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Abstract: To minimize the environmental risks and for sustainable development, the utilization
of recycled aggregate (RA) is gaining popularity all over the world. The use of recycled coarse
aggregate (RCA) in concrete is an effective way to minimize environmental pollution. RCA does
not gain more attraction because of the availability of adhered mortar on its surface, which poses
a harmful effect on the properties of concrete. However, a suitable mix design for RCA enables
it to reach the targeted strength and be applicable for a wide range of construction projects. The
targeted strength achievement from the proposed mix design at a laboratory is also a time-consuming
task, which may cause a delay in the construction work. To overcome this flaw, the application of
supervised machine learning (ML) algorithms, gene expression programming (GEP), and artificial
neural network (ANN) was employed in this study to predict the compressive strength of RCA-based
concrete. The linear coefficient correlation (R2), mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE) were evaluated to investigate the performance of the
models. The k-fold cross-validation method was also adopted for the confirmation of the model’s
performance. In comparison, the GEP model was more effective in terms of prediction by giving a
higher correlation (R2) value of 0.95 as compared to ANN, which gave a value of R2 equal to 0.92. In
addition, a sensitivity analysis was conducted to know about the contribution level of each parameter
used to run the models. Moreover, the increment in data points and the use of other supervised
ML approaches like boosting, gradient boosting, and bagging to forecast the compressive strength,
would give a better response.

Keywords: recycled coarse aggregate; cement; concrete; gene expression programming; artificial
neural network; machine learning

1. Introduction

The utilization trend of aggregate obtained from natural resources increases sharply
from the increased manufacturing and usage of concrete in the construction sectors [1,2].
The largest consumers of the natural aggregates are construction industries [3]. A total of
15 billion tons of concrete material is produced worldwide, which equates to about two
tons of concrete per resident per annum [4]. To reduce this flaw and manage this demand,
the origin of good quality natural aggregates is significantly reducing worldwide [5]. The
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approximate amount of aggregate used in the European Union countries has reached
two billion each year. The activities related to construction demand a high number of
natural materials to produce cement and aggregate. However, the construction sectors
are an enormous consumer of natural resources, producing huge amounts of waste [6].
The application of raw materials in the construction industry is the key factor that causes
environmental risks and pollution to earth [7]. The usage of raw materials has also led to
the depletion of minerals as well as natural resources [8]. Resources including cement, fine
aggregate, and coarse aggregate will be at a deprived status because these resources cannot
manage the increasing demand in the construction industry [9]. Furthermore, sustainable
waste management is one of the most crucial matters experienced by the world. Therefore,
to minimize the environmental impact and energy consistency of concrete applied to
construction work, the utilization of demolition and construction wastes can be favorable
for a sustainable engineering approach for the mixed design of concrete. The use of recycled
coarse aggregate (RCA) can also be a significant and positive aspect to achieve sustainable
construction and reduce environmental risks [10].

The main difference between the natural aggregate and recycled coarse aggregate
(RCA) is a certain amount of sticky mortar at the surface of RCA [11]. The properties of
RCA vary with certain percentages from the natural aggregate. RCA is generally a porous
material, having low saturated surface dry density and bulk density, 2310–2620 kg/m3

and 1290–1470 kg/m3, respectively [12]. The porosity of RCA is due to a high content of
adhered mortar on its surface, which also reduces its resistance against the chemical and
mechanical effects. In comparison, RCA also shows a high value of water absorption (4%
to 9%) as opposed to natural aggregate (1% to 2%) [13]. The porosity and water absorption
are normally increased in RCA just because of the amount of adhered mortar [14,15]. The
effect on density and absorption capacity is also affected by the adhered mortar. These
parameters affect the fresh properties of concrete and reduce the strength properties of
concrete. The proper mix design for RCA has assured the acceptable properties of concrete
which can be used in several construction projects. The properties of concrete material can
also be improved by using other waste materials like silica fume, fly ash, and natural and
artificial fibers [16–19].

Several studies were presented regarding the application of recycled aggregate (RA)
in concrete at certain percentages [20,21]. Several properties of concrete were investigated
upon the inclusion of RA in concrete, including the fresh properties and mechanical
properties of RA-based concrete [22–24]. The different qualities of RA were employed in
concrete for maintaining or increasing the strength properties of concrete [25–28]. They
also showed that the targeted strength was achieved even at an 80% replacement of coarse
aggregate with RCA. Khaldoun et al. [23] worked on the effect of mechanical properties
of concrete containing RCA. The compressive strength of the specimens at different ages
was calculated to analyze the behavior of concrete. Muzaffer et al. [29] described the
mechanical and physical properties of RCA concrete GGBFS, in which they concluded
that the split tensile strength was improved when tested at various ages of specimens.
Etxeberria et al. [30] showed the influence of RCA and the production process on the
properties of recycled aggregate-based concrete. They prepared concrete with 0%, 25%,
50%, and 100% recycled aggregate to investigate the properties. Sumayia et al. reported
the mechanical properties of three generations of 100% repetition of RCA. They reported
the idea that the repeated RA experienced marginally lower compressive strength than the
normal concrete.

Supervised machine learning (ML) techniques are extensively used in the fields of
artificial inelegance (AI) and computer science and have a positive reflection in engineering.
However, it has gained rapid promotion in the field of civil engineering, especially when it
comes to predicting the strength properties of concrete. The supervised ML approaches can
be employed, which can predict the outcomes at high accuracy. Ayaz et al. [31] predicted
the compressive strength of fly ash-based concrete with individual and ensemble ML ap-
proaches. Miao et al. [32] used MLR, SVM, and ANN to foretell the bond strength between
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the FRPs and concrete, in which they compared the accuracy level of the predictions from
the employed techniques. Khoa et al. [33] used ML algorithms to forecast the compressive
strength of greenfly ash-based geopolymer concrete. Marjana et al. used different ML
techniques for predicting the compressive strength of concrete. The predicted accuracy
and the error distribution were analyzed in the study. Ayaz et al. [34] used artificial neural
network (ANN), gene expression programming (GEP), and decision tree (DT) techniques
to forecast the surface chloride concentration in concrete containing waste material. They
indicated that the GEP was a more effective technique for prediction than other employed
algorithms. This research also focuses on the application of supervised ML approaches to
forecast the compressive strength of recycled coarse aggregate-based concrete. The ANN
and GEP algorithms have been investigated to predict the compressive strength of con-
crete containing recycled aggregate. The various statistical checks, k-fold cross-validation
method, and error distribution are included to confirm the model performance. The fo-
cus of this study is on the application of supervised machine learning algorithms (gene
expression programming and artificial neural network) to predict the compressive strength
of concrete containing recycled coarse aggregate (RCA) of 344 data points. The aim of
this research also describes the performance of gene expression programming (GEP) and
an artificial neural network (ANN) in terms of the correlation coefficient (R2) value. The
statistical checks, evaluation of errors (MAE, MSE, and RMSR), k-fold cross-validation, and
sensitivity analysis were also involved to evaluate the performance of both GEP and ANN
models. This study can be useful for researchers in the field of civil engineering to foretell
the strength properties without consuming more time on practical work in the laboratory.

2. Data Description

Supervised machine learning algorithms require various input variables to give the
output predicted variable. The data used in this study to forecast the compressive strength
of recycled coarse aggregate-based concrete were taken from previously published litera-
ture and can be seen in Appendix A. A total of nine parameters including water, cement,
sand, natural coarse aggregate, recycled coarse aggregate (RCA), superplasticizers, size of
RCA, the density of RCA, and water absorption of RCA were taken as input for running the
models, and one variable, compressive strength, was taken as an outcome for the models.
Several input parameters and the total number of data points greatly influence the model’s
outcome. A total of 344 data points (mixes) for the prediction of RCA-based concrete were
used in the study. Anaconda software was introduced to run the model for ANN using
python coding, while the GEP model was run on the GEP software. The relative frequency
distribution of each parameter used for the mixes can be seen in Figure 1. The descriptive
statistical analysis for all the parameters is listed in Table 1. The flowchart of the research
approach can be seen in Figure 2.

Table 1. Descriptive analysis of the input parameters.

Parameter’s
Descriptions Water Cement *FA *NCA *RCA *SP *SRCA *DRCA *WRCA

Mean 184.62 386.86 681.89 398.07 650.74 1.32 19.76 2231.06 4.80
Standard Error 1.39 4.43 11.07 19.99 20.37 0.11 0.22 31.32 0.12

Median 180.00 380.00 698.00 471.00 552.00 0.00 20.00 2362.50 4.90
Mode 220.00 380.00 693.00 0.00 138.00 0.00 20.00 2320.00 5.30

Standard
Deviation 25.84 82.16 205.28 370.71 377.73 2.05 4.02 580.95 2.26

Sample Variance 667.47 6750.28 42,141.11 137,424.94 142,682.56 4.21 16.16 337,504.80 5.12
Kurtosis −0.13 −0.19 4.17 −1.13 −0.32 0.61 2.23 10.55 1.07

Skewness −0.01 0.43 −1.82 0.30 0.51 1.36 0.08 −3.45 0.06
Range 153.40 442.00 1010.00 1448.25 1726.00 7.80 22.00 2661.00 10.90

Minimum 117.60 158.00 0.00 0.00 52.00 0.00 10.00 0.00 0.00
Maximum 271.00 600.00 1010.00 1448.25 1778.00 7.80 32.00 2661.00 10.90

Sum 63,510.69 133,081.00 234,568.66 136,937.02 223,853.20 455.50 6796.00 767,484.00 1652.80
Count 344.00 344.00 344.00 344.00 344.00 344.00 344.00 344.00 344.00

*FA = Fine aggregate, *NCA = Natural coarse aggregate, *SP = Superplasticizer, *SRCA = Maximum size of recycled coarse aggregate,
*DRCA = Density of recycled coarse aggregate, *WRCA = Water absorption of recycled-coarse aggregate.
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Figure 1. Histograms indicating the relative frequency distribution of the input parameters.
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Figure 2. Flowchart of the research approach.

3. Methodology

Two algorithms (GEP and ANN) were introduced in the study to predict the com-
pressive strength of RAC. Spyder 4.1.1 was selected in the Anaconda navigator to run
the model for the artificial neural network (ANN) using python coding. However, the
GEP, which is the computer-based software, was adopted for modeling to give a predicted
compressive result for the concrete containing recycled coarse aggregate. The GEP and
ANN used nine parameters as input and one parameter (compressive strength) as the
output during the modeling. The predicted outcome from both models presented the
correlation coefficient (R2) value, which is an indication of the accuracy level. The R2 value
normally ranges from 0–10, and a higher R2 value indicates a high accuracy between the
actual and predicted result. Gene expression programming is from the family of evolu-
tionary algorithms and is generally associated with genetic programming. GEP being
from the evolutionary algorithms, can design computer programs and models. Computer
programming is considered as a composite tree-like structure that learns and alters by
substituting their shapes, compositions, and sizes similar to living organisms. The GEP
computer program is included in simple linear chromosomes of fixed length. GEP consists
of five components: terminal set, function set, controlee variable, fitness function, and
terminate condition. Ferreira presents GEP in 2006, which is a modified form of genetic
programming (GP) and depends on the population evolutionary theorem. An exceptional
tempering in GEP was that the single gene must be transferred to another generation and
has no need to reproduce and mutate the complete structure since every alteration takes
place in a linear and simple structure. Each gene in GEP contains a fixed-length variable
having terminal sets and arithmetic operations as a set of functions. GEP makes it possible
to learn the complex data in the form of input and gives the resulting output in a simple and
easy manner. An artificial neural network (ANN) is generally a segment of a computing
system that is designed in such a way that it can simulate just like the human brain and
inspect and execute a set of information. ANN is the foundation of artificial intelligence
(AI), which can resolve problems that would seem difficult or impossible for a human. It is
also comprised of self-learning potential, which permits them to generate better results.
ANN is designed like a human brain having neuron nodes interrelated just like a web. The
brain consists of hundreds of billions of cells known as neurons. Every neuron is prepared
with a cell body that is accountable for executing the information by taking information
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towards and away from the brain. The application of ANN is reflected in every industry
and field to predict required outcomes.

4. Results and Their Analyses
4.1. Statistical Analysis

The statistical analysis representation between the actual and predicted outcomes (for
compressive strength of RCA-based concrete) from the GEP and ANN models along their
error distribution can be seen in Figure 3. The GEP gives high accuracy and less variance
between the actual and predicted output. The coefficient correlation (R2) value equals 0.95
and is an indication of its high performance towards the prediction of the result, as shown
in Figure 3a. The scattering of errors for the GEP model is also illustrated in Figure 3b.
The error distribution in Figure 3b represents that the maximum, minimum, and average
values of the training set were 22.37 MPa, 0.00 MPa, and 1.84 MPa, respectively. However,
21.73% of the error data lies below 1 MPa, and 22.96% of the data represented the errors
between 2 MPa and 5 MPa. However, only 6.97% of the data lies above the 5 MPa.
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Figure 3. Numerical analysis results illustrating the relationship among the actual and predicted outcomes and reflection of
errors distribution of the models. ANN (a,b); GEP (c,d).

The result of the ANN model is also in the acceptable range with less variance as
opposed to the GEP model’s result. The relationship between the actual and predicted
result from the ANN model with the value of R2 equal to 0.92 can be seen in Figure 3c. The
distribution of the errors for the ANN model can be seen in Figure 3d. Figure 3d gives the
information of the training set of the ANN model, indicating maximum and minimum
values of 21.44 MPa and 0.1 MPa, respectively, while giving an average value of 2.72 MPa.
In addition, 21.73% of error data lies below 1 MPa, and 36.23% of data lies between 2 MPa
and 5 MPa. However, only 7.24% of the error data indicated above the 5 MPa.

4.2. K-Fold Cross-Validation

The authenticity of the model’s execution was analyzed through the k-fold cross-
validation method. To examine the model’s validity, the k-fold cross-validation process is
normally adopted, in which the required data has been arranged randomly and divided
into ten groups. The nine groups need to be allocated for training and the remaining one for
the model’s validation. The procedure also needs repetition (ten times) to have an average
output. This detailed process of the k-fold cross-validation results in the high accuracy of
the models. In addition, the statistical checks in the form of the error’s (MSE, MAE, and
RMSE) evaluation have also been carried out, as illustrated in Table 2. The response of the
models towards the prediction was also checked through the statistical analysis, illustrated
in the form of the equations stated below. (Equations (1)–(5))

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(1)

MAE =
∑n

i=1|exi − moi|
n

(2)

RSE =
∑n

i=1(moi − exi)
2

∑n
i=1(ex− exi)

2 (3)
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RRMSE =
1
e

√
∑n

i=1(exi −moi)
2

n
(4)

R =
∑n

i=1(exi − exi)(moi −moi)√
∑n

i=1(exi − exi)
2 ∑n

i=1(moi −moi)
2

(5)

where,

exi = experimental value,
moi = predicted value,
exi = mean experimental value,
moi = mean predicted value obtained by the model,
n = number of samples.

The resulting evaluation of the k-fold cross-validation comprised of four parameters,
including the coefficient correlation (R2), mean absolute error (MAE), mean square error
(MSE), and root mean square error (RMSE), and their distribution can be seen in Figure 4.
The lesser error of the GEP model with a high value of R2 indicates the better performer
for prediction of outcome. The maximum, minimum, and average values of R2 for the GEP
model were equal to 0.77, 0.00, and 0.49, respectively, as shown in Figure 4a. Similarly, the
same values of R2 for the ANN model were 2.05, 0.00, and 0.68, as depicted in Figure 4b.
However, the maximum values of the MAE, MSE, and RMSE for the GEP model were
14.37 MPa, 14.11 MPa, and 3.76 MPa, respectively, as illustrated in Figure 4a, while the
validation result for the ANN model gave maximum values of MAE, MSE, and RMSE
as 16.80 MPa, 20.89 MPa, and 4.57 MPa, respectively, as shown in the Figure 4b. The
minimum values of the errors (MAE, MSE, and RMSE) for the GEP model were 6.21 MPa,
8.17 MPa, and 2.86 MPa, as reflected in Figure 4a, while for ANN, these values were
5.86 MPa, 4.96 MPa, and 2.23 MPa, as depicted in Figure 4b. Additionally, the validation
result for the GEP and ANN models and the statistical checks for both, employing the
supervised machine learning algorithms, are illustrated in Tables 2 and 3, respectively.

Figure 4. Statistical representation for the k-fold cross-validation process. GEP (a); ANN (b).

Table 2. Statistical checks of the GEP and ANN models.

Machine Learning Algorithms MAE MSE RMSE

Gene Expression Programming (GEP) 1.84 9.3 3.05
Artificial Neural Network (ANN) 2.73 19 4.36
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Table 3. Analysis of the k-fold cross-validation of ANN and GEP models.

ANN GEP

K-Fold MAE MSE RMSE R2 K-Fold MAE MSE RMSE R2

1 11.77 16.13 4.02 0.22 1 8.17 8.81 2.97 0.49
2 5.86 7.28 2.70 0.91 2 14.37 14.11 3.76 0.70
3 9.04 10.72 3.27 0.70 3 10.57 12.79 3.58 0.77
4 10.81 14.60 3.82 1.82 4 9.31 10.04 3.17 0.43
5 7.46 7.23 2.69 0.20 5 8.51 10.99 3.32 0.12
6 16.80 20.89 4.57 2.05 6 13.55 13.25 3.64 0.74
7 7.54 10.34 3.22 0.49 7 12.07 13.67 3.70 0.00
8 10.70 14.50 3.81 0.00 8 8.77 8.22 2.87 0.56
9 8.86 4.96 2.23 0.26 9 6.21 8.17 2.86 0.69

10 14.58 15.53 3.94 0.16 10 7.49 9.68 3.11 0.44

5. Sensitivity Analysis

This analysis refers to the effect of parameters on predicting the compressive strength
of concrete containing recycled coarse aggregate, as depicted in Figure 5. The input
parameters have a significant effect on forecasting the outcomes. The figure illustrates
that the highest contributor was the recycled coarse aggregate (RCA) at 41.1%, while
the other two main contributors were natural coarse aggregate (NCA) and water at 25%
and 20%, respectively. However, the contribution of the other variables was less, and for
cement, it showed a 3.8% contribution, fine aggregate 2.3%, superplasticizers 2.6%, the
size of coarse aggregate 1.9%, the density of RCA 2%, and water absorption showed 1.3%
contribution towards the prediction of the compressive strength of RCA-based concrete.
The following equation was used to calculate the contribution of each variable towards the
model’s output.

Ni = fmax(xi)− fmin(xi) (6)

Si =
Ni

∑n
j−i Nj

(7)

where, fmax(xi) and fmin(xi) are the maximum and minimum of the estimated output over
the ith output.

Figure 5. Sensitivity analysis indicates the contribution of parameters towards the prediction.
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6. Discussion

This research describes the application of supervised machine learning (ML) tech-
niques to foretell the strength property (compressive strength) of recycled coarse aggregate-
based concrete. The use of recycled aggregates in concrete is to produce effective material
and sustainable construction works. The ML approaches used in this study were gene
expression programming (GEP) and an artificial neural network (ANN). The predictive
performance of both algorithms was compared to evaluate the better predictor. The GEP
model’s outcome was more accurate by indicating the coefficient correlation (R2) value
equal to 0.95 as opposed to the ANN model’s outcome which gave an R2 value equal to 0.92.
The performance of both models was also confirmed from the statistical checks and k-fold
cross-validation method. The lesser values of the errors indicate the high performance of
the employed model. Moreover, the sensitivity analysis was also carried out to know about
the contribution of each parameter towards the prediction of the compressive strength
of concrete containing recycled coarse aggregate. The performance of the models can be
affected by the input parameters used to run the model and the number of data points. The
contribution level from the sensitivity analysis of all the nine input parameters towards the
forecasted result indicates the high contributor parameter.

7. Conclusions and Future Recommendations

This study describes the application of supervised machine learning approaches to
predict the compressive strength of concrete containing recycled coarse aggregate (RCA).
The gene expression programming (GEP) and artificial neural network (ANN) algorithms
were employed for forecasting the compressive strength of concrete. The GEP model was
more effective in terms of prediction as compared to the ANN model, which is confirmed
from its higher value of linear correlation coefficient (R2) and lesser values of the errors.
The following conclusions can be drawn.

The results of the GEP model indicate the high performance towards the prediction of
concrete containing recycled coarse aggregate (RCA) as opposed to the ANN model.

The results from the ANN model are also in the acceptable range and can be used for
predicting the outcomes.

The high performance of the GEP model has also been confirmed from statistical
checks and the k-fold cross-validation process.

The application of GEP and ANN was proposed in this study to predict the strength
property of concrete. The use of ML approaches can predict the strength properties
without casting the samples in the laboratory. However, the use of other supervised
machine learning algorithms would give a better idea about the accuracy of the employed
ML techniques.

The RCA also showed a significant effect (41.1%) towards predicting the concrete’s
compressive strength compared to other input variables.

It would be easier to understand the effect of the models by making comparisons of
more than two algorithms towards the prediction of the outcomes.

It is recommended for future research that datasets should be enhanced from exper-
imental work, field tests, and other numerical analyses using different approaches (e.g.,
Monte–Carlo simulation).

The input parameters can also be increased by adding the environmental effects (e.g.,
high temperature and humidity) to provide a better response from the models.

The application of the other ensemble ML algorithms (e.g., Adaboost, bagging, and
boosting) can be more effective to predict the compressive strength of concrete.
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Appendix A

Water
(kg/m3)

Cement
(kg/m3)

FA
(kg/m3)

NCA
(kg/m3)

RCA
(kg/m3)

SP
(kg/m3)

SRCA
(mm)

DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

165 370 650 850.5 364.5 2.22 20 2400 4.9 50.6
165 370 650 607.5 607.5 2.22 20 2400 4.9 50.8
165 370 650 0 1215 2.22 20 2400 4.9 50.2
165 460 575 850.5 364.5 2.22 20 2400 4.9 60.8
165 460 575 607.5 607.5 2.22 20 2400 4.9 61.2
165 460 575 0 1215 2.22 20 2400 4.9 60.2
165 560 495 850.5 364.5 2.59 20 2400 4.9 70.2
165 560 495 607.5 607.5 2.59 20 2400 4.9 70.8
165 560 495 0 1215 2.59 20 2400 4.9 70
180 500 486.6 0 1135.4 0 16 0 0 44.5
180 500 0 0 1574.3 0 16 0 0 38.7
180 500 486.6 0 1135.4 0 16 0 0 46.1
180 500 0 0 1574.3 0 16 0 0 42.4
180 500 486.6 0 1135.4 0 16 0 0 52.5
180 500 0 0 1574.3 0 16 0 0 50.7
180 500 486.6 0 1135.4 0 16 0 0 45.2
180 500 0 0 1574.3 0 16 0 0 42
180 500 486.6 0 1135.4 0 16 0 0 49.6
180 500 0 0 1574.3 0 16 0 0 45.1
180 500 509.6 0 1135.4 0 16 0 0 54.4
180 500 0 0 1574.3 0 16 0 0 48.2

207.6 400 662 863 153 0 20 2410 5.8 38.1
207.6 400 662 697 298 0 20 2410 5.8 37
207.6 400 662 383 573 0 20 2410 5.8 35.8
207.6 400 662 0 903 0 20 2410 5.8 34.5
217 353 660 861 209 0 20 2330 6.3 44.9
229 353 647 527 513 0 20 2330 6.3 44.7
241 353 625 0 993 0 20 2330 6.3 46.8
230 353 661 853 202 0 20 2330 6.3 43.2
247 353 647 524 496 0 20 2330 6.3 39.7
271 353 625 0 959 0 20 2330 6.3 43.3
206 353 661 864 216 0 20 2330 6.3 43
207 353 649 531 531 0 20 2330 6.3 38.1
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Water
(kg/m3)

Cement
(kg/m3)

FA
(kg/m3)

NCA
(kg/m3)

RCA
(kg/m3)

SP
(kg/m3)

SRCA
(mm)

DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

165 300 765 905 267 4.98 25 2430 4.4 42
165 318 739 608 537 6.042 25 2430 4.4 41
162 325 683 0 1123 6.175 25 2430 4.4 40

160.6 380 598 1182 52 4.9 20 2165 6.8 62.2
165.4 380 529 1175 103 4.9 20 2165 6.8 58.4
170.2 380 460 1168 154 4.9 20 2165 6.8 61.3
175.6 380 327 1162 254 4.9 20 2165 6.8 60.8
180.9 380 0 1162 509 4.9 20 2165 6.8 61
225 410 642 840 204 0 20 2570 3.5 45.3
225 410 642 524 506 0 20 2570 3.5 42.5
225 410 642 210 814 0 20 2570 3.5 39.2
225 410 642 0 1017 0 20 2570 3.5 37.1
180 400 708 886 215 0 20 2570 3.5 62.4
180 400 708 554 538 0 20 2570 3.5 55.8
180 400 708 0 1075 0 20 2570 3.5 42
225 410 642 840 204 0 20 2570 3.5 45.3
225 410 642 524 506 0 20 2570 3.5 42.5
225 410 642 0 1017 0 20 2570 3.5 38.1
234 360 705 0 1100 0 19 2390 4.4 22.1
190 380 705 0 1100 0 19 2390 4.4 25.1
192 400 705 0 1100 0 19 2390 4.4 27.2
181 420 705 0 1100 0 19 2390 4.4 28.7
184 460 705 0 1100 0 19 2390 4.4 29.5
178 264 835 0 1030 0 30 2520 3.8 18
174 262 830 0 1020 0 30 2510 3.9 15.4
148 427 760 0 1000 4.2 30 2520 3.8 36.4
153 423 755 0 990 4.1 30 2510 3.9 35.7
152 443 855 0 885 3.9 30 2520 3.8 44.4
225 410 642 840 204 0 20 2580 3.5 45.3
225 410 642 524 506 0 20 2580 3.5 42.5
225 410 642 0 1017 0 20 2580 3.5 38.1
205 410 662 865 210 0 20 2580 3.5 51.7
205 410 662 541 525 0 20 2580 3.5 47.1
205 410 662 0 1049 0 20 2580 3.5 43.4
180 400 708 886 215 5.6 20 2580 3.5 62.4
180 400 708 554 538 5.6 20 2580 3.5 56.8
180 400 708 0 1075 5.6 20 2580 3.5 52.1
160 400 729 912 221 7.8 20 2580 3.5 69.6
160 400 729 570 554 7.8 20 2580 3.5 65.3
160 400 729 0 1107 7.8 20 2580 3.5 58.5
175 350 730 711 297 1.68 25 2530 1.9 36.7
175 350 730 508 494 1.68 25 2530 1.9 38
175 350 730 0 989 1.68 25 2530 1.9 36
175 350 730 711 282 1.68 25 0 0 32.6
175 350 730 508 469 1.68 25 2400 6.2 30.4
175 350 730 0 938 1.68 25 2400 6.2 29.5
190 380 744.45 756.97 189.24 2.66 20 2338 5.2 47.4
190 380 709.54 471.13 471.12 2.66 20 2338 5.2 47.3
190 380 714.56 0 874.04 5.32 20 2338 5.2 54.8
140 350 732 519 556 4.2 12 2420 6.8 43.3
153 340 723 512 549 3.4 12 2400 6.8 39.6
165 330 715 507 543 2.64 12 2400 6.8 38.1
176 320 708 502 537 1.92 12 2400 6.8 34.5
186 310 702 497 533 1.24 12 2400 6.8 31.6
140 350 732 553 523 4.2 22 2420 8.8 46.1
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Water
(kg/m3)

Cement
(kg/m3)

FA
(kg/m3)

NCA
(kg/m3)

RCA
(kg/m3)

SP
(kg/m3)

SRCA
(mm)

DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

153 340 723 547 517 3.4 22 2420 8.8 45.8
165 330 715 541 511 2.64 22 2420 8.8 39.9
176 320 708 535 506 1.92 22 2420 8.8 36.3
186 310 702 531 501 1.24 22 2420 8.8 34.7
186 372 617.65 1030.22 257.56 0 20 2400 0 27.2
186 372 617.65 772.67 515.55 0 20 2400 0 26.5
186 372 617.65 515.11 772.67 0 20 2400 0 25.4
186 372 617.65 257.56 1030.22 0 20 2400 0 25.1
186 372 494.12 128.78 123.53 0 20 2630 0 26.4
186 372 370.59 128.78 247.06 0 20 2630 0 25.9
186 372 247.06 128.78 370.59 0 20 2630 0 23.5
186 372 123.53 128.78 494.12 0 20 2630 0 15.4
200 270 750 675 200 1.08 19 2440 5.8 18.5
210 270 750 450 400 1.35 19 2440 5.8 18
220 270 750 225 600 1.62 19 2440 5.8 16.5
165 370 865 760 230 1.48 19 2440 5.8 33
165 370 865 505 455 1.85 19 2440 5.8 34.5
165 370 865 250 680 2.59 19 2440 5.8 34

178.5 275 938.05 723.07 180.77 1.925 16 2400 5 31.7
178.5 275 962.73 423.77 423.77 1.925 16 2400 5 32.4
178.5 275 1005.18 0 756.46 1.925 16 2400 5 30.1
190 380 794.31 750.04 187.57 2.66 16 2400 5 43.7
190 380 811.37 443.71 443.71 2.66 16 2400 5 37.5
190 380 838.29 0 807.97 2.66 16 2400 5 40.5
151 335 630 414 720 1.266 19 2420 5.4 41.4
156 349 888 0 792 1.67616 19 2420 5.4 43.9
161 358 645 281 813 1.3584 19 2500 3.3 44.8
156 349 857 0 867 1.2564 19 2500 3.3 45.9

172.43 401 574 911 303 0.2005 20 2661 1.9 47
172.43 401 574 585 585 0.70175 20 2602 2.6 46
172.43 401 574 0 1119 0.90225 20 2510 3.9 42.5
190.8 424 770 0 980 0 19 2490 4.8 41
192.5 350 800 0 1015 0 19 2490 4.8 33.3

191.75 295 814 0 1039 0 19 2490 4.8 24.8
150 250 762 858 286 4.375 19 0 0 26.7
150 250 753 564 564 4.375 19 0 0 21.5
150 250 743 279 836 4.375 19 0 0 21.4
150 250 734 0 1100 4.375 19 0 0 20
180 400 685 770 257 3 19 0 0 38.3
180 400 676 507 507 3 19 0 0 37
180 400 667 250 751 3 19 0 0 35
180 400 659 0 988 3 19 0 0 33.3
175 325 0 0 1762 3.45 32 2263 6 33.2
222 350 0 0 1778 4.5 32 2283 4.2 35.6
221 350 0 0 1771 4.5 32 2292 4.3 34.6
195 325 0 0 1710 3.25 32 2301 5 37.3
123 300 0 192 1728 3 32 2609 1.5 45.4
144 325 0 768 1152 3.25 32 2518 2.7 54.3
123 325 0 754.4 1131.6 3.25 32 2584 1.6 54.4
132 300 0 1448.25 482.75 3 32 2594 1.6 53.4
180 275 625 882 378 0 20 2340 5.3 20
180 295 595 635 635 0 20 2340 5.3 19
180 310 610 0 1240 0 20 2340 5.3 18
180 330 585 872 373 0 20 2340 5.3 23
180 355 560 623 623 0 20 2340 5.3 24
180 372 536 0 1252 0 20 2340 5.3 21
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(kg/m3)
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(kg/m3)

FA
(kg/m3)

NCA
(kg/m3)

RCA
(kg/m3)

SP
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SRCA
(mm)

DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

180 355 560 872 373 0 20 2340 5.3 25
180 385 550 613 613 0 20 2340 5.3 29
180 409 525 0 1226 0 20 2340 5.3 30
180 375 544 869 372 0 20 2340 5.3 39
180 405 508 624 624 0 20 2340 5.3 31
180 426 494 0 1241 0 20 2340 5.3 34
193 350 661 1061 57 0 12 2010 10.9 40
194 350 515 1061 170 0 12 2010 10.9 38.6
196 350 368 1061 283 0 12 2010 10.9 37.6
199 158 0 1061 566 0 12 2010 10.9 38.6
158 350 693 1111 59 3.5 12 2010 10.9 53.7
163 350 536 1105 177 3.5 12 2010 10.9 51
168 350 381 1100 294 3.5 12 2010 10.9 47.8
178 350 0 1089 582 3.5 12 2010 10.9 45.1
137 350 713 1143 61 3.5 12 2010 10.9 64.6
139 350 555 1143 183 3.5 12 2010 10.9 65.4
143 350 395 1138 304 3.5 12 2010 10.9 63.2
150 350 0 1132 605 3.5 12 2010 10.9 63
180 281 802 0 970 0 10 2360 4.7 38.6
170 293 648 0 919 0 10 2280 6.2 38.1
165 337 841 0 879 0 10 2220 7.8 39.3
190 463 621 0 970 0 10 2360 4.7 60.1
190 500 621 0 919 3.24 10 2280 6.2 60.2
180 600 567 0 879 5.04 10 2220 7.8 62.8
220 537 693 782 138 0 20 2330 4.4 50.8
220 537 693 644 276 0 20 2330 4.4 44.9
220 537 693 506 414 0 20 2330 4.4 44.6
220 537 693 368 552 0 20 2330 4.4 42.4
220 537 693 782 138 0 20 2370 4 54
220 537 693 644 276 0 20 2370 4 56
220 537 693 506 414 0 20 2370 4 54.4
220 537 693 368 552 0 20 2370 4 40.6
220 537 693 782 138 0 20 2390 3.6 55.2
220 537 693 644 276 0 20 2390 3.6 53.5
220 537 693 506 414 0 20 2390 3.6 56.9
220 537 693 368 552 0 20 2390 3.6 54.7
220 537 693 782 138 0 20 2320 4.6 50.5
220 537 693 644 276 0 20 2320 4.6 48.9
220 537 693 506 414 0 20 2320 4.6 45.8
220 537 693 368 552 0 20 2320 4.6 40
220 537 693 782 138 0 20 2390 3.7 54.4
220 537 693 644 276 0 20 2390 3.7 50.2
220 537 693 506 414 0 20 2390 3.7 49.5
220 537 693 368 552 0 20 2390 3.7 40.4
220 537 693 782 138 0 20 2390 3.5 45
220 537 693 644 276 0 20 2390 3.5 46.9
220 537 693 506 414 0 20 2390 3.5 51.4
220 537 693 368 552 0 20 2390 3.5 53.2
220 537 693 782 138 0 20 2380 3.8 55.3
220 537 693 644 276 0 20 2380 3.8 55.9
220 537 693 506 414 0 20 2380 3.8 52.6
220 537 693 368 552 0 20 2380 3.8 48
220 537 693 782 138 0 20 2380 3.8 49.1
220 537 693 644 276 0 20 2380 3.8 49.9
220 537 693 506 414 0 20 2380 3.8 50.3
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Water
(kg/m3)

Cement
(kg/m3)

FA
(kg/m3)

NCA
(kg/m3)

RCA
(kg/m3)
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(kg/m3)

SRCA
(mm)

DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

220 537 693 368 552 0 20 2380 3.8 47.5
220 537 693 782 138 0 20 2400 3.5 43.2
220 537 693 644 276 0 20 2400 3.5 53.7
220 537 693 506 414 0 20 2400 3.5 50
220 537 693 368 552 0 20 2400 3.5 43.3
220 537 693 782 138 0 20 2370 4 52.9
220 537 693 644 276 0 20 2370 4 49.9
220 537 693 506 414 0 20 2370 4 53.7
220 537 693 368 552 0 20 2370 4 46
206 413 606 0 987 0 25 2452 4.1 51
206 413 606 0 987 0 25 2452 4.1 49
206 413 606 0 987 0 25 2452 4.1 48
206 413 606 537 494 0 25 2452 4.1 51
206 413 606 537 494 0 25 2452 4.1 51
206 413 606 537 494 0 25 2452 4.1 51
206 413 606 805 245 0 25 2452 4.1 52
206 413 606 805 245 0 25 2452 4.1 50
206 413 606 805 245 0 25 2452 4.1 49

145.6 520 577.2 0 1040 0 25 2260 7.5 38.3
145.6 520 577.2 0 1040 0 25 2260 7.5 32.9
119.6 520 577.2 0 1040 0 25 2260 7.5 33.2
146.2 430 653.6 0 1032 0 25 2260 7.5 31.3
146.2 430 653.6 0 1032 0 25 2260 7.5 28.4
120.4 430 653.6 0 1032 0 25 2260 7.5 28

145.77 339 728.85 0 1050.9 0 25 2260 7.5 26.5
145.77 339 728.85 0 1050.9 0 25 2260 7.5 23.3
118.65 339 728.85 0 1050.9 0 25 2260 7.5 21.6
144.06 294 767.34 0 1029 0 25 2260 7.5 21.6
144.06 294 767.34 0 1029 0 25 2260 7.5 18
117.6 294 767.34 0 1029 0 25 2260 7.5 18.8

146.91 249 804.27 0 1045.8 0 25 2260 7.5 16.1
146.91 249 804.27 0 1045.8 0 25 2260 7.5 13.4
119.52 249 804.27 0 1045.8 0 25 2260 7.5 13.9

179 275 878 735 184 0 20 2320 5.3 41
179 275 849 455 455 0 20 2320 5.3 44
179 275 868 0 830 0 20 2320 5.3 45
190 380 744 757 189 0 20 2320 5.3 50.5
190 380 710 471 471 0 20 2320 5.3 45
190 380 715 0 874 0 20 2320 5.3 56
179 275 961 740 185 0 20 2320 5.3 33.5
179 275 978 408 408 0 20 2320 5.3 32
179 275 1010 0 640 0 20 2320 5.3 32
190 380 813 767 192 0 20 2320 5.3 44
190 380 822 426 427 0 20 2320 5.3 41
190 380 836 0 683 0 20 2320 5.3 41.5
179 325 799 839 210 0 20 2320 5.3 44
179 325 831 490 490 0 20 2320 5.3 41
179 325 825 0 923 0 20 2320 5.3 33.5
173 385 698 892 223 0 20 2320 5.3 53.5
173 385 742 515 515 0 20 2320 5.3 54
173 385 746 0 963 0 20 2320 5.3 40

159.6 380 862.4 489.3 489.3 5.7 20 2330 6.1 41.6
193.8 380 934.1 0 867.7 6.46 20 2330 6.1 31.4
197.6 380 862.4 489.3 489.3 5.7 20 2330 6.1 35.5
231.8 380 934.1 0 867.7 6.46 20 2330 6.1 26
167.2 380 862.4 489.3 489.3 5.7 20 2320 5.8 44.6
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NCA
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DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

193.8 380 934.1 0 867.7 6.46 20 2320 5.8 36.7
235.6 380 934.1 0 867.7 6.46 20 2320 5.8 29.5
155.8 380 818.5 840.9 210.2 4.56 20 2360 3.9 46.1
159.6 380 862.4 489.3 489.3 5.7 20 2360 3.9 45.1
171 380 934.1 0 867.7 6.46 20 2360 3.9 42.9
190 380 818.5 840.9 210.2 4.56 20 2360 3.9 39.3

197.6 380 862.4 489.3 489.3 5.7 20 2360 3.9 39.5
205.2 380 934.1 0 867.7 6.46 20 2360 3.9 37.7
159.6 380 818.5 840.9 210.2 4.56 20 2350 4.5 48.1
163.4 380 862.4 489.3 489.3 5.7 20 2350 4.5 41
152 380 934.1 0 867.7 6.46 20 2350 4.5 38.7

193.8 380 818.5 840.9 210.2 4.56 20 2350 4.5 42.7
197.6 380 862.4 489.3 489.3 5.7 20 2350 4.5 35.4
190 380 934.1 0 867.7 6.46 20 2350 4.5 31.4

159.6 380 818.5 840.9 210.2 4.56 20 2350 4.7 48.5
159.6 380 862.4 489.3 489.3 5.7 20 2350 4.7 45.4
163.4 380 934.1 0 867.7 6.46 20 2350 4.7 37
197.6 380 818.5 840.9 210.2 4.56 20 2350 4.7 41.3
197.6 380 862.4 489.3 489.3 5.7 20 2350 4.7 36.8
212.8 380 934.1 0 867.7 6.46 20 2350 4.7 31.2
159.8 340 556 1020 238 0 20 2336 3.6 50
159.8 340 556 638 596 0 20 2315 3.6 45.3
159.8 340 556 319 894 0 20 2295 3.6 44
137.1 380 927 869.2 202 0 10 2470 3.7 108
146.5 380 927 543.2 505.1 0 10 2470 3.7 104.8
162.3 380 927 0 1010.2 0 10 2470 3.7 108.5
138.2 380 927 869.2 195 0 10 2390 4.9 102.5
149.8 380 927 543.2 487.5 0 10 2390 4.9 103.1
170.4 380 927 0 975.1 0 10 2390 4.9 100.8
139.7 380 927 869.2 187.8 0 10 2300 5.9 104.3
153.1 380 927 543.4 469.4 0 10 2300 5.9 96.8
175 380 927 0 938.8 0 10 2300 5.9 91.2

185.4 309 864 848 211 1.0197 16 2380 6.9 42.9
191.7 320 817.5 538 538 1.056 16 2380 6.9 42.5
201.6 336 785 0 1060 1.1088 16 2380 6.9 40.9
192.5 386 829 808 202 2.0458 16 2380 6.9 51.6
200 399 795 504 504 2.1147 16 2380 6.9 51.6
210 420 738 0 1014 2.226 16 2380 6.9 50.3
205 300 697 0 1075 0 20 2450 3.1 35
205 300 697 0 1027 0 20 2370 7.1 29.2
205 300 697 0 1027 0 20 2360 7.8 27.7
180 350 706 0 1089 0 20 2450 3.1 47.6
180 350 706 0 1041 0 20 2370 7.1 42
180 350 706 0 1041 0 20 2360 7.8 42.9
185 425 696 0 1028 0 20 2450 3.1 60
185 425 696 0 982 0 20 2370 7.1 53.7
185 425 696 0 982 0 20 2360 7.8 53.2
165 485 685 0 1039 0 20 2450 3.1 78.2
165 485 685 0 979 0 20 2370 7.1 71.2
165 485 685 0 982 0 20 2360 7.8 65.4

178.3 358 730.4 783.6 299.3 0.3 19 2570 2.7 33.6
178.3 358 730.4 458.3 598.4 0.3 19 2570 2.7 30.4
178.3 358 730.4 0 1020 0.3 19 2570 2.7 29.1
195 300 787.1 756.4 189.1 0 20 2300 5.2 39.5
195 300 737.4 485.5 485.5 0 20 2300 5.2 40.8
195 300 712.6 0 951.4 0 20 2300 5.2 43.7
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DRCA
(kg/m3)

WRCA
(%)

Strength
(MPa)

195 300 814.4 733 183.2 0 20 2300 5.5 41
195 300 804.2 450.7 450.7 0 20 2300 5.5 38.8
195 300 807.9 0 855.2 0 20 2300 5.5 39.9

214.2 210 929 0 966 0 22 2451 7.8 19.7
196 280 866 0 940 0 22 2387 6.9 35.7
161 350 858 0 974 3.5 22 2362 4.2 66.8

212.1 210 932 0 970 0 22 2456 7.5 21.8
193.2 280 870 0 970 0 22 2455 6.4 36.1
157.5 350 858 0 1029 3.5 22 2496 4.2 68.5
207.9 210 938 0 953 0 22 2401 7.6 21
187.6 280 877 0 988 0 22 2484 5.4 41.1
150.5 350 868 0 982 3.5 22 2363 3.6 70.2
205.8 210 943 0 977 0 22 2447 6.9 23.6
190.4 280 873 0 962 0 22 2458 5.8 39.7
157.5 350 858 0 1016 3.5 22 2464 3.9 66.5
179 275 878 735 184 0 19 2320 5.3 49.3
179 275 849 455 455 0 19 2320 5.3 47.5
179 275 868 0 830 0 19 2320 5.3 53.7
190 380 714 757 189 0 19 2320 5.3 64.8
190 380 710 471 471 0 19 2320 5.3 63.5
190 380 715 0 874 0 19 2320 5.3 65.1
179 275 961 740 185 0 19 2320 5.3 64.8
179 275 978 408 408 0 19 2320 5.3 63.5
179 275 1010 0 640 0 19 2320 5.3 65.1
190 380 813 767 192 0 19 2320 5.3 54.9
190 380 822 426 427 0 19 2320 5.3 51.5
190 380 836 0 683 0 19 2320 5.3 50.3
179 325 799 839 210 0 19 2320 5.3 56.5
179 325 831 490 490 0 19 2320 5.3 48.9
179 325 825 0 923 0 19 2320 5.3 43.1
173 385 698 892 233 0 19 2320 5.3 67.4
173 385 742 515 515 0 19 2320 5.3 61.2
173 385 746 0 963 0 19 2320 5.3 53.7
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