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Abstract: This study investigated operational and structural health monitoring (SHM) as well
as damage evaluations for building structures. The study involved damage detection and the
assessment of buildings by placing sensors and by assuming weak areas, and considered situations
of assessment and self-monitoring. From this perspective, advanced sensor technology and data
acquisition techniques can systematically monitor a building in real time. Furthermore, the structure’s
response and behavior were observed and recorded to predict the damage to the building. In this
paper, we discuss the real-time monitoring and response of buildings, which includes both static and
dynamic analyses along with numerical simulation studies such as finite element analysis (FEA), and
recommendations for the future research and development of SHM are made.

Keywords: structural health monitoring; buildings; sensors; accelerometers; damage detection; finite
element analysis

1. Introduction

SHM systems provide information about any significant change or damage occurring
in a structure. The primary purpose of structural damage detection is to identify the
reason, location, and type of damage, so as to measure the damage severity and predict
the structure’s remaining service life. Structural deficiencies causing collapses may result
from internal factors, such as corrosion, fatigue, and ageing, and external factors, such
as earthquakes, wind loads, and impact loads. The damage caused by the above factors
may progress very slowly and become observable only when the structure’s damage is
considerable, and sometimes it is only repairable at a high cost. The detection of structural
damage is essential in ensuring structural safety during a structure’s lifetime. The structural
damage detection objective is to evaluate the computable and qualitative deterioration
of the structural system in service or under a severe load. It is necessary to monitor
the location, occurrence, and extent of deterioration from both safety and performance
viewpoints. As witnessed by the worldwide development of smart structures and materials,
recent advancements in materials and sensing technologies have provided powerful new
tools for improving building systems. While many of the structures have existed for
decades in their basic form, the intelligence added through the various damage detection
methods addresses the practical problems that challenge the effective implementation
of active damage control in building structures. SHM has become a primary option for
evaluating the overall behavior, preferably from the manufacturing process to the end of
its service life. Figure 1 depicts the operating principle of SHM in multi-story buildings
along with data acquisition and predictive analysis.
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Pedro Apostol church was monitored through the SHM technique for both short-term and 
long-term monitoring to find the variations in temperature and humidity [1]. SHM can be 
used not only for modern buildings but also for heritage buildings as well, so that historic 
structures, such as those of the Ottoman Empire, can be monitored using non-destructive 
techniques (NDTs) to predict damage and observe the current health status of buildings 
[2,3]. Seismic or any excess acceleration in buildings causes heavy damage to the structure 
such that the buildings undergo dynamic loading, so dynamic analysis should be carried 
out using SHM techniques; thus, the forever berated transfer function has been imple-
mented to predict the action of seismic waves in buildings [4]. To diagnose the buildings' 
damage, by adopting a neural network (NN) approach, both damage and undamaged 
areas are assessed by applying artificial free vibration to forecast the range and level of 
damage due to dynamic loading conditions [5]. 

In SHM, buildings are subjected to static loading conditions for the most part. Fur-
thermore, the main parameter for static loading is displacement, strain, temperature, and 
acceleration; hence, the deformation and inclination of 600 m tall canon tower were mon-
itored using SHM in China and found slight changes in deformation in comparatively hot 
and cold seasons [6]. In general, buildings under static loading will use a 1D or 2D system 
to carry out monitoring, but by adopting a motion capture system (MCS) instead of a 
global positioning system (GPS), the structure can be monitored in 3D using advanced 
sensor technology [7]. 

The finite element method (FEM) and finite element analysis (FEA) are numerical 
simulation techniques used to analyze real-time experiments through analytical models 
using advanced software; hence, complicated analysis, e.g., of stiffness and damping, can 
be carried out using the FEM technique very easily and reliably, even for multi-story 
buildings. In one study, a 15% stiffness reduction was found after analyzing the nine col-
umns, and a 1.67% stiffness reduction was found in the overall building structure [8]. The 
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Damage detection is an essential consideration in SHM; therefore, a few techniques
have been adopted to predict damage such as ambient vibrations. For example, the San
Pedro Apostol church was monitored through the SHM technique for both short-term
and long-term monitoring to find the variations in temperature and humidity [1]. SHM
can be used not only for modern buildings but also for heritage buildings as well, so
that historic structures, such as those of the Ottoman Empire, can be monitored using
non-destructive techniques (NDTs) to predict damage and observe the current health status
of buildings [2,3]. Seismic or any excess acceleration in buildings causes heavy damage
to the structure such that the buildings undergo dynamic loading, so dynamic analysis
should be carried out using SHM techniques; thus, the forever berated transfer function
has been implemented to predict the action of seismic waves in buildings [4]. To diagnose
the buildings’ damage, by adopting a neural network (NN) approach, both damage and
undamaged areas are assessed by applying artificial free vibration to forecast the range
and level of damage due to dynamic loading conditions [5].

In SHM, buildings are subjected to static loading conditions for the most part. Fur-
thermore, the main parameter for static loading is displacement, strain, temperature, and
acceleration; hence, the deformation and inclination of 600 m tall canon tower were mon-
itored using SHM in China and found slight changes in deformation in comparatively
hot and cold seasons [6]. In general, buildings under static loading will use a 1D or 2D
system to carry out monitoring, but by adopting a motion capture system (MCS) instead of
a global positioning system (GPS), the structure can be monitored in 3D using advanced
sensor technology [7].

The finite element method (FEM) and finite element analysis (FEA) are numerical
simulation techniques used to analyze real-time experiments through analytical models
using advanced software; hence, complicated analysis, e.g., of stiffness and damping,
can be carried out using the FEM technique very easily and reliably, even for multi-story
buildings. In one study, a 15% stiffness reduction was found after analyzing the nine
columns, and a 1.67% stiffness reduction was found in the overall building structure [8].
The FEM was used for steel bracing to identify damage by adopting two methods; namely,
the Bayesian estimation method and the weighted least squares methods in the initial
stages for the eigen-sensitivity-based FE model [9].
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2. Literature Review
2.1. Process of SHM

SHM is an automated system in civil engineering and helps to predict the damage of
a structure in early stages with the help of advanced sensing technologies and automated
data acquisition techniques, which allows for predictive analysis. This predictive analysis
helps companies and researchers to determine the nature, standards, and bearing capacity
of a structure against static and dynamic loads. Static loads occur because of displacement,
acceleration, strain, stress, and temperature together with dynamic loads based on vibration,
natural frequencies, model identification, time history analysis, and response spectrum,
depending on the characteristics of the external and internal interactions and the type of
structure [10,11]. Olivera Lopez et al. [12] carried out real-time monitoring in a 14-floor
building stationed in a coastal area of Chile subjected to dynamic loading. The main
objective of the study was to check the withstanding ability of the structure in a tsunami to
predict the hydrodynamic forces and detect the damage, and it needs further development
in terms of mode deformation. Yanet et al. [13] investigated the lifespan of sensors used for
SHM and pointed out that the average life span would be 10 years, and they suggested
that more sensors be fixed in a structure to distribute the load equally and enhance the
durability and service life of sensors. This technique is known as the communication
technology load.

Roghaei and Zabihollah [14] conducted an experimental process in a 3-story hospital
steel structure using piezoelectric sensors to identify the stress and deformation by adopting
a non-linear static analysis (pushover) approach using SAP2000 and FEMA35 software.
Zhou et al. [15] managed to determine damage with an even more accurate vibration-based
approach using the hysteresis loop approach (HLA) through an experimental process in a
12-story RC frame building; they determined the variation in stiffness using elastic, hybrid,
and pinched approaches, and the results showed that the pinched approach was more
effective because it could help to predict variation in fundamental frequencies less than
0.05 Hz. Figure 2 provides detailed information on the progress of SHM in buildings.
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Pierdicca et al. [16] carried out long-term monitoring for approximately one year
in a reinforced concrete school building to analyze the dynamic behavior of buildings;
they used an executing operational ambient vibration survey using an operational model
analysis (OMA) approach and developed an FEM model for numerical simulation, and
the results of the long-term monitoring approach were satisfactory in terms of economic
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benefits and accuracy. Demetriou et al. [17] presented numerical studies through the on-line
monitoring of an existing three-floor building that had been affected due to reductions in
stiffness because of the harmonic motion, and the results show that failures occurred at
both the first and second floor, stiffness reduction occurred at 1.8 and 4 s, respectively, and
no failures occurred at the third floor.

Dong et al. [18] carried out monitoring in two buildings, the Van Nuys hotel and an
imperial country service building, by adopting an empirical mode decomposition (EMD)
approach and vector aggressive moving average (VARMA) model in order to predict the
sensitivity and effectiveness of a damage index based on noise. They reported that the
damage index provides valuable information for analyzing damage and examining the
relationship between the severity of the damage and the damage index to avoid future
problems. Yang et al. [19] carried out real-time monitoring in a 20-story steel frame building
in Alaska that was approximately 38.5 × 38.5 m, and the roof height was 80.5 m above
ground level. This was carried out to analyze the dynamic behavior due to seasonal frost.
Vibration data of the building were collected by adopting a permanent strong motion
instrumentation system. Simulation was carried out for the foundation at the first phase,
and the superstructure was monitored. Furthermore, numerical simulation was also carried
out for the same building by assuming concrete as a material instead of steel to evaluate
the performance of concrete in the same process. Thus, both concrete and steel simulation
models were compared, and results showed that steel buildings outperform concrete
building due to the effect of seasonal frost and the anticipated variation in fundamental
frequencies of approximately 13%.

2.2. Sensors Used in SHM

Antunes et al. [20] carried out both static and dynamic analysis in SHM using optical
fiber sensors (OFS) by monitoring an adobe masonry structure and found a reduction in
stiffness when natural frequency decreased. A destructive cyclic test was carried out to pre-
dict natural frequency, which showed a 48% reduction [20]. Zhao et al. [21] demonstrated
an advanced sensing system, namely, a multiple agent system (MAS), by combining three
different types of sensors, piezoelectric sensors, fiber optic sensors, and a strain gauge, to
monitor different parameters at the same time, especially for monitoring large structures,
and found it to be more effective than conventional sensing systems.

Hison et al. [22] carried out real-time monitoring in a wall structure, namely, the Tufa
wall, using magnetoelastic sensors to analyze the elastic deformation and fracture alarm,
and this showed good reliability (1 mV/10 µm) and sensitivity and provided an output
that was superior to that of conventional strain meters with low cost.

Mahjoubi et al. [23] studied a Shanghai tower with a 632 m height by applying a limited
number of sensors to predict the damage and behavior of the structure. The ultimate motive
of monitoring is to reduce the number of sensors and achieve optimum results, so new
sensing technology is adopted, namely, a triaxial accelerometer using a hypotrochoid spiral
optimization algorithm, such as flower pollination, lion pride optimization, a teaching–
learning-based optimization colony, spiral optimization, particle swarm optimization,
and Jaya. Three objective functions of automated modal monitoring by adopting seven
algorithms are considered to identify modes. This approach is more effective in high-rise
buildings. It cannot be applied to other structures without further research. Figure 3 shows
some of the major sensors adopted for SHM.
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2.3. Overview of the Article

This study begins with an introduction to SHM in buildings in which the process of
SHM and the sensors used for it are discussed, along with strategies of damage detection in
previously reported works for real-time monitoring and laboratory experiments. The static
and dynamic behavior of buildings implementing SHM is discussed with various methods
and approaches. The FEM used to predict building behavior by developing computer
models is also discussed. Finally, future research recommendations are reported along with
conclusions. Figure 4 provides an overview of SHM applications in buildings.
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3. Strategies of Damage Detection in Buildings Using SHM

Sajedi and Liang [24] conducted an experiment using 44 shake tables. They developed
a framework model of a 3-story RC moment frame building, with 180 ground motions and
a 5400 non-linear time history analysis, as specified for input using Openness software.
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The simulation report showed that 96%, 87%, and 90% accuracies were predicted for
damage existence, location, and severity, respectively. The laboratory experiment showed
a 92% accuracy predicted for damage classes. Gao et al. [25] demonstrated a new a novel
embeddable tubular smart aggregate (TSA) evolved from piezo materials and conducted
an experiment recording the time of arrival and performing impedance analysis and sweep
frequency analysis, and results were satisfactory for 2D concrete structures.

Chatzis et al. [26] carried out a laboratory experiment using shake tables by employing
an accelerometer to analyze the severity and location of damage using subspace state-space
system identification (SSID) with an advanced version T-SSID approach and an unscented
Kalman filter (UKF). They adopted an n4sid algorithm and a Bayesian time-domain,
respectively, and compared the T-SSID and UKF. The UKF approach was preferred due to
fast approach towards damage prediction. Soltaninejad et al. [27] developed a simulation
for two adjacent buildings to anticipate pounding as per a 36-case single-degree-of-freedom
model by comparing a short time matrix pencil method (STMPM) and discrete wavelet
transform (DWT). The results showed that STMPM helped to predict smaller damage and
was not sensitive to the corresponding amplitude of damage response. It also helped to
predict damage in both low- and high-resolution sensors. García-Macías and Ubertini [28]
examined the Sciri tower located in Italy for approximately one month (February 13 to
March 10, 2019) using 12 accelerometers and combined ambient noise deconvolution
interferometry (ANDI) and OMA to analyze three levels of frequency, approximately 200,
1000, and 5000 Hz. This indicated that deformation occurs due to variations in temperature,
and wave propagation mode was analyzed.

Sun et al. [29] demonstrated a skyscraper building model, namely, the Al Harma
Tower in Kuwait, which is approximately 413 m in height with 86 floors, using E-tabs to-
gether with a building with two curved shear walls to the combined height of the buildings
by applying three methods: system identification, interferometry-based wave propagation
analysis, and wave-based damage detection. The building underwent large deformations
due to heavy dead load and seismic response. Chellini et al. [30] experimented with a
composite frame structure of three layouts with three accelerometer sensors to forecast
damage in a beam-column joint by conducting a pseudo-dynamic (PSD) and cyclic test
using eigen frequencies, a damping ratio, and mode approach. The increase in damping
ratio and the high decrease in eigen frequency showed a variation in mode shapes for
global sensors, whereas local sensors provided more accuracy and were easy to monitor.
Morales-Valdez et al. [31] examined a prototype of a 5-story building with dimensions of
60×50×180 cm by employing microelectromechanical system (MEMS)-based accelerome-
ter sensor, whose model code is ADXL203E, to predict damage and by adopting a wave
propagation algorithm. The damage was assumed as a stiffness reduction using two pa-
rameters, namely, the Kelvin damping coefficient and the nominal shear wave velocity, and
it was reported that the wave method would outperform the modal analysis method.

Valinejadshoubi et al. [32] developed building information modeling (BIM) to manage
data effectively using automated sensor-based data acquisition and a storage module
approach to extract sensor data and damage identification. Pachón et al. [33] developed an
FE model of a heritage building, i.e., the Monastery of San Jeronimo de Buenavista in Seville
in Spain, to predict dynamic behavior such as ambient vibration and model identification to
undergo an optimal sensor placement (OSP) technique. The dynamic behavior of buildings
consists of four methodologies based on energy matrix rank optimization (SEMRO and
KEMRO) and the effective independence of target mode shapes (EFIwm and EFI). The
results indicated that EFI provided error to a smaller extent for the natural frequency, and
KEMRO provided a large number of errors in modal identification.

Frigui et al. [34] demonstrated an FEM of an 18-story ophite tower with a 2.5 m
height split up into 18 nodes subjected to artificial loading to assume damage severity.
They adopted the Modal Assurance Criterion (MAC) method, the Mode Shape Curvature
Method (MSCM), Curvature Damage Factor (CDF), the flexibility method, and an algo-
rithm based on the eigen frequencies approach using the vibration-based damage detection
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method (VBDDM. The studies indicated 50% and 25% reductions for the first and second
artificial damages by the MAC approach; however, a less than 0.8 mode shape is essential,
and a more than 5% eigen frequency is necessary to predict damage. Suhaimi et al. [35]
introduced new sensors, namely, passive sensors, to analyze three-dimensional (3D) fre-
quency selective surfaces (FSSs), which are more reliable and enhance sensitivity compared
with the 2D FSS structure. García-Macías and Ubertini [36] introduced new software,
i.e., MOVA/MOSS, with various types of sensors to predict damage using an automated
anomaly detection algorithm by considering the Consoli palace in Italy. Three categories of
the model were considered—Principal Component Analysis (PCA), Autoregression with
an eXogenous input model (ARX), and Multiple Linear Regression (MLR)—to analyze the
local and global damage based on amplitude and resonance frequency.

Li et al. [37] carried out a field study and an FEM on a tall building; namely, the Ping
an Finance Centre (PAFC), approximately 600 m in height and equipped with 553 different
sensors, to identify vertical deformation in the various structural elements during the
Nida typhoon by applying a modular design methodology. Zhang et al. [38] examined a
108-story (250 m) building, which is 56 stories below and 52 stories above ground level
and is equipped with accelerometers and tilt sensors to monitor and predict damage for
approximately 15 months based on OMA using a fast Bayesian FFT approach. The results
showed a reduction in natural frequencies due to structural mass. Modena et al. [39]
investigated heritage structures, namely, a Spanish fortress, a civic tower (L’Aquila), the
Scrovengni chapel (Padova), and the stone tomb of Cansignorio, using an SHM approach to
analyze the static and dynamic responses of the building. They used a robust statical model
and numerical simulation. Mustafa et al. [40] recommended using new advanced wireless
sensors (FSS) instead of conventional sensors to predict the damage of buildings with two
designs, the circular ring (FSS) and the square loop (FSS). The square loop outperformed
the circular loop due to an improved reflection coefficient and incident angle, and it covered
a wide frequency range.

Aguilar et al. [41] carried out real-time monitoring for an adobe church in Peru for
approximately two years (March 2017 to December 2018) by employing accelerometers
to detect damage post-earthquake using a PCA approach and an autoregressive model
(ARX). PCA showed more accurate results than ARX (non-linear) in terms of damage
prediction. Brownjohn et al. [42] investigated 24 bridges, 3 buildings, 2 chimneys, and
1 tower to ensure communication between the laboratory and the site for transferring the
vibration base monitoring (VBM) experimental setup. They found more variation when
comparing laboratory and in situ operations and, therefore, suggested real-time monitoring.
Coletta et al. [43] monitored a sanctuary of Vicoforte 74 m in height for approximately four
months to predict dynamic behavior for all environmental degradation using various
sensors. FE analysis was developed for the same building by adopting support vector
machines (SVMs) and relevance vector machines (RVMs) for damage prediction.

García-Macías et al. [44] carried out real-time monitoring for approximately one month
(February 13th to March 10th) using an accelerometer with the help of experimental data.
An Abaqus FEM was developed to detect damage caused by earthquakes by adopting a
Metamodel-based pattern recognition approach, and this helped to identify modal analysis
using OMA. Lam et al. [45] monitored a boat-shaped building in Hong Kong; namely,
Academic Building 3 (AC3), which is a 20-story building, and five adjacent stories in the
subordinate building using the fast Bayesian FFT method, and results indicated changes
in readings for the first two days in 12 of the 15 experiments set up due to the carpet in
the building, so removing carpet is recommended for accurate vibration measurement.
Lorenzoni et al. [46] practiced monitoring with the help of data available for approximately
three years in a cultural heritage building, namely, a Spanish fortress with four bastions
connected with a 60 m long wall and a civic tower with a 6.5 × 7 m base and a 43 m height,
and developed an ARX model by employing MatLab software. The results suggested that
using a robust statistical method and damage detection algorithms is an added advantage
when monitoring buildings in any environmental variation.
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Bhalla and Kaur [47], to find equivalence stiffness parameters (ESPs), implemented
laboratory testing for reinforced concrete beams using piezo composite concrete vibration
sensors (CVSs) to predict low strain fatigue and practice electro-mechanical impedance
(EMI). They concluded that CVSs in the EMI mode work more effectively for the initial
and final stages of monitoring but not for the intermediate stage. Kaya and Safak [48]
developed new software, namely, REC_MIDS based on MatLab, to monitor inter story drift
and modal identification parameters. It was applied to seven high-rise buildings in Dubai
and to mosques, museums, suspension bridges, and tall buildings in Turkey.

Cheng et al. [49] carried out the real-time monitoring and ARCH model of 3-story and
8-story buildings using accelerometers, and the results of the experiment were compared
with existing results collected from the laboratory. Two indicators, the cepstral metric
indicator (CMI) and the second-order variance indicator (SOVI), were compared to identify
damage. The SOVI showed a superior output. Rahmani et al. [50] implemented monitoring
through experimental and analytical models using MatLab software by adopting time
velocity analysis (TVA) for 12-story RC buildings; namely, the Sherman oaks office building,
whose dimensions are approximately 18.3 × 49 m with a height of 48.5 m. They employed a
uniaxial accelerometer. The experiments and analysis indicated that there was a difference
in frequency and the average vertical wave velocity after comparing TVA with the analysis
of inter-story drift, input power, and instantaneous frequency due to soft soil conditions.

Musafere et al. [51] developed a numerical model for a building with a 5-story shear
beam structure and carried out experiments for a 17-story building and a Louis factor
building using both sensors and accelerometers. They adopted a blind source separation
algorithm under a time-varying autoregressive model and found that this approach is
sufficient to predict the dynamic behavior. Yan et al. [52] presented a review on SHM
transmissibility function (TF) in buildings with three different categories: modal analysis,
modal updating, and damage detection. The results showed that a single input is enough
to predict damage using TF.

4. Static Analysis in SHM of Buildings

Behnia et al. [53] executed the real-time monitoring of a concrete structure in Novem-
ber 1999 and June 2000 by employing piezoelectric sensors adopting an acoustic emission
technique to anticipate damage in terms of frequency, amplitude, severity, cracks, and
time domains subjected to static loading conditions, and findings suggested that this
method is suitable for the in situ monitoring of a structure. Fortino et al. [54] conducted a
laboratory experiment to check the efficiency of Wireless Sensor and Actuator Networks
(WASN) to implement SHM for a building management framework. Hackmann et al. [55]
demonstrated an FEM using MatLab for a truss and cantilever beam by adopting a damage
localization assurance criterion (DLAC) algorithm to keep memory usage, latency, and
energy consumption less than 1%, 65%, and 64%, respectively.

In Italy, Ierimonti et al. [56] implemented operational monitoring from September
2018 to March 2019 by dividing it into seven intervals for a 3-story RC school building with
a height of 16.6 m by employing nine uni-axial accelerometers using the Bayesian modal
updating method for the base-isolated building alone for a static analysis of, e.g., elastic
deformation, humidity, and temperature. Carden and Brownjohn [57] carried out real-time
monitoring in a 4-story steel building structure with two bays on each side and with
dimensions of approximately 2.5 × 2.5 × 3.6 m to detect damage using an accelerometer.
They applied a statistical classification algorithm based on an ARMA model and found
the prediction of damage to be satisfactory. Wang et al. [58] conducted an experiment and
numerical model of a 7-story RC hotel in California by employing an accelerometer to
detect the story damage index (SDI) based on system realization using an information
matrix (SRIM) technique to predict mode shape and modal frequency.

Kao et al. [5] monitored a 5-story steel building of 3 × 2 × 6.5 m. They developed a
numerical model by applying an artificial neural network (ANN) to detect static responses,
such as displacement, velocity, and acceleration. The results showed that this method helps
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to detect variations in structural properties and generate free vibrations accurately. Ramos
et al. [59] carried out monitoring in a Saint Torcato church with towers of approximately
7.5 × 6.5 × 50 m, a transept 37 m in length and 11.5 m in width, and a central nave that
is 57.5 × 17.5 × 26.5 m by employing accelerometer sensors to predict static analysis
of, e.g., cracks and vertical deformation. Cracks were monitored by a crack meter, and
an FE model was developed by employing TNO Diana software to predict crack and
dynamic behavior. Mejri et al. [60] monitored an office building, namely, the Confort Bois
construction company—with a total surface area of approximately 110 m2 and a volume of
350 m3—using HOBO sensors to measure energy consumption under static parameters
such as the heat loss coefficient, utilization factor, and solar aperture.

Bhalla and Soh [61] monitored an RC portal frame of approximately two stories with
a height of 2.9 m and a length of 3.3 m using a piezoelectric transducer to detect flexural
cracks and shear cracks via an EMI technique, and results showed that this technique
clearly monitors cracks. Pesci et al. [62] monitored two heritage buildings, namely, the
Garisenda tower and the Asinelli building, 48 m and 97 m in height, respectively, using an
accelerometer employing a terrestrial laser scanning (TLS) technique. An FE model was
developed to predict deformation patterns due to gravity and seismic activities. The results
showed that the Garisenda tower requires periodical monitoring to protect itself from
environmental degradation, and the Asinelli building is not strong enough to withstand
seismic activities, so it is necessary to decrease human-made vibrations.

Xu et al. [63] monitored a 3-story building using sensors to detect damage and isolation
bearing properties and suggested the development of a model called bilinear hysteresis,
which depends on regression analysis, and results showed that the properties of the
superstructure and isolation bearing are less than 6% compared with the actual model
and that this method is applicable only for 2D shear-type frame structures. Saisi et al. [64]
carried out real-time monitoring of the bell tower of Italy’s Santa Maria del carrobiolo
church with a height of 33.7 m and approximately 5.93 × 5.70 m using five temperature
sensors and 10 displacement transducers under static loading conditions, and results
showed that there is no proper solution to determine abnormal cracking at one time.
Only one crack was predicted due to temperature. Butt and Omenzetter [65] practiced
monitoring a 3-story building in New Zealand approximately 44.7 m long, 12.19 m wide,
and 13.40 m tall, called the GNS Avalon building, using 10 sensors. The FE model was
developed by employing Abaqus software. Resonance frequency was less than 7.5%.

Zhang et al. [66] experimented with an aluminum beam with a 136.15 cm length and
a cross section of 2.75 × 0.3 cm and developed a numerical model of a 10-story multi-
span frame and for the same aluminum beam; therefore, three sensors were used for the
beams, namely, piezoelectric actuators, and sensitivity analysis and the virtual distortion
method (VDM) were adopted. The results indicated that stiffness-related parameters and
identification error were less than 8.2% and 2.9%, respectively. Kane et al. [67] conducted
SHM to enhance the impact adopting paradigm shift, which uses more number sensors
with lower installation costs and easy-to-collect data; hence, it can be applied to all civil
engineering structures, mainly buildings.

Hill-King et al. [68] presented a review of fiber optic strain sensors to practice SHM in
many civil engineering structures, including buildings. This worked more effectively to
predict damage and structural properties. The results showed that optical fibers are more
effective but are more time-consuming for data acquisition compared with electrical strain
gauges. Habel [69] experimented with concrete structural elements, such as column and
pile foundations approximately 19 m tall, using two different fiber optic sensors, namely,
long-gauge-length fiber optic sensors and short-gauge-length fiber optic sensors, which
helped to identify chemical and physical properties and to determine reliability issues.
Wang et al. [70] monitored two 12-story buildings (twin towers) in China for approximately
12 months; one building was built using natural-aggregate concrete (NAC) and the other
was built using recycled coarse aggregates (RCAs) by employing acceleration sensors, angle
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sensors, and strain sensors to predict wind speed, ambient temperature, and structural
response amplitude. The results showed that:

• Frequency increases when ambient temperature increases;
• There were 2.20% and 1.80% increases in the recycling aggregate concrete (RAC) structures;
• There were 2.03% and 0.76% increases in the frequency for NAC;
• There were 12.60% and 11.70% reductions in the damping ratio for RAC and NAC.

Bulajić et al. [71] developed a two-layer shear beam model to analyze a 12-story
building above ground level in north Macedonia subjected to 11 earthquake events in the
last 25 years, and significant stiffness variations of approximately 19% to 23% occurred
during the Gnjilane earthquake in 2002, so damage occurred due to non-structural elements.
Ayyildiz et al. [72] experimented with carbon fiber reinforced polymer concrete columns to
detect damage and fractures of the column using piezoelectric sensors (PZTs) and provided
satisfactory results. Jang et al. [73] proposed the design of wireless sensor technology to
practice monitoring in buildings; three levels, i.e., new hardware, an open-source operating
system for communication, and data acquisition, were developed to enhance monitoring.

Yang and Huang [74] demonstrated a new technique, namely, sequential non-linear
least-square estimation (SNLSE), to replace old techniques such as least square estimation
(LSE) and the estimated Kalman filter (EKF) to monitor a five-degree-of-freedom non-linear
hysteretic building model and a 3-story steel frame FEM, this it helped to reduce the
number of sensors needed to detect vibration and damage. Findings showed that the LSE
is accurate and reliable.

5. Dynamic Analysis in SHM in Buildings

Ivanovic et al. [75] monitored a 7-story RC hotel building with dimensions of 62 × 150 ft
in California using a range seismometer and a transducer to anticipate two ambient vi-
bration surveys on 4 and 5 Feb 1994 as well as 19 and 20 Apr 1994 to detect vertical,
transverse, and longitudinal deformations. Jin et al. [76] presented a comparison of PCA in
two different approaches called adaptive principal component analysis (APCA) and con-
ventional principal compound analysis (CPCA) to practice SHM, and results indicated that
APCA provides superior results since it detects intrinsic behavior and time consumption.
Chang et al. [77] experimented with a twin-tower-scaled model that was 1.17 m tall, 1.50 m
wide, and 1.50 m deep using an accelerometer and a developed numerical model for the
7-story building to predict dynamic behavior such as natural frequencies and mode shape
using OMA based on a neural network, and this helped to predict stiffness reduction in the
building. The results showed that this method only applies to a single damaged column,
not for multiple-damage conditions.

Pham et al. [78] proposed an optimization algorithm to solve inverse problems in the
dynamic analysis of SHM. Dynamic characteristics such as natural frequency and mode
shapes have been used to develop mathematical models that measure damage using modal
parameters. In this research, a differential evolution algorithm was adopted to evaluate the
structural modal parameters. The results showed that this method reduces computational
effort and costs, so that uneconomical inverse problems can be avoided. Yuan et al. [79]
discussed the mathematical inverse problem and performed automated damage detection
for the dynamic modeling of beam structures by adopting machine learning algorithms,
and this showed effective results, so there is great potential in real-time monitoring of SHM
in future.

Kyriacou et al. [80] demonstrated a new toolbox called contaminant monitoring in a
building (COMOB) based on MatLab software to monitor the Holmes house and divided it
into 14 zones for sensor placement and to allow for input to the software. As per the results,
this approach requires excess data for the software and is applicable for multiple-zone
buildings. Nguyen et al. [81] demonstrated a new, cost-effective DAQ technique for the
long-term monitoring of institution buildings in Australia and developed a numerical
model by adopting vibration sensors, acoustic emission sensors, and accelerometers, and
this provided satisfactory results. Yi et al. [82] presented a review to analyze sensor fault
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types, namely, precision degradation, drift, bias, gain, complete failure-1 (constant), com-
plete failure-2 (constant with noise), and complete failure-3 (bottom noise). The detection
of sensor faults was carried out via PCA, and it was found that these kinds of sensors
fault will occur on tall buildings due to non-linearities. Todorovska and Trifunac [83]
monitored a 6-story ICS building with dimensions of approximately 41.70 × 26.02 m, with
a height of 25.48 m, using the triaxial accelerometer, and the monitoring data revealed that
significant damage occurred in the first story column at the east end due to the inter-story
drift, which exceeded 1.5%, and Gabor transform provided greater control over frequency
resolution. Oh et al. [84] carried out monitoring in a high-rise building and conducted a
wind tunnel test using Fiber Bragg Grating (FBG) sensors to predict dynamic behavior by
adopting a radial basis function neural network (RBFN) based on a genetic algorithm. The
results showed that the rigidity of the structure is weak in the wind direction, so it may
cause maximum strain. Figure 5 shows the behavior of a multi-story building subjected to
dynamic loading conditions.
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Celebi et al. [85] experimented with a 30- to 40-story flexible building using steel bars
and the real-time monitoring of a 44-story building by fixing GPS in the roof area, and
results indicated that the GPS method provides more accurate results than the accelerometer
in finding the relative displacement. Pisello et al. [86] monitored the inside of a university
building using various sensors to predict the occupants’ comfort zone and carried out a
real-time survey. Theiler and Smarsly [87] developed a prototype of a 4-story shear frame
structure in the laboratory and used assumptions of the BIM to collect monitoring data
by adopting the Industry Foundation Classes (IFC) approach, and the results in terms of
effective data transfer and data management were satisfactory.

Chen and Xu [88] conducted an experiment in a 5-story shear building using an
accelerometer to analyze the semi-active friction dampers by adopting a local feedback
control strategy with and without a Kalman filter, and results showed similar seismic
responses both with and without a Kalman filter. Haque et al. [89] developed a new
approach, namely, the hybrid topology scheduling algorithm, to anticipate a transmission
control mechanism (TCP), and it provided superior output. Alonso et al. [90] presented
a review on middleware based on a wireless sensor network (WSN) to protect sensors
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from a monitoring infrastructure called critical protection infrastructure (CPI), and the
middleware was very user-friendly for maintenance and programming.

Pingue et al. [91] carried out real-time monitoring and experiments on a 2-story
masonry structure that was 10 m long, 8.5 m wide, and 8.5 m tall using FBG for the
experiment and geodetic monitoring for the field to predict change instabilities due to
ground deformation and concluded that FBG-based investigation provides satisfactory
results in the elastic phase, but the data were not easy to understand. Ma et al. [92]
demonstrated a new technique called multi-dimensional SAR tomography to monitor and
image the creep and shrinkage in concrete of newly constructed two buildings with an
approximately, B1 = 500 m height and B2 = 250 m height, respectively. The investigation
revealed that wall deflection, wall shortening, and thermal expansion were prevented.

Zapico and Gonzalez [93] developed a method for seismic damage identification for
buildings with a steel moment-frame structure. To obtain the needed data, they used a
simplified numerical model of a 4-story office building of approximately 16 × 18 m and 2-
story heights of 3 and 4 m. This method consists of the following three steps: calibrating the
initial stiffness of the structure, continuous monitoring of the live mass, and the subsequent
calibration of the final stiffness after a severe earthquake. The frequency coefficient error
should be less than 0.5% so that the damage prediction ratio is 95% precise. Park and
Oh [94] developed a pseudo-frame model of a 123-story tall building under construction
called the Lotte world tower, in Korea, to investigate the damping ratio and the modal
shape by adopting visual modal identification. Strain gauges, an accelerometer, and an
anemometer were used. The results indicated that field monitoring is necessary to predict
exact data since this system is not sufficient to extract high-order modal data.

Fujino et al. [95] presented a review on buildings and bridges in Japan subjected to
vigorous activities such as a seismic isolation system, damage detection, structural retrofit,
and structural assessment. Findings suggested that sensors should be more robust and
capable of excess usage, and wireless sensors were preferred for effective monitoring of a
more massive structure. He et al. [96] experimented on a 5-story building model with a
height of 1750 mm using three magneto rheological (MR) dampers for vibration control
and health monitoring and found satisfactory results. Gao et al. [97] implemented on-site
monitoring of a 335 m tall building with several floors using 128 vibrating wire strain
gauges, temperature sensors, and accelerometers and developed an FEM for the building
by employing Midas software; they concluded that there will be a decrease in elastic
modulus greater than 20% due to the low quality of concrete and that deformation will
hence increase approximately 20% more than predicted. Furthermore, relative humidity
should be checked before constructing a tall building.

Saadat et al. [98] demonstrated two new methods to monitor civil structures, namely,
intelligent parameter varying (IPV) and system identification techniques, to anticipate
non-linear and non-modal based approaches, and IPV showed superior results compared
with the conventional wavelet analysis method. Masciotta et al. [99] practiced monitoring
in a Saint Torcato church in Portugal, approximately 58 m in length and 11 m in width, with
an on-site campaign including visual inspection, geometric surveys, damage diagnosis,
control and monitoring using a crack meter, a tiltmeter, and temperature sensors. An
accelerometer and a combined sensor as per the results occurred due to the differential soil
settlement damage at this building. Karapetrou et al. [100] monitored an 8-story AHEPA
hospital located in Thessaloniki by separating it into two units, one being 29 × 16 m, and
the other one being 21 × 27 × 16 m, with an inter story height of 3.4 m, by employing
18 sensors. A time building-specific fragility curve was generated and compared with the
time-dependent curve to predict seismic vulnerability and the developed FE model. As
per the results, the time building-specific fragility curve outperformed the conventional
methods in terms of material properties, structural detailing, and mass distribution.

Lorenzoni et al. [101] monitored two heritage building for approximately three
years, namely, a Conegliano cathedral and a Roman Amphitheatre (arena), using 16
single-axis piezoelectric accelerometers and displacement transducers integrated with
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humidity/temperature sensors, and significant damage identification results were found.
Fan et al. [102] investigated a new TV tower in Guangzhou that was 604 m tall and 32 stories
using various sensors such as accelerometers, strain gauges, and approximately 600 sensors
of other types by adopting a residual convolution neural network (ResNet) approach based
on vibration signals. Egidio et al. [103] dealt with a perturbation approach for dynamic
analysis to predict the mode shapes and natural frequencies to monitor a 4-story shear
frame. The damage of the columns was identified by considering random parameters as
linear in the numerical analysis. A successful outcome was evident by the very slight errors
in anticipating natural frequency [103]. Moreover, Egidio et al. [104] carried out similar
uncertainty studies in simply supported beams to predict dynamic behavior adopting
random stiffness parameters. Linear operation perturbation theory has been discussed
using multiple mathematical solutions [105,106]. Sondipon et al. [107] presented a dynamic
system of linear damping concerning the rate of change in eigenvectors and eigenvalues.
An expression was derived to demonstrate a damped two degrees of freedom.

Park et al. [108] adopted two approaches based on vision-based displacement, such
as the partitioning method and laser displacement sensors, to anticipate the horizontal
displacement in a steel column structure for a high-rise building using two webcams
and found a 0.5% difference when comparing the two approaches. Trifunac et al. [109]
experimented with a 7-story RC building with dimensions of 62.7 × 150 ft, with a height of
65.7 ft, located in Los Angeles using various sensors, and the experiment showed repeated
damage on the same spot several times, while an undamaged spot remained the same due
to changes in the non-linear stiffness in the soil pile foundation.

6. Finite Element Analysis in SHM

Shih et al. [110] developed a dynamic computer simulation technique to assess damage
in flexural members such as beams and plates in buildings by adopting two multi-criteria
methods, namely, modal strain energy and the modal flexibility method. They experi-
mented and demonstrated an FEM using SAP2000 for three beams, two continuous and one
simply supported, by employing an accelerometer to predict building damage. Findings
suggested that these two methods provide similar results for single damage, whereas
multiple damage is more complicated, so further research is necessary on multiple-damage
conditions. Cabboi et al. [111] carried out real-time monitoring and FEM analysis by em-
ploying strand software on a heritage building called the San Vittore bell tower with a
37 m height located in Italy using a piezoelectric accelerometer. PCA was applied to re-
move fluctuations due to environmental variations; as a result, a 10% reduction in stiffness
was found.

Lautour and Omenzetter [112] demonstrated a non-linear FEM and seismic vulnerabil-
ity curve along with the ANN approach to model the 2D-RC frame building; however, only
one parameter was enough to anticipate ground motion using a seismic vulnerability curve.
The results suggested that an ANN provides a superior output when predicting seismically
induced damage because it provides output for both structural motion and ground motion
compared with the seismic vulnerability curve. Isidori et al. [113] developed a prototype
and an FEM of a 3-story building using MEMS sensors and a linear accelerometer to spot
the distribution, occurrence, and rise of local damage and to estimate global damage. The
FEM model was developed under two different conditions, including distributed plasticity,
and was based on lumps to predict the local and global damage of the buildings. The
experiment showed that the natural frequency was similar to that of the real structure, but
the behavior of the damage seemed different.

Kaneko et al. [114] experimented with a substantial column and a weak beam moment
frame in a 6-story structure using two sensors to identify the severity of damage by
adopting a damage detection technique. Pushover analysis was carried out to predict
shear-related displacement characteristics and its level of damage on each story. Moreover,
two-dimensional non-linear FE analysis was carried out by employing ATENA software.
As a result, correlations were found between the rotation angle of the column and the level



Buildings 2021, 11, 263 14 of 30

of the damage in the heavy deformation stage. Monavari et al. [115] developed an FEM
by employing MatLab software on 3-story and 20-story RC frames to spot deterioration
in buildings. The analysis accurately showed minor deterioration pre-damage conditions.
Enhancement of this method is mandatory when it comes to extreme levels of noise.

Leng et al. [116] experimented with the plane and composite wrap cylinder by using
previously found FEA values based on the strain transfer efficiency of a fiber optic sensor
protection system. FBG and extrinsic Fabry Perot Interferometric (EFPI) sensors are used
for cylinders, but FOS sensors provide superior results compared with electrical resistance
strain gauges, so it can be used for smart buildings.

7. Damage Diagnosis in Buildings

Rahmani and Todorovska [117] as well as Yuen and Kuok [118] suggested two algo-
rithms, namely, time shift matching (TSM) and non-linear least square fit (LSQ) based on
robust interferometry, to monitor a 9-story Millikan library approximately 21 × 23 m with
a 43 m height located in California using multiple networks of sensors, and monitored
a 22-story hall in East Asia with a height of 64 m using accelerometers by adopting a
Bayesian spectral density approach for approximately one year to predict modal frequency;
relative humidity and ambient temperature are necessary for the long-term monitoring
of buildings.

Smarsly and Law [119] developed an onboard agent to embed into a wireless sensor
to enhance the communication between buildings and the data receiving spot. As per the
monitoring, the output derived a 96% reduction in power consumption and a 95%reduction
in memory utilization. Picozzi [120] demonstrated an earthquake early warning system
(EEWS) based on the analysis of P-waves by examining an area in Italy and adopting a tailor-
made earthquake early warning (TEEW) process. This process consisted of four stages:

• Event characterization by employing an accelerometer;
• Pre-processing P-wave signals;
• The evaluation of predicted shaking;
• Deciding whether to declare alarm or not.

The results showed that the EEWS is suitable for a real-time process for time con-
sumption. Villalba et al. [121] experimented with a concrete slab size, approximately
5.6 m in length, 1.60 m in width, and 0.285 m in thickness, to spot cracks using optical
backscatter reflectometer (OBR) sensors. An OBR helps to monitor strains continuously,
can be easily placed on the concrete surface, and helps to detect microcracks 1 mm or
smaller. White [122] demonstrated a linear three-dimensional elasticity model for asymmet-
ric building structures with data collected through experiments to anticipate the behavior
of structures based on the inversion problem. Severino et al. [123] developed a prototype
using COTS hardware to monitor a WSN in a physical infrastructure, and it was reliable
and cost-effective.

Yang et al. [124] examined the shear building model with four degrees of freedom
based on Hilbert Huang spectral analysis to analyze the damping and stiffness in pre-
and post-damage. The analysis helped to identify damage and stiffness reductions in
linear structures effectively. Lee et al. [125] suggested an integrated building fire safety
(IBFS) system to improve the automated technology in high-rise residential buildings to
avoid false alarms and other undesirable activities, and this provided satisfactory reports
by ignoring the monitoring. Reaction durations of fire emergencies were reduced by
approximately 63%.

Chase et al. [126] demonstrated the benchmark problem for ASCE with 4-degree-of-
freedom and 12-degree-of-freedom structures by adopting an undamaged model matrix
and a stiffness matrix that comes under the recursive least square (RLS) to monitor damage
levels using structural parameters. RLS showed accurate outputs and variations. It requires
less than 1.6 s for all cases and is suitable for real-time monitoring. Unzu et al. [127]
implemented real-time monitoring for approximately one year on a telecommunication
tower based on an alveolar polycarbonate structure by integrating 31 fiber optic sensors
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with a fiber optic accelerometer and six KNX sensors to predict reliability, mechanical
properties, and thermal properties; results showed that it helped to bear thermal and
mechanical stresses in a glass panel in a façade system.

Xu et al. [128] developed a two-scale model of a 12-story main building approxi-
mately 2400 mm in height, with a 184 mm floor height, and a 3-story podium structure
approximately 600 mm in height, with a 168 mm floor height, using 16 charge amplifiers,
15 accelerometers, and a current eddy sensor and by adopting a frequency response func-
tion (FRF) to anticipate building damage. As per the results, the FRF curve is precise with
respect to damage occurrences in connections and provides satisfactory results in terms of
identifying the location and the severity of damage, even when the scope of the damages
is greater than 5% and there is noise. Täljsten and Carolin [129] experimented with a
4.5-m-long beam in a laboratory using speckle pattern analysis to predict plate bonding to
repair and strengthen RC building elements.

Zhang et al. [130] suggested two algorithms, namely, the probability density evolution
equation (PDEE) based on the reliability evolution method and the statistical moment-
based system identification method (SMB), for predicting reliability evaluations and system
identifications in a building with data received from a 2-story stochastic shear building
model with three damage events: a single damage on the second story and multiple
damages on the first and third stories. The results showed that, when the threshold
increases, reliability increases. Yu et al. [131] investigated the power monitoring system in
buildings using the Internet of Things (IoT) to resolve the monitoring object location and the
placement, and this helped to predict the voltage curve with the help of a display interface.

Su et al. [132] developed a 6-story shear building model and a 5-story, steel-frame
non-sheer building model using accelerometers and adopted wavelet transform techniques
to measure the damage in each story using sub-structural frequencies. The results showed
that a decrease in natural frequencies of the severe damage found in 6-story buildings
and variation in mass or stiffness damage in the first story of the 5-story steel frame.
Burnett et al. [133] investigated an electrical distribution system found in high-rise build-
ings, which generates an extremely low-frequency magnetic field (ELF), and it creates
several health problems when it interferes with sensing equipment, so using more bus
ducts can reduce these problems.

Grinzato et al. [134] carried out real-time monitoring in a historic building located in
Venice’s arsenal using IR thermography to monitor moisture content, finishing status, and
the hidden structure of walls, and mutual interaction differs due to various environmental
factors and becomes challenging. This was found to be successful for thermal diffusivity,
moisture mapping, and wall bonding. Tanet al. [135] experimented with steel bars to
make full use of FBG sensors for monitoring purposes. FBG sensors were provided with a
coating, such as a polydimethylsiloxane strain-sensitive coating or a pH-sensitive hydrogel
adopting the Bragg wavelength method. The steel rod underwent three different tests
by exposing it to air, acid, and alkaline, and a higher sensitivity was found in an acidic
environment. These methods are only applicable for laboratory monitoring purposes, so
further research on real-time monitoring is necessary.

Kruger [136] presented a review of wireless sensor systems in concrete buildings
to demonstrate the design, concepts, and sensor requirements of short- and long-term
monitoring. As per the results, data interpretation and data analysis are mandatory
to analyze the nature of a building. Using intelligent data processing is more costly
than conventional cable monitoring systems. Madan [137] introduced a new technique
to anticipate earthquake-induced vibrations in buildings, using a counter propagation
network (CPN), without considering target control forces. This technique was applied
to an 8-story building for monitoring. Furthermore, the CPN was compared with the
backpropagation neural (BPN) network, and the CPN provided a more satisfactory output
in terms of time consumption, reliability in taking large data, and trainability.

Boutet et al. [138] developed a prototype of a school building in Argentina during June
2012 to predict thermal and hygro-thermal lighting behavior during the autumn season
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using HOBO sensors, and results showed an illuminance level up to 400l× on average. It
saved in terms of electrical consumption, due to the use of natural light. De Wilde and Co-
ley [139] presented a review on building responses due to climatic impact, so the history of
collected data was considered for monitoring and other purposes, and occupants’ thermal
comfort were taken into account due to climatic changes. Jiang et al. [140] investigated
a 7-story shear beam model using multiple sensors by adopting a fuzzy neural network
(FNN) and data fusion techniques using fusion algorithms. As per the findings, damage
identification can be made in the initial stage, and damage assessment can be conducted in
the second stage. More experiments are necessary for real-time monitoring; as of now, it
can be only be applied to numerical simulation. Kim et al. [141] investigated a plate girder
approximately 24,500 mm in length and a beam in a building under construction, namely,
the K Art Hall, using vibrating wire strain gauges (VWSGs), and results suggested that
complicated wire connections can be neglected and are easy to maintain, and tensile stress
was more than 6% due to variations in the stress in long-span girders.

Hajdukiewicz et al. [142] carried out real-time monitoring in two educational buildings,
the Institute of Life Course and Society (ILCS) building and the Engineering Building (EB),
as suggested by the National University of Ireland, using various gauges and sensors.
Once the continuous monitoring in a building is safe, improved indoor environments and
energy consumption follows, so energy efficiency measures are necessary to reduce the
environmental impacts on buildings. Liet al. [143] presented an overview of fiber optic
sensors used for SHM in buildings, including distributed fiber optic sensors, local fiber
optic sensors, and quasi distributed sensors, and results showed that an FOS will play a
crucial role in the future of SHM in buildings.

Bakis et al. [144] experimented with seven hybrid fiber-reinforced polymer rods to
predict the pseudo ductility and the self-monitoring capability using piezo resistivity, and
early catastrophic failure was observed. Hiromi et al. [145] studied the SHM application in
a 5-story building adopting an SVM based on a machine learning technique under modal
frequencies using two vibration sensors. The SVM helped to detect multiple damages
in multi-story buildings. Naet al. [146] developed a 20-story shear beam model using
sensors by implementing genetic algorithms using a flexibility matrix based on a damage
evaluation method and developed numerical simulations using OpenSees software. This
yielded excellent reports, even with inadequate data, and modal mass was exceeded by
approximately 90% due to the genetic algorithm.

Zhang et al. [147] demonstrated a support vector regression (SVR) approach using
52 degrees of freedom and 30 degrees of freedom by applying an SVR training algorithm,
and findings showed that SVR provided accurate and robust data for long-term monitoring
on a large scale, even when contaminated by noise. Cataldo et al. [148] suggested a method
known as time-domain reflectometry (TDR) using a passive, diffuse sensing element (SE)
that looks like a wire to monitor the rising damping in the building structure. The SE
was permanently embedded into a wall when the building was under construction or
renovation to monitor the behavior of the wall, and it was concluded that this method not
only monitors moisture content inside the wall [149], but also the overall health status of
the building [148].

Ni et al. [150] carried out real-time monitoring in a structure using accelerometers
and temperature sensors and by implementing SVM techniques to predict temperature
effects. Kopsaftopoulos and Fassois [151] experimented on an aluminum truss with overall
dimensions of approximately 1400 × 700 × 800 × 700 mm, using strain gauges and
implanting a time series method to diagnose the building’s damage. Nonparametric and
parametric methods yielded effective outputs for the time series method to detect global or
local damage and precisely predict actual damage [151,152]. Huang et al. [153] adopted
an Autoregressive and an ANN model to predict variations in temperature to carry out a
vibration-based damage identification process. FE models were used to demonstrate the
reliability and effectiveness of this method. The American Association of Civil Engineers
(ASCE) benchmark model and an FE model using SAP 2000 was adopted. The results
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indicated satisfactory outcomes by predicting temperature variation and noise disturbances
according to the numerical results. Huang et al. [154] experimented with a two-span steel
gird and three-span continuous beam. They used a model-based damage identification
method by adopting a genetic algorithm approach to optimize the solution and assumed
mode shapes and natural frequencies to predict the variations in temperature and noise.
The FE model was developed with MatLab software, and findings were positive for 3, 5,
10, 20, and 30% of the mode shapes with a feasible range in a noise environment [154].
Huang et al. [155] adopted a hybrid algorithm, known as PSO-CS, a combination of particle
swarm optimization (PSO) and cuckoo search (CS), to anticipate temperature and noise.
The main objective was to find the elastic modulus variation due to the temperature effect
using an FE model of the ASCE benchmark model, and MatLab software was employed
for beam and frame structures. The outcome of the research using PSO-CS, monitoring
almost all possible damages, showed an outstanding performance [155,156].

Huang et al. [157] used frameworks such as modal flexibility, enhanced moth-flame
optimization, and modal frequency strain energy assurance criterion (MFSEAC) for the
identification of damages in structures. Findings showed that the enhanced moth-flame
optimization provided superior outcomes compared with particle swarm optimization, CS,
and moth-flame optimization. Three numerical samples, such as 40-story shear frames with
irregular noise, 31 bar truss structures with irregular temperature and noise, and three-span
concrete that continued to beam with variations in temperature, were compared by the
adopting modal assurance criterion (MAC), modal strain energy (MSE), modal flexibility,
and the frequency change ratio (FCR). In addition, two laboratory samples were used to
verify the outcome, and satisfactory results with substantial effects were found along with
positive noise robustness [157]. Appendix A represents list of reviewed buildings with
SHM implemented.

8. Comparative Study and Future Recommendations

A critical analysis of methodologies adopted to monitor buildings using various
sensors was performed. Best-practice sensors were classified based on previously pub-
lished literature. The findings suggest that accelerometers are used to monitor buildings
much more widely than other sensors are. Accelerometers provide superior outcomes for
static and dynamic analysis. Table 1 displays the role of various other sensors compared
with accelerometers.

This article compares accelerometers with other sensors to monitor buildings. It is
clear that accelerometers perform well in dynamic analyses and less effectively in static
analyses. To solve this issue, we suggest a combination of sensors, such as strain gauges,
FBGs, HOBOs, displacement transducers, temperature sensors, piezoelectric sensors, and
IR thermography, with accelerometers. The SHM of buildings will increase in terms of
various parameters such as cracks, indoor environments, displacement, strain, temperature,
humidity, and elastic deformations.

In the present scenario, recommendations for future purposes are necessary to increase
the overall efficiency of research to produce precise and quick data collection. Based on the
detailed discussion of previously reported works, the following points must be considered
to enhance research on the SHM of buildings [13,46,53]:

• Development is necessary to enhance the life span of sensors and their data trans-
formations for long-term monitoring purposes; hence, advanced sensors should be
designed with a high sensitivity and range.

• The prediction of damage should be implemented in various environmental activities,
so that monitoring can be executed in buildings to an even greater extent.

• To improve consistency, DAQ and predictive analysis are needed to maintain commu-
nication between buildings and sensors for both short-term and long-term monitoring.

• A greater understanding of instrumentation, mathematical techniques, and signal
processing is essential to understand the behavior of buildings in terms of monitoring
and predicting damage.
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• Further research is mandatory to practice SHM at low cost, especially for
wireless communication.

A robust statistical method should be considered when measuring the static and
dynamic response of buildings.

Table 1. Role of various sensors compared with accelerometers.

No. Accelerometer in SHM Other Sensors Used in SHM

1 Accelerometers perform more effectively
in a smaller number of sensors.

In other sensors, a greater number of
sensors is needed.

2
Accelerometers help to predict damage in

beam-column joints more effectively,
with an 85% accuracy.

In other sensors, the choice of
assessing beam-column joint was

occasional, and the level of accuracy
was not as high.

3
The level of frequency and deformation
can be predicted with 90% accuracy in

accelerometers.

Optical fiber sensors alone can
perform equally to accelerometers to
predict the frequency level; however,
other sensors show a lower accuracy.

4

Accelerometers, based on MEMS
technologies, cooperate in assessing

damage using wave propagation
algorithms.

Other sensors do not have such
advanced technology to assess

damage.

5

Model identifications and ambient
vibrations can be practiced in

accelerometers for a dynamic analysis of
all environmental changes

In other sensors, dynamic analysis
can be predicted by assessing the

vertical deformation and changes in
the building’s behavior.

6
Uniaxial accelerometers adopt TVA to

carry out real-time monitoring using an
analytical model and experimental data.

TVA is not used by other sensors for
monitoring purposes.

7
Accelerometers poorly identify flexural

cracks, shear cracks, amplitude, and time
domains.

Piezoelectric sensors are better able to
detect cracks, amplitude, and time

domains, with a 75% accuracy.

8

Accelerometers outperform other sensors
in dynamic analysis but show a limited

response in static analysis, e.g., for
temperature, humidity, or deformation

Temperature sensors, displacement
transducers, and FBGs outperform

accelerometers in anticipating
temperature, humidity, or

deformation

9

Accelerometers show a lack of efficiency
in monitoring a wall’s hidden structure,

moisture content, hygrothermal behavior
during the autumn season, energy

consumption, and indoor environments.

Vibrating wire strain gauges, HOBOs,
IR thermography, or KNX effectively

monitor a wall’s hidden structure,
moisture content, hygrothermal

during the autumn season, energy
consumption, and indoor

environments.

10
Accelerometers do not monitor stress,

strain, temperature, cracks, or humidity
well.

Other sensors such as strain gauges,
temperature sensors, FBGs, piezo
electric sensors, and displacement
transducers provide satisfactory

outcomes compared with
accelerometers.

9. Conclusions

This review discusses the building structural health monitoring of all parameters using
static, dynamic, and finite element methods to detect or predict building damage. The
whole structural health monitoring consists of four characteristics: the presence, location,
and severity of the damage and the remaining service life of the building after damage.
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The article discusses the important approaches, processes, hardware, and sensors adopted
for SHM in buildings. The following claims can be made:

• Currently available techniques can be used to implement SHM in buildings along
with efforts made to enhance the technique both economically and practically for
monitoring purposes.

• The Bayesian approach for SHM in buildings can predict damage and deterioration
and to evaluate the variation in dynamic structural properties.

• Numerical models in SHM using Matlab, OpenSees, and other, similar software can
help to determine structural responses adopting various algorithms.

• Damage severity can be predicted in the initial stiffness using piezoelectric sensor
patches and electro-mechanical impedance techniques by acquiring a global dynamic
technique, and medium to severe damage can be extracted through monitoring with
utmost accuracy.

• The SHM approach is extremely suitable for real-time monitoring if the methods are
carried out comfortably by precisely applying all techniques.

• Ambient vibration methods range from measured dynamic responses to real-time
monitoring such as mode shapes, modal damping ratios, and natural frequencies.

• Various types of sensors are used for structural health monitoring such as fiber optic
sensors, piezoelectric sensors, microelectromechanical system sensors, accelerometer,
temperature sensors, and accelerometers.

• Predictive analysis and data acquisitions can be applied to buildings using sensors, so
sensors inputs are safe and reliable in accordance with building conditions.

• SHM can be applied for different types of buildings, including multi-story buildings,
commercial buildings, and heritage buildings, and various works have been discussed
in detail.

• The static and dynamic behavior of buildings can be used to predict damage at an
early stage by adopting SHM techniques along with finite element analysis reports.

• The in-detail analysis of software, hardware, and real-time data along with future
perceptions are based on the operating principles for SHM in buildings.
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Appendix A

Table A1. List of the reviewed buildings with the implemented SHM.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

1 Olivera Lópezet al. [12] 14 floor building 14 Hydrodynamic forces to
detect the damage

2 Roghaeiand and
Zabihollah [14]

Hospital steel
structure 3 Piezoelectric

sensors
To identify the stress

and deformation

3 Zhouet al. [15] RC frame building 12 _
Variation in stiffness

using elastic, hybrid and
pinched

4 Pierdicca et al. [16] Concrete school
building _ _ Dynamic behavior of

buildings
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Table A1. Cont.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

5 Demetriou [17] 3-story building 3 _
Reduction in stiffness
because of harmonic

motion

6 Dong et al. [18]
Van Nuys hotel and

imperial country
service building

_ _
Relationship between
the severity of damage

and damage index

7 Yanget al. [19] Steel frame building 20 - Dynamic behavior due
to seasonal frost

8 Autunes et al. [20] Adobe masonry
structure _ Optical fiber

sensors Natural frequency

9 Hisonet al. [22] Tufa wall _ Magnetoelastic
sensors

Elastic deformation and
fracture alarm

10 Mahjoubiet al. [23] Shanghai tower _ Triaxial
accelerometer

To reduce the number of
sensors

11 Sajedi and Liang [24] RC moment frame
building 3 _

Prediction of damage
location, existence, and

Severity

12 Soltaninejadet al. [27] Two adjacent building _ _ Anticipate pounding

13 García-Macías and
Ubertini [28] Sciri tower _ Accelerometers Levels of frequency and

deformation

14 Sunet al. (2019) [29] Skyscraper building
(Al Harma Tower) 86 _

To find the building
deformation due to

heavy dead load and
seismic response

15 Chelliniet al. [30] Composite frame
structure

Accelerometer
sensors

Damage in
beam-column joint

16 Morales-Valdezet al. [31] 5-story building 5
MEMS

Technologies based
accelerometers

Predict damage by
adopting a wave

propagation algorithm

17 Pachón et al. [33]

Heritage building
(Monastery of San

Jeronimo de
Buenavista)

_ _
Dynamic behaviour like
ambient vibration and
model identification

18 Frigui et al. [34] Ophite tower 18 _ Damage severity

19 García-Macías and
Umbertini [36] Consoli palace _ various sensors

types Damage

20 Li et al. [37] Tall building (Ping an
Finance Centre) _ different sensors

Vertical deformation in
the various structural

element

21 Zhanget al. [38] 108-story building 108 Accelerometers
and tilt sensors

Monitor and damage
prediction

22 Modenaet al. [39]

Heritage structures,
Spanish fortress, and

tower (L’Aquila),
Scrovengni chapel
(Padova), the stone

tomb of Cansignorio

_ _ static and dynamic
response of the building

23 Aguilaret al. [41] Adobe church _ Accelerometers Damage
post-earthquake
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Table A1. Cont.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

24 Coletta et al. [43] Sanctuary of Vicoforte _ various sensors
Dynamic behaviour for

all environmental
degradation

25 Lam et al. [45]
Boat-shaped building
(Academic building

3(AC3)

20 main story and
5 adj. story _

Monitoring for the
changes in the

behaviour of building

26 Lorenzoniet al. [46]
Cultural heritage
building (Spanish

fortress and tower)
_ _

Robust statistical
method and damage
detection algorithms

27 Kaya and Safak [48] High rise building _ _ Developed new
software REC_MIDS

28 Cheng et al. [49] 3 and 8-story building 3 and 8 Accelerometers Real-time monitoring to
identify damage

29 Rahmani et al. [50] Sherman oaks office
building 12 uniaxial

accelerometer

Monitoring through
experimental and

analytical models by
adopting time velocity

analysis

30 Musafere et al. [51]
A building with

17-story and Louis
factor building

17 sensors and
accelerometers

To predict the dynamic
behavior

31 Behniaet al. [53] concrete structure Piezoelectric
sensors

Anticipate damage like
frequency, amplitude,
severity, cracks, and

time-domain

32 Ierimontiet al. [56] RC school building 3 Uni-axial
accelerometers

Static analysis such as
elastic deformation,

humidity, and
temperature

33 Carden and Brownjohn
[57]

Steel building
structure 4 Accelerometer Prediction of occurrence

of damage

34 Wang et al. [58] RC hotel building 7 Accelerometer Detect story damage
index (SDI)

35 Kao et al. [5] Steel building 5 _

Detect static response
such as displacement,

velocity, and
acceleration

36 Ramoset al. [59] Saint Torcato church Accelerometer
Predict static analysis

like cracks and vertical
deformation

37 Mejriet al. [60]
office building
(Confort Bois

construction company)
HOBO sensors To measure energy

consumption

38 Bhalla and Soh [61] RC portal frame 2 Piezoelectric
transducer

Detect flexural crack and
shear crack

39 Pesciet al. [62]
Two heritage buildings
(Garisenda tower and

Asinelli)
Accelerometer

To predict deformation
patterns due to gravity
and seismic activities

40 Xuet al. [63] 3-story building 3 Sensor Detect damage and
isolation properties
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Table A1. Cont.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

41 Saisiet al. [64]
Bell tower of church

Santa Maria del
carrobiolo

_

Temperature
sensors,

displacement
transducers

Real-time monitoring

42 Butt and Omenzetter
[65] GNS Avalon building 3 Sensors

FE model has developed
by employing Abaqus

Software

43 Bulajićet al. [71] 12-story building 12 _ Damage occurs due to
non-structural elements

44 Ivanovićet al. [75] RC hotel building 7
Range

seismometer and
transducer

Detect deformations like
vertical, transverse, and

longitudinal

45 Changet al. [77] Twin tower _ Accelerometer

To predict the dynamic
behaviour such as

natural frequencies and
mode shape

46 Kyriacouet al. [80] Holmes house _ _

Demonstrated new
toolbox called

contaminant monitoring
in a building (COMOB)

47 Nguyen and Chan [76] Institution buildings _

Vibration sensors,
acoustic emission

sensors,
accelerometers

Demonstrated new
cost-effective DAQ

technique

48 Todorovska and
Trifunac [83] ICS building 6 Triaxial

accelerometer
To monitor the damage

occurrence

49 Oh et al. [84] High-rise building _ FBG sensors Predict dynamic
behaviour

50 Celebi [85] 44-story building 44 Monitoring by fixing
GPS

51 Chen and Xu [88] Shear Building model 5 Accelerometer
To analyses the

semi-active friction
dampers

52 Pingue et al. [91] Masonry structure 2 FBG
To predict changes in

instability due to ground
deformation

53 Ma et al. [92] Newly constructed
two buildings _ _

SAR tomography to
monitor and imaging of

creep and shrinkage
occurs

54 Zapico and Gonzalez
[93] Office building 4 _

Seismic damage
identification by
adopting ANN

55 Park and Oh [94] Tall building (Lotte
world tower) 123

Strain gauges,
accelerometer,
anemometer

To investigate damping
ratio and modal shape

56 He et al. [96] Building Model 5 MR dampers For vibration control
and health monitoring
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Table A1. Cont.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

57 Gao et al. [97] Tall building _

Vibrating wire
strain gauges,

temp. sensors and
accelerometers

onsite monitoring and
developed FEM

58 Masciotta et al. [99] Saint torcato church _

Crack meter,
tiltmeter,

temperature
sensors.

accelerometer and
combined sensor

onsite campaign like
visual inspection,
geometric survey,
damage diagnosis,

control and monitoring

59 Karapetrou et al. [100] AHEPA hospital 8 sensor Predict seismic
vulnerability

60 Lorenzoni et al. [101]

Two heritage building
(Conegliano cathedral

and roman
Amphitheatre (arena))

_

Single-axis
piezoelectric

accelerometer and
displacement
transducers

integrated with
humid-

ity/temperature
sensors

For damage
identifications

61 Fan et al. [102] Guangzhou new TV
tower 32 accelerometer,

strain gauge

(ResNet) approach
based on vibration
signal denoising

62 Trifunac et al. [109] RC building 7 _ Monitoring for damage
prediction

63 Cabboi et al. [111] Heritage building (san
Vittore bell tower) _ piezoelectric

accelerometer
carried out real-time
monitoring and FEM

64 Isidori et al. [113] 3-story building 3
MEMS sensors and

linear
accelerometer

To spot the distribution,
occurring and rise of

local damage and
estimate the global

damage

65 Kaneko et al. [114] 6-story building 6 _

To identify the severity
of damage adopting

damage detection
technique

66 Rahmani and
Todorovska [117] Millikan library 9 _

Suggested two
algorithms TSM and

LSQ

67 Yuen and Kuok [118] 22-story building 22 accelerometer To predict modal
frequency

68 Unzu et al. [127] Telecommunication
tower _

fibre optic sensors
with fibre optic

accelerometer and
KNX sensors

Predict reliability,
mechanical properties,
and thermal properties

69 Xu et al. [128] 1 Main Building and
podium structure 12 and 3

charge amplifier,
accelerometers,

and current eddy
sensors

Anticipate damage of
the building by FRF
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Table A1. Cont.

No. Source by Author Subject of Study
(Type of Building)

Number of
Stories

Types of Sensors
Used Measured Parameters

70 Su et al. [132]
Shear building model

and non shear
building model

6 and 5 Accelerometer

To measure damage in
each storey using

substructural
frequencies

71 Grinzato et al. [134] Historic building
(Venice’s arsenal) _ IR thermography

To monitor moisture
content, finishing status,

and walls hidden
structure

72 Madan [137] 8-story building 8 _
Anticipate

earthquake-induced
vibration in building

73 Boutet et al. [138] School building _ HOBO sensors,

To predict lighting
thermal and

hygrothermal behavior
during the autumn

season

74 Jiang et al. [140] Shear beam model 7 _ Damage identification

75 Kim et al. [141] Kart Hall _ Vibrating wire
strain gauges

Monitoring of
under-construction

building for detection of
damage

76 Hajdukiewicz et al. [142]
2 educational

buildings (ICLS and
EB)

_ Various gauges
and sensors

Indoor environment and
energy consumption in

the building

77 Hagiwara et al. [145] 5-story building 5 Vibration sensors Suggested SVM for
damage prediction

78 Na et al. [146] shear beam model 20 _

Implementing genetic
algorithms using a

flexibility matrix based
on a damage evaluation

method

79 Kopsaftopoulos et al.
[151] Truss building _ Strain gauges To diagnose the

building’s damage
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