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Abstract: The 24 h and 14-day relationship between indoor and outdoor PM2.5, PM10, NO2, relative
humidity, and temperature were assessed for an elementary school (site 1), a laboratory (site 2),
and a residential unit (site 3) in Gainesville city, Florida. The primary aim of this study was to
introduce a biplot-based PCA approach to visualize and validate the correlation among indoor and
outdoor air quality data. The Spearman coefficients showed a stronger correlation among these
target environmental measurements on site 1 and site 2, while it showed a weaker correlation on
site 3. The biplot-based PCA regression performed higher dependency for site 1 and site 2 (p < 0.001)
when compared to the correlation values and showed a lower dependency for site 3. The results
displayed a mismatch between the biplot-based PCA and correlation analysis for site 3. The method
utilized in this paper can be implemented in studies and analyzes high volumes of multiple building
environmental measurements along with optimized visualization.

Keywords: air pollution; indoor air quality; principal component analysis; biplot

1. Introduction

The 2020 Global Health Observatory (GHO) statistics show that indoor and outdoor
air pollution is attributable to nearly seven million fatalities every year [1]. Most (90%) of
the people around the world are exposed to both indoor and outdoor air pollutants [2]. The
United States Environmental Protection Agency (U.S. EPA) estimated that concentrations of
indoor air pollutants are on average two to five times worse than outdoor concentrations [3].
Building leakage, air infiltration, and inadequate ventilation can lead to unhealthy levels of
indoor air quality (IAQ) [4]. IAQ deterioration has been represented as the largest risk factor
to occupants in DALYs (Disability-Adjusted Life Years) due to Sick Building Syndrome
(SBS) and Building-Related Illness (BRI) [5–7]. The major air pollution includes Particulate
Matter (PM), Radon (Rn), Nitrogen dioxide (NO2), Lead (Pb), Sulfur dioxide (SO2), Carbon
monoxide (CO), Ozone (O3), Formaldehyde, and biological pollutants. Children, the
elderly, and people with asthma are at higher risk of BRI from fine particulate matter
(PM2.5, PM10) and gaseous pollutants such as NO2, O3, CO, and SO2 [8,9]. Few studies
have examined the associations between concentrations of air pollutants and COVID-19
disease effects [10–14]. Wu et al. observed that the mortality rate of COVID-19 raises by 8%
for every 1 µg/m3 of particulate matter increase, which presents statistical evidence that
an increase of every 10 µg/m3 in NO2 or fine particle causes a 22.41% or 15.35% rise in the
number of COVID-19 cases [12]. PM2.5 and NO2 often generate from the combustions of
gasoline, oil, diesel fuels, wood, and coal. PM2.5 and PM10 can also originate from certain
indoor sources, such as pollens, dust, pesticides, mold, and human activities, including
cooking, welding, smoking, kerosene heaters, and household cleaning [9,15–17]. Further
studies are warranted in that the existing HVAC systems are not capable of addressing all
aspects of aerosol infection control, and the auxiliary filtration interventions with a proper
operation are now required [8,18–20].
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Therefore, to prevent occupants’ health risks from exposure to indoor air pollution,
efficient monitoring and studying the relations between indoor and outdoor air quality are
necessary. In recent years, semi-conductor air quality sensors and IAQ monitoring tech-
niques have rapidly surged [8,21–23]. Several field studies of relationships between indoor
and outdoor air pollution have been conducted using different analysis methods [8,24,25].
Chamseddine et al. [26] have used the Pearson product-moment correlation coefficient
method for monitoring indoor and outdoor concentrations of PM2.5, PM10, CO, CO2, and
TVOC in hospitals. Gabriel et al. [27] have computed both Pearson and Spearman correla-
tion coefficients between indoor and outdoor levels of ultrafine particles and TVOCs in
public indoor swimming pools. Zhao et al. [28] have concluded that outdoor PM10 and
CO levels affect the IAQ of the residential house based on descriptive statistics with the
Analysis of Variance (ANOVA) test. Kim et al. [29] have applied the Multivariate Analysis
of Variance (MANOVA) method for studying the associations between non-woven fabric
filters‘ ability, indoor and outdoor air quality in commercial offices. Most prior studies have
mainly focused on a linear relationship between indoor and outdoor air pollutants inside
a single type of building, rather than considering the monotonic relationships of various
types of buildings. Only a few studies have considered Principle Component Analysis
(PCA) to reduce the multicollinearity between collected parameters. Madureira et al. [30]
have monitored concentrations of ultrafine particles, CO2, VOCs, and CO in public school
buildings using multilevel linear regression with PCA for examing the association between
IAQ, outdoor air quality, cleaning activities building features. Kwon et al. [31] have used
PCA, and partial least square (PLS) approaches to monitor seasonal variations of PM2.5,
PM10, and CO2 inside subway stations. It is recommended to apply PCA-based analysis
methods on different types of buildings for proper regulation and, therefore, a better
understanding of the relationships of indoor and outdoor air quality [8,32,33]. However,
PCA-based results involving multi environmental measurements are often challenging to
visualize, and previous studies have not provided alternate methodologies to fill this gap.
Biplot is a type of statistics graph that can be applied to represent the relations between
multidimensional parameters from PCA [34,35].

In the present study, the research lab, primary school, and academic office building
were monitored to measure and visualize the longitudinal air quality conditions. Three key
airborne pollutants (PM2.5, PM10, and NO2) defined by the United States Environmental
Protection Agency (US EPA), as well as temperature and humidity data, were simulta-
neously collected with a ten-minute sampling interval from both indoor and outdoor.
This paper is organized as follows. The next section describes the sampling locations, the
measurement methods, and data analysis techniques. Section 3 presents the results of the
data measured from different buildings. The final section addresses the conclusion of this
paper; highlights and possible future work are also provided.

2. Materials and Methods
2.1. Sampling Sites and Sampling Protocol

The three occupied sites (Table 1) chosen for this experiment were the media center of
an elementary school building (Site 1), a lab house (Site 2), and a residential apartment unit
(Site 3), which are all located in the city of Gainesville, Florida, United States. Gainesville
is a mid-density city seat of central Florida, which stays in a humid subtropical climate
throughout the year. The selected buildings for this study are mechanically conditioned
all the year, and the windows are rarely opened to meet ANSI/ASHRAE Standard 52.2-
2017 [8,36]. The buildings are located in the central region of the city to minimize the
microclimate variation. Site-specific parameters are listed in Table 1. In total, the five air
quality parameters monitored were PM2.5, PM10, NO2, relative humidity, and temperature.
Three major monitoring protocols were followed to reduce measurement uncertainty, in-
cluding the standardized EPA protocol for characterizing IAQ in large office buildings [37],
the [38] for monitoring indoor air quality in schools (regional office for Europe), and require-
ments of the Schools Indoor Pollution and Health Observatory Network in Europe project



Buildings 2021, 11, 218 3 of 15

(SINPHONIE) [39]. A two-week indoor and outdoor air quality measurement was carried
out with ten-minute sampling intervals for 24 h continuously for all cases. For site 1, data
were collected between 8 November 2019 and 22 November 2019 (before COVID-19). For
site 2, data were collected between 4 August 2020 and 18 August 2020, while for site 3, air
quality was monitored from 8 September 2020 to 22 September 2020. Each indoor monitor
system was set up about 3.6 feet above the floor, 4.9 feet from any corners [37,40]. For
comparison, outdoor air quality and RHT measurements were conducted simultaneously
with indoor air measurement (Figure 1). For site 1, a weatherproofed sensor was placed 4.9
feet above the surface of the roof. For site 2, the outdoor sensor was placed 4.9 feet above
the deck of the laboratory. Finally, for site 3, the sensor was placed 4 feet above balcony of
an apartment [38,40,41].

Table 1. Building-related specifications at each site.

Building Type Elementary School (Site 1) Lab (Site 2) Residential (Site 3)

Space Type Media Center Office Room Living Room

Room Size 1180 sq.ft
18′8”

Space floor area: 321 sq.ft
Height: 11′4”

Space floor area: 421 sq.ft
Height: 9′6”

Floor material Carpet Plywood Carpet

HVAC Model

Carrier
50HJ-(008-14)

3 Ton Single-Package RTU;

Mitsubishi PEA-A18AA
–1.5-ton concealed CLG.
Ducted UNIT W/DUCT

BOX& Registers;
MITSUBISHI MXZ-3A30N

GOODMAN GSX130481
4-tons

2 Ton Central Air Conditioner
Air Handler Unit GOODMAN

Model AWUF24051BA

Number of AHU/room 2 1 1

Air flow rate plan: 1500 CFM 635 CFM 835 CFM

Air Filter Dual-Ply Filter Media
(Dustlok)

PP Honeycomb fabric
(washable)

AAF Flanders: PREpleat®

LPD SC

Air Filter Level MERV-9 MERV-8 MERV-8

PM2.5 absorption capability 35%–50% 20%–35% 20%–35%

Distance to nearest major road 1383.25 ft. 244.62 ft. 1827.51 ft.

No. of windows n/a 3 2

Indoor smoking Not allowed Not allowed Not allowed

Figure 1. Photos of field monitoring.
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2.2. Sensors

Two weatherproof Air Quality Egg (AQE, 2018) monitors manufactured by WickedDe-
vice, LCC [42,43] were used to measure the concentration of indoor and outdoor pollutants
as well as relative humidity (RH) and temperature (RHT) simultaneously for each site. This
particular AQE was used because of its commercial availability, factory calibrated, and
easy data accessibility and transmissions with lower purchase and operation cost [8,42]. In
addition, according to the test reports from the US EPA and from the Air Quality Sensor
Performance Evaluation Center (AQ-SPEC, SCAQMD), the field tests results of both labo-
ratory showed that AQE sensors can provide reliable indoor air quality (IAQ) data with
low intra-model variability and 100% data recovery [44–47]. Each AQE unit is assembled
with a particulate matter module (Dual Plantower PMS5003), a CO module (3SP_CO_1000
Package 110-102), a NO2 module (3SP_NO2_5F P Package 110-507), and a RHT sensor
(DHT22). The specifications of each sensor module are shown in Table 2.

Table 2. Specifications of multi-sensor modules of Air Quality Egg version 2.

Measured
Parameter

Example
Product Manufacturer

Measurement
Toler-

ance/Repeatability

Measuring
Range Circuit Voltage Response Time

PM2.5;
PM10

PMS5003 Plantower

± 10%@
100–500
µg/m3;

± 10 µg/m3

@0–100 µg/m3

0~500 µg/m3;
≥ 1000 µg/m3 5.0–5.5v 10 s

NO2
3SP_NO2_5F P

Package SPEC sensors <± 5% of reading
or 10 ppb 0–5 ppm 10 to 50 uW < 15 s

CO 3SP_CO_1000
Package SPEC sensors <± 2% of reading 0 to 1000 ppm 10 to 50 uW < 30 s (15 s

typical)

RHT DHT22 Aosong
Electronics ± 0.5 ◦C and ± 1% 40 ◦C to 80 ◦C;

0% to 100% 3.5–5.5 v 2 s

2.3. Descriptive Statistics and Correlation Analysis

The indoor and outdoor environment parameters measured by the air quality monitors
are subjected to descriptive statistics and correlation analysis using Python (version 3.6.12)
language and Jupyter Notebooks. A quantile–quantile (Q-Q) plot graph was applied in
Python to standardize reference data and test the data distribution [48,49]. The Spearman
correlation coefficients were calculated to analyze the monotonic relationship and the
inter-dependency between each pollutant on another [50,51]. The Spearman rank-order
correlation coefficient (ρ) can be expressed as an equation [50]:

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

(1)

where di represents the difference between the corresponding ranks, and n is the number
of data points. The coefficient value (r) ranges between −1 (highest negative correla-
tion) and 1 (highest positive correlation), while a p-value less than 0.05 was considered
statistically significant.

2.4. Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that elucidates the multicollinearity
phenomenon among variables with a smaller set of uncorrelated variables called principal
components (PCs) [35,52,53]. PCA can be used to validate the correlation between the
original variables by determining the most significant parameters [54,55]. Each principal
component is an orthogonal projection of the original variables, with a minimum loss of
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traits. The eigenvectors and eigenvalues of a covariance matrix are the main elements
required for PCA to capture the visual orientations of new data points and their mag-
nitude [56]. The eigenvalues λ, of the covariance matrix, is computed by the following
expression [57,58]:

det(λI − C) = 0 (2)

where det is the determinant of the matrix, I is the identity matrix, and C is the covariance
matrix. Solving the above equation will result in k possible eigenvalues λ. The scores of
PCs (eigenvectors) can be expressed as an equation [53,59,60]:

Zir = αi1x1r + αi2x2r + . . . + αikxkr (3)

where Zir is the score for the ith data point on the rth principal component, α is the
component loading, x is the variable, and k is the total number of variables. In this study,
we focused specifically on identifying factors that affect the indoor PM2.5, PM10, and
NO2 concentrations during the measurement periods. PCA and linear regression were
used to validate the correlation analysis results and determine the significant independent
variables contributing to the degradation of target pollutants. A PCA and biplot-based
data visualization were carried out using the Scikit-learn machine learning library and the
yellow-brick visualizer in Python [61].

3. Results and Discussion
3.1. PM2.5, PM10, and NO2 Concentrations

The measured average indoor and outdoor environmental parameters along with their
standard deviation, minimum, maximum, and indoor to the outdoor ratio (I/O ratio), are
presented in Tables 3 and 4. The mean temperature indoors during the monitoring period
was not significantly different among the locations. Site 1 observed the lowest average
humidity of 44.7%, while site 2 and site 3 were 67.7% and 53.5%, respectively. The average
indoor PM2.5 and PM10 concentrations for site 1 were 5.85 and 6.09 µg/m3, while site 2
has comparatively lower average values at 3.04 and 3.18 µg/m3. The highest means and
standard deviations of indoor PM2.5 and PM10 (13.0 ± 30.2 µg/m3; 15.0 ± 35.3 µg/m3)
were observed in site 3. For both sites 1 and 2, the recorded mean of indoor PM2.5 and
PM10 concentrations were lower than outdoor PM2.5 and PM10 concentrations. Conversely,
mean PM2.5, PM10, and NO2 concentrations were higher indoors than outdoors in the
residential building (site 3). The indoor concentrations of NO2 at each site ranged from
14.8 to 46.5 ppb, 38.7 to 86.3 ppb, and 30.9 to 69.3 ppb. In all cases, the mean outdoor NO2
values were significantly higher than indoors.

Time series of indoor and outdoor PM2.5, PM10, and NO2 concentrations measured
during the sampling periods are plotted in Figure 2. The majority of indoor PM2.5 and
PM10 concentrations for all the sites met the minimum requirements of the ASHRAE 62.1-
2019 standard, which is 35 µg/m3 (24 h mean) for PM2.5 and 50 µg/m3 (24 h mean) for
PM10 [8,62]. The crests with unhealthy levels of indoor PM2.5 at site 3 may be attributed to
regular household cooking and human behavior activities (lunch or dinner break) [63–65].
The overall trends between indoor and outdoor particulate matter (PM2.5 and PM10)
concentrations were similar for site 1 and 2. It can be seen from Figure 2d,e that there is
a time-delay affected peaks shift between indoor and outdoor particulate matter (PM2.5
and PM10) values in site 2 (office room). The potential reason for this trend might be due to
the city traffic in rush hours, since site 2 has the shortest distance to the nearest busy road
among all sites while having sedentary human behavior during working hours [66,67].
The time-series concentration for NO2 shows a significantly stable pattern than the outdoor
concentration values for all sites due to a lack of indoor emitting sources [17]. Except
for site 2, which is close to a busy road, most of the indoor concentration values for NO2
lie below the index of ASHRAE 62.1-2019 standard 53 ppb (1-year mean) and 100 ppb
(1-h mean) [8,62].
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Table 3. Descriptive statistics of indoor environmental parameters measured at sites 1, 2, and 3.

Site 1 Site 2 Site 3

Environmental
Parameters Average ± SD Min Max Med I/O Average ± SD Min Max Med I/O Average ± SD Min Max Med I/O

PM2.5 (µg/m3) 5.85 ± 3.91 0.00 19.70 4.85 0.66 3.04 ± 3.18 0.00 38.50 1.20 0.44 13.00 ± 30.20 0.00 455.90 4.90 2.20
PM10 (µg/m3) 6.09 ± 4.07 0.00 23.80 5.00 0.68 3.18 ± 3.38 0.00 45.00 1.30 0.42 15.00 ± 35.30 0.00 529.90 5.18 2.00

NO2 (ppb) 32.30 ± 3.69 14.80 46.50 31.90 0.63 54.30 ± 7.49 38.70 86.30 62.10 1.11 42.50 ± 3.80 30.90 69.30 41.30 1.30
Temp. (◦F) 73.30 ± 1.01 73.30 76.40 73.40 1.31 77.00 ± 1.33 73.90 80.20 75.10 0.94 79.60 ± 1.53 76.30 82.00 80.20 1.01

Humidity (%) 44.70 ± 5.67 44.70 64.40 43.90 0.66 67.70 ± 3.74 54.10 79.10 71.50 0.83 53.50 ± 2.04 44.00 62.80 53.70 0.76

Table 4. Descriptive statistics of outdoor environmental parameters measured at sites 1, 2, and 3.

Site 1 Site 2 Site 3

Environmental
Parameters Average ± SD Min Max Med I/O Average ± SD Min Max Med I/O Average ± SD Min Max Med I/O

PM2.5 (µg/m3) 10.80 ± 8.04 0.00 48.70 9.05 0.66 7.44 ± 2.74 0.70 41.80 6.50 0.44 8.12 ± 3.74 0.50 31.50 8.08 2.20
PM10 (µg/m3) 11.60 ± 8.80 0.00 60.60 9.55 0.68 8.01 ± 2.84 0.80 49.90 7.00 0.42 9.53 ± 4.07 0.71 40.60 9.37 2.00

NO2 (ppb) 102.60 ± 74.50 0.00 413.6 81.10 0.63 142.6 ± 6.94 0.00 517.5 169.90 1.11 118.90 ± 59.00 0.20 225.30 130.6 1.30
Temp. (◦F) 57.30 ± 10.00 38.80 86.60 55.10 1.31 82.40 ± 1.20 70.80 104.35 79.90 0.94 79.20 ± 6.30 67.60 102.1 77.70 1.01

Humidity (%) 71.60 ± 14.90 22.70 92.10 77.60 0.66 70.90 ± 3.28 34.80 89.10 75.30 0.83 73.10 ± 13.3 33.60 89.20 78.00 0.76
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Figure 2. Two weeks evaluation of indoor and outdoor pollutants monitored at 10-min intervals (144 observational points a
day equating to 2016): (a) Site 1-PM2.5, (b) Site 1-PM10, (c) Site 1-NO2, (d) Site 2-PM2.5, (e) Site 2-PM10, (f) Site 2-NO2, (g)
Site 3-PM2.5, (h) Site 3-PM10, (i) Site 3-NO2.
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3.2. Quantile–Quantile (Q-Q) Plot

Figure 3 represents quantile–quantile (Q-Q) plots applied to verify and visualize the
distributional difference between indoor air quality data and the corresponding outdoor
data by plotting their quantiles against each other [48]. The type of data distribution can
be determined by characterizing the spatial pattern of the normalized data points. If two
set distributions are mostly similar (normally distributed), then plots of the quantiles of
distributions will fall close to the identity line [48,49]. Different type of distributions leads
to various deviation ratios. From Figure 3a–c, the site 1 (indoor and outdoor) data are
normally distributed with a small deviation from the identity line. In Figure 3d–f, which
represents site 2, the quantile plots of the distribution of indoor and outdoor pollutants
show a skewed distribution with low and high degrees of variation from the identity line
toward higher concentrations. For site 3, the PM2.5 and PM10 data are clustered along the
low-to-medium spectrum of the data range, while positive deviations (site 3) were found
between the higher concentration range. Figure 3i shows that the distribution of NO2
indoor and outdoor concentrations is highly concentrated along the identity line.

Figure 3. Quantile-Quantile (Q-Q) plot of indoor-outdoor data: (a) Site 1-PM2.5, (b) Site 1-PM10, (c) Site 1-NO2, (d) Site
2-PM2.5, (e) Site 2-PM10, (f) Site 2-NO2, (g) Site 3-PM2.5, (h) Site 3-PM10, (i) Site 3-NO2. With an identity line (y = x, which
acts as reference to standardize the axis).
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3.3. Correlation Analysis

The Spearman rank-based correlation was used to extract the nonparametric relation-
ship to outcome the probabilistic association between target parameters by assigning a
coefficient value bounded between−1 and 1 [50,51]. According to Figure 4, site 1 and site 2
reveal a stronger correlation between indoor and outdoor measurements compared to
site 3. Significant positive correlations were found between indoor NO2 and indoor relative
humidity (Rsite1 = 0.85, Rsite2 = 0.99, Rsite3 = 0.77) at all sites. NO2 has the propensity to
react with water vapor appear in building structures, which may lead to an increase in
NO2 concentrations [68,69]. This positive trend can also be found at site 2 and site 3 among
indoor NO2 and outdoor NO2 (Rsite2 = 0.87, Rsite3 = 0.7), while site 1 shows a negligible
correlation between them. Both sites 1 and 2 have a high degree of positive correlation
between indoor particulate matters (PM2.5 and PM10) and corresponding outdoor values
(Rsite1_pm2.5 = 0.65, Rsite2 pm2.5 = 0.64, Rsite1_pm10 = 0.64, Rsite2_pm10 = 0.56). Many relevant
studies reported similar positive correlation value between indoor and outdoor PM concen-
trations in public buildings. Site 3 shows a high negative correlation between indoor and
outdoor particulate matters (PM2.5 and PM10). The similar negative correlation between
indoor and outdoor PM within a mechanical ventilated living space was observed in serial
studies [16,70,71]. This indicates that the indoor PM values are affected significantly by
day-to-day household activities compared to educational and office spaces [72–74].

Figure 4. Spearman correlation heat map for indoor and outdoor environmental parameters at three sites.
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3.4. Biplot–PCA for Site 1, 2, 3

A PCA-based multivariate linear regression model was employed for parameters
such as PM2.5, PM10, NO2, and temperature and humidity for both indoor and outdoor
test conditions [32,33]. This was used to evaluate results obtained from the correlation
analysis [52,56]. The measured values are utilized to formulate a multidimensional dataset,
which is projected onto a biplot. A biplot is a scatter plot that depicts the relationship
between observed data and dependent variables in terms of principal components [34,35].
In a PCA-based biplot, points are the projected observations, vectors are the projected
variables. However, biplot cannot be used to estimate the exact coordinates because
the vectors have been centered and scaled. The multivariate dataset was dimensionally
redacted down into 3D and 2D plots where the above-mentioned parameters were plotted
with respect to indoor PM2.5, PM10, and NO2. In order to plot the biplot, PCA results are to
be interpreted, which is followed by identifying the number of principal components [35].
Sites 1 and 3 are represented in 3D plots as the sum of the first, second, and third principal
components, which result in an aggregate of less than 90%. Whereas for site 2, PC1 and PC2
sum to more than 90% and hence are represented as a 2D plot. Figure 5a,b display similar
variance across the first, second, and third principal components. This can be attributed
to the close dependency of PM2.5 to PM10 in site 1. This trend is also observed in site 2
(Figure 5d,e) and site 3 (Figure 5g,h). Site 2 shows the highest NO2 principal component
values at PC1 = 82%.

Table 5 depicts PCA-based linear regression analysis coefficient values for all three
sites with respect to indoor PM2.5, PM10, and NO2 with 95% confidence interval. The
linear regression results are in an agreement with the Spearman inter-parameter correlation.
Three levels of statistical significance, 0.001, 0.05, and 0.1 in decreasing order of significance
were observed. Indoor PM2.5 and PM10 show a strong dependence with site 1; this trend
can be witnessed similarly in the Spearman correlation matrix. NO2 for site 1 shows
negative principal component values, which is similar to the correlation values (r) obtained
through Spearman correlation. The first and second principal component numbers for
site 2 for PM2.5 and PM10 are almost identical. Likewise, from Figure 4, PM2.5 and PM10
are strongly correlated. This may be attributed to the minimal occupant behavior owing
to quarantine protocol restricting the active maximum number of occupants to 1 at a
given time. For site 2, NO2 possesses contradictory first and second principal component
numbers (PC1 = −0.255, p < 0.001, and PC2 = 0.135, p < 0.001). This pattern can be
consistently observed from the Spearman correlation as well. Site 3 has weak dependence
across all three principal component numbers, while PC3 displays the least significance
amongst all sites. This is contrasting from the indoor NO2, outdoor NO2, and relative
humidity observed from the correlation heatmap. Site 1 and Site 2 show an overall stronger
inter-parameter dependence, which is also witnessed from the PCA-based linear regression
analysis. A relatively weaker correlation among parameters is displayed by the residential
building (site 3). There is a mismatch between results derived from the PCA (site 3) and the
values of the corresponding correlation coefficient. The proposed study could contribute
to developing efficient solutions to identify and verify the significant variables that affect
indoor air pollutant concentrations in buildings, such as windows operation, ventilation
control, and building material selections.
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Figure 5. PCA-based biplot of indoor–outdoor data: (a) Site 1-PM2.5, (b) Site 1-PM10, (c) Site 1-NO2,
(d) Site 2-PM2.5, (e) Site 2-PM10, (f) Site 2-NO2, (g) Site 3-PM2.5, (h) Site 3-PM10, (i) Site 3-NO2. With
calibrated axes and observations as scatters. The color bar represents the values of the dependent
variable (target pollutant). The direction of eigenvectors is represented as solid red lines.
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Table 5. Results of the PCA-based linear regression analysis.

Indoor_PM2.5 Indoor_PM10 Indoor_NO2

PCs_Sites Coefficient (95% CI) Coefficient (95% CI) Coefficient (95% CI)

PC1_Site 1 *** 0.333 (0.326 to 0.340) *** 0.330 (0.322 to 0.337) *** −0.130 (−0.145
to −0.116)

PC2_Site 1 *** 0.195 (0.187 to 0.204) *** 0.195 (0.186 to 0.205) *** −0.142 (−0.161
to −0.123)

PC3_Site 1 *** 0.492 (0.481 to 0.502) *** 0.490 (0.479 to 0.501) *** 0.534 (0.509 to 0.558)

PC1_Site 2 *** 0.178 (0.167 to 0.189) *** 0.176 (0.165 to 0.187) *** −0.255 (−0.272
to −0.238)

PC2_Site 2 *** 0.485 (0.471 to 0.500) *** 0.482 (0.467 to −0.497) *** 0.135(0.115 to −0.156)

PC1_Site 3 *** 0.052 (0.026 to 0.077) *** 0.050 (0.024 to 0.075) *** −0.160 (−0.185
to −0.136)

PC2_Site 3 *** −0.061 (−0.090
to −0.031)

*** −0.061 (−0.090
to −0.031) *** 0.091 (0.063 to 0.119)

PC3_Site 3 ** −0.037 (−0.071 to
−0.004)

** −0.038 (−0.072
to −0.004) * 0.000 (−0.059 to 0.000)

*** p < 0.001, ** p < 0.05, * p < 0.10.

4. Conclusions

The purpose of this study was to introduce a biplot-based PCA approach that could
serve as a novel method to visualize and validate the relations between indoor and outdoor
air quality data. PM2.5, PM10, NO2, and RHT data were collected continuously in three
different building types (Supplementary Materials: elementary school—site 1, laboratory—
site 2, and residential—site 3) with a span of two weeks. The highest means and standard
deviations of indoor PM2.5 and PM10 (13.0± 30.2 µg/m3; 15.0± 35.3 µg/m3) were observed
in site 3. For both sites 1 and 2, the recorded mean of indoor PM2.5 and PM10 concentrations
were lower than outdoors. The average indoor NO2 levels were significantly lower and
steadier than outdoors. The Spearman coefficients showed a stronger correlation among
these target environmental measurements on sites 1 and 2, while it showed a weaker
correlation on site 3. Three and two principal components were found for sites 1 and 3, and
site 2, respectively, from the biplot-based PCA. The PCA-based linear regression results
showed higher dependency for site 1 and site 2 (p < 0.001) when compared to the Spearman
correlation values (r) and showed a lower dependency for site 3. The results displayed
a mismatch between the PCA-based regression and Spearman correlation for site 3. The
method utilized in this research can be implemented in studies and analyzes high volumes
of multiple building environmental measurements along with optimized visualization. For
further studies, building characteristics, occupant behaviors, and seasonal variations with
a larger sample size are recommended to be included in order for better understanding
and analyzing the relationships between indoor and outdoor air quality.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/buildings11050218/s1.
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