on the damage observed from
recent earthquakes. Typically, the connection to the masin structure is ensured through
mechanical connections that are designed to support forces that are orthogonal to the plane
of the panels. As shown by [1,13,14], this approach may lead the panels to became part of
the resistance system, attracting higher seismic forces than those calculated based on a bare
frame model, causing the fastening elements to fail (Figure 1b).

Considering that the connection between the cladding panels and the main structure
was one of the least investigated issues in PRC [18], the project Safecladding, emerged to
give answers to the problems previously mentioned, aiming to improve the conception
and design of new fastening systems to guarantee good seismic performance of the panels
and the structure itself [15]. Nonetheless, the deficient connection of the existing panels is
not sufficiently covered in the existing literature nor by the industry [3].
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Figure 2. Typical Portuguese industrial building. (a) Typical arrangement with horizontal cladding panels and (b) connection

between the column and cladding panel.

Taking into consideration the previous issues, this study analyzes the capacity of
commonly employed cladding panels, as well as their importance in the seismic response
of PRC considering a building representative of the Portuguese industrial park. The contri-
bution of the panels might be particularly relevant in the seismic performance considering
the high flexibility and low horizontal strength found in these building by Sousa et al. [19].
The seismic performance, assessed with nonlinear static and dynamic analyses, is analyzed
considering models with and without cladding panels, simulated through a simplified
macroelement representative of the cladding-to-structure connections commonly used.
This novel model was calibrated based on experimental tests and can be easily applied in
future simulation in different software platforms. Finally, the results of the analysis and
seismic assessment were carried out as a function of force, displacement, and dissipated
energy.

2. Numerical Modelling of Cladding Panels

Precast reinforced concrete industrial buildings are structures with significantly more
flexibility when compared with traditional RC residential building, due to the higher story
height (in Portugal the typically story height is between 6 and 8 m [11]) and the column
boundary condition, usually materialized through cantilever columns fixed at the base
with prestressed beams with hinged connections between these two elements.

The way to model the contribution of the cladding panels in the PRC building has
suffered several improvements in the last years [17,20], from elastic elements mixed with
rigid bars to include the initial stiffness, to multiple struts and springs to include the mass
and nonlinear behavior of the connections [21], among other strategies. Belleri et al. [3]
presented a numerical model of horizontal panels, with elastic beams connected to the
columns by means of nonlinear springs. The panel mass is directly included in the model
by assigning a mass density to the corresponding beam element and the columns are fixed
at the base and modelled with nonlinear fibre elements. This strategy aims to represent
each panel that constitutes the fagade wall, and each connection is simulated by a nonlinear
spring. Alternatively, Staresinic et al. [22] formulated a more detail numerical macro-model,
capable of simulating the response of the connections combining different material models.
Although these solutions seem to produce reliable results, their relative complexity inhibits
their generalized application by engineer practitioners.
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Simplified Macroelement
The present work proposes a modelling strategy inspired by the simplified model

developed for infill masonry walls by [23], that consists of a simplified macroelement
aiming to simulate the contribution of a conventional horizontal cladding system (panels
and associated connections) to the main PRC structure.
In this PRC cladding panel model, the contribution of all the horizontal panels within a
frame is concentrated in one macroelement defined at the centre of the frame and connected
to the column’s edges through four diagonal truss elements, with a rigid behavior. Figure 3
illustrates the concept by showing the hysteretic behavior assumed for a single connection
(left) and that would be expected if one includes the contribution of all the 12 connections
(four per panel) within the frame. With this arrangement, the nonlinear hysteretic behavior
resulting from the contribution of all the panels and associated connections is concentrated
in the central element, whose behavior reflects the lateral resisting force as a function of the
relative horizontal displacement measured between the top and the bottom of the columns.
Differently from the models presented by Belleri et al. [3] and Stares$ini¢ et al. [22] that
simulate different connections at the top and bottom of the cladding panel, in this model the
central element concentrates the contribution of all the connections. The main advantage of
the proposed model relies on its simplicity, when compared with other existing strategies,

avoiding the need for the column’s intermediate nodes.

For 12
connections
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Figure 3. Example of the application of the simplified macroelement for the simulation of cladding panels.

The hysteretic response of the central element encompasses the contribution of all the
connections in a given frame and was calibrated based on the experimental tests conducted
on a “Standard” connection by Del Monte et al. [5], whose results and calibration for two
connections are presented in Figure 4. This choice was based on the similarities of this

connection with the commercial solution typically used in Portugal (Figure 2b), referring
to the isostatic sliding-frame system for horizontal panels consisting of an anchor channel

installed with hammerhead screws. The incorporation of the experimental test results in
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the numerical model was carried out through the pinched asymmetric model, available in
SeismoStruct [24], which managed to adequately fit the cyclic hysteretic behavior described
in the work of Del Monte et al. [5] in terms of force—deformation and energy dissipation.
The backbone curve of this model is defined by a trilinear relationship, associated with
each direction along the panel’s plane, whilst five additional parameters allow for the
adjustment of the unloading/reloading curves and the strength degradation. The model
parameters were adjusted to minimize the difference between the experimental result and
the numerical result obtained in the simulation of the same test. The proposed model
parameters are identified in Figure 5.
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Figure 4. Calibration of the hysteretic response based on the “Standard” connection tested by Del
Monte et al. [5].
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Figure 5. Definition of the parameters adopted in the macroelement in. (a) Pinched asymmetric curve model [24] and (b)
parameters adopted.



Buildings 2021, 11, 400

6 of 18

Considering that numerical spring includes the contribution of all the connections
within the frame, the force and displacements assigned to each reference point of the trilinear
relation (Fyacro and Syacro) should be determined based on the following Equations (1) and (2):

Fpacro = F1 X Np X N, 1

Omacro = 61 X Np x 2 2)

In the previous equations, F; and d; refer to the forces and displacements correspond-
ing to a single connection only, i.e., the force and displacement values proposed in Figure 5.
To obtain the force and displacement capacity of all the panels in a frame, these should be
multiplied by the number of panels (Np) and the number of connections per panel (N¢).
These equations assume that the panels remain undeformable in their own plane and that
each connection has an equal contribution in terms of force and deformation capacity.

3. Description of Seismic Analysis
3.1. Case Study

The case study refers to an existing PRC industrial building, located in Portugal in
the seismic zone 1.5, characterized by a reference peak ground acceleration of 0.06 g, for a
return period of 475 years and a soil type B, according with the seismic zonation defined
in the Portuguese version of the Eurocode 8-Part 1 [25]. The building under study is a
framed structure (Figure 6) consisting of one floor with a height of 6.26 m and an area of
39.32 x 44.8 m?. The structure has two spans in the X direction with 18.12 m and 21.2 m and
six spans in the Y direction with 7.4 m (edge spans) and 7.5 m (inner spans). The columns,
assumed fixed to the foundation, have a height of 6.26 m and two different cross-sections:
a 0.4 x 0.4 m? section at the central columns and 0.5 x 0.4 m? in the remaining ones
(Figure 7). The building features two types of precast prestressed beams: the longitudinal
beams with a cross section of 0.5 x 0.4 m2, and the transversal beams with a cross section
of 0.4 x 0.3 m?. The concrete used was from the class C40/50 and the steel from the class

5500 NR-SD.

Columns Connections
0.5x0.4x6.26m)

(

"Cladding panels
“H(0.12x2.08x7.4m)

(a) (b)

Figure 6. Building under study. (a) Three-dimensional overview of the building under study with panels and with a rigid

diaphragm at the roof level and (b) layout of cladding panels with associated connections along the Y direction.
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Figure 7. Transversal sections of the elements considered in the numerical model. (a) Central columns, (b) fagade columns,

(c) longitudinal beams and (d) transversal beams.

3.2. Numerical Analyses

The structural analyses were carried out along the two main directions with a 3D
model using the computer program SeismoStruct [24], a finite elements package capable of
predicting the large displacement behavior of space frames under static or dynamic loading,
taking into account both geometric nonlinearities and material inelasticity. In the model
developed, the columns were modelled with fibre-based nonlinear force-based elements
with five integration points, following the recommendations of Sousa et al. [26], whilst
an elastic behavior was assumed for both longitudinal and transverse beams, as they are
expected to remain essentially undamaged. This is a common assumption in past studies
on PRC buildings and results from the fact that negligible seismic moments are expected
to develop along the beams, given the type of beam support on the column. This option
is also supported by the observations of damaged buildings after severe earthquakes. In
terms of materials, the Mander’s concrete model [27] and Menegotto-Pinto steel model [28]
were assigned to the elements’ cross-section concrete and reinforcement fibres, respectively.
Finally, the beam-to-column connections were assumed as pinned connections to minimize
the bias in the analysis of the contribution of the cladding panels. The self-weight of the
roof, composed of girders with a maximum height of 1.3 m, together with a light roof
cladding system, was assumed in the numerical model through concentrated loads applied
at the end nodes of the beams, corresponding to a distributed load of 0.45 kN/m?.

The aim of the numerical analyses carried out is to access the influence of the cladding
panels in the seismic performance of the reference building presented in the previous sec-
tion. To further evaluate the influence of the panels, the building was analyzed considering
a flexible and rigid diaphragm at the roof level. The analyses were carried out following
a nonlinear static approach as well as the nonlinear dynamic counterpart. In addition to
the general conclusions associated with the presence of the panels, the building was also
assessed in terms of horizontal deformations (ultimate chord rotations) and forces (shear
capacity), as defined in the Eurocode 8—Part 3 [29] for existing buildings.

3.2.1. Static Pushover Analysis

The pushover analyses were performed considering two conventional load distribu-
tions: one uniform, proportional to the buildings mass, and the other modal, proportional
to the first mode along the X and Y directions, as recommended in the Eurocode 8-Part 1.
In order to assess the performance for the expected hazard level, the target displacement
was determined following the N2 method proposed by [30] and suggested in Eurocode
8—Part 1. The analyses were carried out along the two main directions with and without
the consideration of the cladding panels.
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3.2.2. Nonlinear Dynamic Analysis

In addition to the variability associated with the record-to-record properties, the
consideration of the dynamic analysis intends to evaluate the eventual importance of
higher modes and, more importantly, the effects of cyclic degradation on the cladding
panels. The dispersion in the structural response resulting from the specific properties
associated with each accelerogram implies the need to consider several registers in order to
obtain a wide and reliable set of results [31]. For this purpose, 2 groups of 10 accelerograms
were selected. The records used in this study were selected from nearly 3500 records
(including two horizontal and a vertical component) from a database of ground motions
recorded in the Mediterranean region. The selection and scaling follow generically the
strategy presented in [32], i.e., selecting the accelerograms whose geometric mean spectra
of the two horizontal directions better approach the code spectral acceleration for the
average of the fundamental periods along the two directions. Following this procedure, 10
ground motions were selected whose arithmetic mean along the period interval of 0.5 and
2 times the buildings’ average period of vibration.

Two groups of five records were considered in the present study. The first group of
records was selected based on the seismic intensity characteristics of the place where the
building is located, and whose response spectrum is presented in Figure 8a. To assess the
behavior of the panels’ influence for higher levels of seismic action, a group of records was
also selected considering the spectral accelerations five times higher than those considered
in the first group (Figure 8b), representative of the seismic hazard expected in the southern
region of Portugal. In order to optimize the time consumption of the analyses, every record
was trimmed based on the 5% maximum peak ground acceleration following the work by
Bommer et al. [33].

0.8

o
)}

o o
N s
Spectral acceleration (g)

Spectral acceleration (g)

Period (s) Period (s)

(@) (b)

Figure 8. Response spectra of the two groups of earthquakes in relation to the building under study. (a) 1° group and (b)

2° group.

In order to account for the energy dissipation other than the hysteretic one, tangent
stiffness proportional damping was considered, for a mean period of 0.7 s and a damping
ratio of 1%. Considering the number of records, analyzed along the two main directions,
with and without cladding panels, and with roof diaphragm (in the models with panels
only), a total of 60 dynamic analyses were carried out.

4. Parametric Study

This section presents the results of the different analyses carried out aiming to assess
the seismic performance of the cladding panels, as well as its impact in the overall per-
formance of the building. For this purpose, different configurations of the building were
considered, namely, varying the presence of the cladding panels and the in-plane stiffness
of the roof. The different cases were analysed through modal analysis, as well as nonlinear
static and dynamic analyses.
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Base Shear (kM)

4.1. Modal Analysis

As expected, the presence of claddings panels increases the horizontal stiffness of the
building leading to an increase in the frequency of vibrations. Yet, as shown in Table 1, this
effect is more pronounced when the consideration of the panels in the facades is combined
with a rigid diaphragm at the roof level (RD hereinafter), particularly along the Y direction
where a large number of panels are aligned in their in-plane direction.

Table 1. Frequency and vibration modes of the different building configurations.

Frequency with Panels Frequency without Panels
. W/out W /rigid W/out
Direction W/d1?_1;>hragm diaphragm diaphrigm diaphragm
(Fiz) (Hz) (Hz) (Hz)
Y 2.477 1.485 1.428 1.339
X 2.083 1.692 1.724 1.686
Torsion 3.018 1.759 1.906 1.816

4.2. Nonlinear Static Analysis

Following the recommendations of Eurocode 8-Part 3 [29], two different load distribu-
tions were applied in the pushover analysis—a uniform one and a distribution proportional
to the fundamental mode of vibration (designated as modal hereinafter). For both cases,
an accidental eccentricity (AE) corresponding to a shift of the buildings mass in 5% of the
building’s length was also considered, as prescribed by the same code. The capacity curves
obtained for the two main directions, with and without panels (with and without panels)
are presented in Figures 9 and 10.

0.1 0.2 0.3 0.4 0.5
Displacement (m)
—=— Uniform wout panels Modal w/out parels —m—niform wy panels —iodal w/ panels
--m--Uniform AE wjout panels Modal AE w/iout pansls --m--Uniform AE wy panels -----Modal AE w/ panels
Modzal RD w/out panels — =M odal RD w)/ panels

Figure 9. Capacity curves for the models with and without cladding panels in the X direction.
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Figure 10. Capacity curves for the models with and without cladding panels in the Y direction.

Regarding the influence of the cladding panels on the models without a rigid di-
aphragm, the results obtained in the pushover analyses revealed a distinct behavior along
the two main directions. In the X direction it was apparent that the presence of the cladding
panels had a minor contribution to the horizontal strength and stiffness, given that the
panels were considered only in the extreme facades. In this case, the lateral deformation
of the building was mainly concentrated in the middle frames. However, in the presence
of a very large in-plane stiffness of the roof it was possible to mobilize the panels, as
observed in the pushover analysis with the consideration of a rigid diaphragm. On the
other hand, given that in the orthogonal direction only one out of the three frames do not
include panels, the horizontal strength and stiffness increased significantly, even in the
absence of a rigid diaphragm. It is therefore clear that the consideration of the infill panels
is more relevant when the roof features a significant in-plane stiffness or if the building
features relatively compact dimensions at least along one direction. The presence of a rigid
diaphragm without panels has an insignificant effect on the global behavior.

In terms of lateral load distributions, for the analysis along the X direction, the uniform
distribution (proportional to the buildings mass) differed significantly from the modal one,
highlighting the natural tendency for a larger deformability in the frames near the middle
of the building. Finally, regardless of the direction under analysis, the consideration of an
accidental eccentricity resulted in minor differences in the behavior of the building.

When looking at the building’s performance for the seismic hazard level expected
at its location, it was observed that the building’s main structure presents an adequate
level of safety, given that no shear failures are expected and the lateral deformation for
which the % ultimate chord rotation (reference value for significant damage limit states) is
first reached, occurs for a top displacement of approximately 0.2 m, much higher than the
target displacement of approximately 0.05 m. The results were obtained assuming a limit
knowledge level for which the material properties are divided by a confidence factor of
1.35. As illustrated in Figure 11, these conclusions are valid for different load distributions



Buildings 2021, 11, 400

11 of 18

Base Shear (kN)

2500

2000

1500

500

——Modal w/ panels_Y
— —Modal w/ panels_X
® Chord Rotation

and in-plane roof stiffness. Nevertheless, when looking to the building’s performance for
the seismic hazard level closer to the highest level expected in Portugal (approximately
five times higher), these conclusions are not valid for the analysis without considering the
cladding panels. Yet, the same conclusions cannot be drawn regarding the performance
of the cladding panels. Based on the limit state thresholds proposed by Cornali et al. [34],
namely 1 cm and 4 cm of relative deformation between panel connections, for damage
limitation and collapse prevention, it was observed that some damage is expected in the
pushover analysis with a modal distribution when the cladding panels are not included in
the model. This observation highlights the importance to include the cladding panels in the
models to attain a more reliable seismic assessment. For the second group of earthquakes,
it was observed that some damage is expected in all analyses.

0.1 0.2 0.3 0.4
Displacement (my)
—— Modal wjout panels_Y —— Modal RD w/ panak_Y X Target Displacement 12 G
— —Modal wjout panels_X — —Modal RD w/ panek_X ¥ TargetDisplacement 22 G

@ (ladding Damage Limitation @ {lzdding Collapse Prevention

Figure 11. Evaluation of structural and nonstructural performance for different modelling options.

4.3. Nonlinear Dynamic Analysis

As previously described, two groups of records were considered, the first aiming to
simulate the seismic performance for the expected seismic hazard at the building location,
and the second, with an intensity approximately five times higher, to evaluate the per-
formance under more severe seismic actions such as the ones expected in the regions of
higher seismicity in Portugal. The results of the nonlinear dynamic analyses presented in
the following figures represent the combination of the maximum top displacement with
the maximum base shear experienced during each record. It is important to perceive that
some of these points might be fictitious, as they do not necessarily occur at the same instant.
Figures 12 and 13 shows the results of both dynamic and pushover analysis along the X
and Y directions, respectively.
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Figure 12. Comparison of the results of the different analyses for the models with and without cladding panels in the
X direction.
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Figure 13. Comparison of the results from different analyses for the models with and without cladding panels in the
Y direction.
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In general, the pushover curves obtained for each direction were in good agreement
with the set of records used to perform the dynamic analysis, particularly in the linear range.
Yet, some dynamic analyses diverged significantly in terms of maximum base shear as the
structure enters the inelastic regime, associated with the (more) unpredictable behavior
in this regime, especially when considering the seismic loads along the two directions
simultaneously.

For this reason, much lower differences were observed in the models featuring
cladding panels and rigid diaphragm due to the fact that not only the building response
remained essentially in the elastic range, but also because these constraints reduced the
complexity of the dynamic behavior with the prevalence of the fundamental modes of
vibration and the reduction of the modal mass associated with the higher modes.

Regarding the consideration of the panels, along the Y direction, the results of the
nonlinear dynamic analyses were similar to the pushover ones, mainly in the first group
of earthquakes that was located more in the elastic part. On the other hand, in the X
direction it is possible to observe that the results of maximum displacements and forces
of the nonlinear dynamic analyses were closer to the elastic region of the modal capacity
curve and approached the uniform one for increasing seismic actions.

In this regard, it is important to note that the uniform distribution is particularly
relevant and recommended for multistorey buildings with a nearly uniform distribution
of mass along the height, such as the masonry ones, and for buildings prone to develop
a soft-storey mechanism at the ground level. The present case study does not satisfy any
of these conditions and, therefore, the uniform distribution is taken as less representative
than the modal one.

Regarding the seismic safety of the building, the values obtained with the dynamic
analyses corroborated the outcome of the static ones, with the average of the maximum base
shear and top displacement similar to the target point determined in the static procedure. It
is recalled that the consideration of the averaged response is accepted by Eurocode 8-Part
1 [25] whenever the dynamic response is obtained with at least seven nonlinear analyses,
as is the present case.

In terms of the column’s performance, no damage is expected for the analysis of
the first group of records. For the second group of records, that assess the performance
for higher intensities, several columns in several analyses overcome the accepted chord
rotation, similarly to what was observed for the static analyses. This observation is more
evident in Figure 14, which presents the damage ratios, taken as the maximum element
seismic demand over the element’s capacity, for the columns chord rotation, cladding panel
damage limitation and collapse prevention limit states, found in the different dynamic
analyses carried out. Nonetheless, it is important to highlight the reduction in the column
damage indicator when the building features infill panels with a rigid diaphragm. In these
cases, a relevant fraction of the seismic loads is supported by the cladding panels, reducing,
in this way, the overall horizontal displacement demand on the buildings.

Concerning the performance of the cladding panels, for the first group of records,
the panels suffered negligible damage, while for the second group, the damage was more
significant, exceeding the limit states in most of the cases. Yet, the consideration of the
panels in the model without a rigid diaphragm reduced the deformation demand in those
frames, decreasing the damage expected at the panel’s connections. In the presence of a
rigid diaphragm, on the other hand, the cladding panels attracted an important fraction of
the seismic loads resulting in an increase of the level of damage expected in these elements.
It should be noted that, in several cases, the cladding damage limitation points represented
with a 4.5 scale in Figure 14, corresponded to larger values, that were bracketed to this
limit to ensure an adequate representation of the other limit states.
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Figure 14. Damage ratios at the columns and cladding panels for the dynamic analysis: (a) 1° group w/out panels, (b) 2°
group w/out panels, (c) 1° group w/panels, (d) 2° group w/panels, (e) 1° group w/panels and RD and (f) 2° group
w/panels and RD.
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A final comment to the energy dissipation, which is a fundamental property in RC
elements subjected to seismic demands [35], enabling damage to be accommodated without
significant loss of strength [36]. The results of the total cumulative dissipated energy (KJ)
shown in Figure 15 shows that, for the case study under analysis, the panels have a small
contribution to the total energy dissipation of the system. This is particularly notable in the
models featuring cladding panels and a rigid diaphragm, representing the cases in which
the panels are subjected to higher demand, in which the hysteretic energy dissipation is
significantly lower than in the other cases. As depicted in Figure 16, representing a panel
hysteretic curve from the 2° group of records, the panels can sustain an important fraction
of the horizontal forces but only during its first cycle along a given direction. Once a
given panel connection deformation is reached, the following cycles within this relative
maximum occur with a residual horizontal force and, therefore, with a marginal energy
dissipation. Although in a less pronounced manner, this effect is also visible in the models
without a rigid diaphragm (with and without panels). In this case, however, for the first
group, the presence of panels contributes to further reducing the element demands that are
essentially in the elastic regime, whilst in the second group, a larger deformation demand
is observed in the bare frames that leads to a larger demand and energy dissipation in the
columns, as previously observed.
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Figure 15. Total cumulative dissipated energy: (a) 1° group and (b) 2° group.
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Figure 16. Cladding panel hysteretic behavior from the 2° group of records and associated limit states.

5. Conclusions

In this study, the seismic analysis of a PRC building representative of the Portuguese
industrial park was carried out, considering numerical analyses with and without the
influence of the cladding panels. The numerical models, considering the presence of
cladding panels, make use of a simplified macroelement that simulates the influence of
the panels on the main structure. The model was calibrated based on experimental tests
to simulate the capacity of commonly employed cladding connections, as well as the
interaction of cladding panels with PRC industrial buildings.

The seismic behavior of the structure was assessed considering both nonlinear static
and dynamic procedures. According to the results obtained through these analyses, it
was concluded that the influence of the panels might be important, especially in relatively
compact buildings or in the presence of rigid diaphragms, expressing an overall increase
in strength and stiffness. However, if the building is significantly elongated and does not
have a rigid diaphragm, the contribution of the panels might be negligible. It should be
highlighted that in conventional buildings the actual in-plan stiffness of the roof should
lie somewhere between the two extreme conditions considered. In addition to the vari-
ations in the overall building’s responses, it was observed that the nonconsideration of
cladding panels in the numerical model might result in a conservative assessment of the
nonstructural components (including the panels itself), which are indirectly evaluated
through the frame deformations. This observation confirms the importance of considering
representative numerical models and including the cladding panels, if present, to attain a
more reliable seismic assessment.

Regarding the type of the analysis employed in the seismic assessment, in general, the
results obtained with nonlinear static analyses are in good agreement with the nonlinear
dynamic ones, indicating that these appear to be a reliable option, especially consider-
ing the relative simplicity of static analysis in comparison with the dynamic counterpart.
Nonetheless, despite the large dispersion observed in the dynamic analysis for high inten-
sity levels, the seismic demand obtained tended to be higher than that obtained with the
static ones, showing that the latter might lead to a nonconservative seismic assessment.

In summary, the results obtained indicate that the use of static procedures represents
a reliable analysis procedure, in line with those obtained with the dynamic counterpart,
especially in the (essentially) elastic regime. The results also demonstrate that the analysis
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carried out without cladding panels tended to produce a conservative seismic assessment
and, therefore, the inclusion of these nonstructural elements in the numerical models is
advised. Regarding the expected seismic performance of the existing cladding panels,
the results indicate that damage is expected to occur in these elements under low seismic
actions. This information brings attention for the need to update the current practice with
more efficient connections and put in practice measures to limit the damage in existing
structures. Despite the effort made to select a building representative of the existing
building stock in the Mediterranean region, the conclusions drawn in this paper are
naturally limited to the building and limited records considered in the study presented.
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