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Abstract: The design of a building façade has a significant impact on the way people respond to it
physiologically and behaviourally. Few methods are available to assist an architect to understand
such impacts during the design process. Thus, this paper examines the viability of using two
computational methods to examine potential visual stimulus-sensation relationships in facade design.
The first method, fractal analysis, is used to holistically measure the visual stimuli of a design. This
paper describes both the box counting (density) and differential box counting (intensity) approaches
to determining fractal dimension (D) in architecture. The second method, visual attention simulation,
is used to explore pre-attentive processing and sensation in vision. Four measures—D-density (Dd),
D-intensity (Di), heat map and gaze sequence—are used to provide quantitative and qualitative
indicators of the ways people read different design options. Using two façade designs as examples,
the results of this application reveal that the D values of a façade image have a relationship with the
pre-attentive processing shown in heat map and gaze sequence simulations. The findings are framed
as a methodological contribution to the field, but also to the disciplinary knowledge gap about the
stimulus-sensation relationship and visual reasoning in design.

Keywords: architectural design; visual complexity; visual attention; pre-attentive vision; conceptual
design; differential box counting; eye-tracking

1. Introduction

The architectural façade, or external face of a building, is the first, physical interface
most people engage with as they approach a building, providing important visual clues
about its functionalities. People unconsciously see and continuously experience building
façades and their elements (geometry, patterns, textures and details) [1]. Thus, creating
the façade is an important part of the design process, not only for aesthetic reasons, but
also because the façade is central to the relationship between visual character and human
response. However, predicting the visual consequence of the façade using analytical tools
is not formally investigated in the design process, which indicates a significant gap in
disciplinary knowledge. As such, a major research question which this paper addresses is,
“how can a designer proactively examine the visual character of a façade and its potential
impacts during the early stages of the design process?” Before describing how this question
will be answered, a brief overview of past research provides a context for this introduction.

Two key measurable properties of visual character are stimulus and perception. The
former, stimulus, is associated with visual intensity whereas the latter, perception, relates
to visual magnitude. The two are central to classical debates in psychophysics about visual
character, with some scholars arguing that the relationship between them is linear, whole
others propose logarithmic (Weber-Fechner law) or exponential laws to describe them
(Steven’s power law) [2,3]. Despite the existence of this research, our understanding of
the relationship between visual stimuli and perceptual parameters in building design is
limited. A small number of studies have examined participants’ evaluative responses to
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façade design in a laboratory setting. Stamps [1], for example, uses participants’ ratings
of 16 computer-generated façade drawings to examine human visual preferences for
architectural façades, with a focus on three types of stimuli (silhouette complexity, surface
complexity and facade articulation). Justi and Eric [4] also examine the impact of urban
façades on affective feelings. In their research, two levels (high and low) of façade stimuli
that depict pedestrian-oriented façade designs and edges are evaluated by participants,
using sliding scales that range from “not very pleasant” to “very pleasant”. However, as
authors acknowledge such rating methods have unavoidable limitations including innate
and selection biases. Psychological evaluations of this type also depend on participants’
life experiences and cultural backgrounds. Furthermore, participants’ emotional ratings in
the experimental research do not explain how they actually perceive the design or how
visual stimuli direct human reactions and experiences. In contrast, observational and
interview techniques can be employed to empirically investigate people’s engagement
with buildings [5]. Observational research potentially offers an insightful approach to
understanding dynamic and emotional responses to building design and can also provide
indicators about the impact of a façade on people’s daily activities. For example, an
observational study undertaken in Copenhagen captures the types of encounters people
have with façades [6]. However, observer bias in such studies is difficult to control [7] and
individuals’ own perspectives are often ignored [8].

Importantly, most past research has largely examined built or existing façades [1,4,6],
and the methods employed for this purpose are not appropriate for rapid exploration
of stimulus-sensation relationships during the design process. Furthermore, the goal
of understanding stimulus-sensation relationships during design is different to that of
exploring its post-completion impact. During the design stage rapid methods are required
to support design decision-making and visual reasoning while testing alternative façade
compositions and expressions. Design decision-making and problem solving involve
selecting a solution from viable solutions or options, a process that is largely reliant on
designer’s expertise and intuition [9]. Whereas there are multiple design decision support
models and systems available for architects for other tasks [10], there are relatively few to
support visual assessment during the design process. Specifically, a façade design contains
a combination of perceptual and geometric information, which can be regarded as a set
of visual stimuli. Human attention affects perception [11], because attention processes
respond to the visual stimuli, shaping our visual experience and behaviour [5,12–15]. Thus,
exploring the visual complexity of, and our visual attention to, a façade during the early
conceptual or schematic design stages not only plays a significant role in visual design
thinking processes, but also enables predicting visual perception of the design.

There are further options and issues to consider when looking at potential methods
for examining visual stimulus and perception in façade design. For example, participatory
design [16] is one approach that seeks to engage laypeople in the production of a design,
thereby providing a broader response to a potential façade option. Participatory design
is, however, challenging, time-consuming and potentially expensive, being generally
inappropriate for a conceptual design stage. Some examples do exist of collective design
at the conceptual design stage, with hundreds of motivated individuals working on a
project [17], but this does not necessarily support design decision-making in response to
visual perception. There is also, no clear or accepted way of formally investigating the
relationship between visual stimuli of a building facade and human visual processing. In
response to all of these issues, the present research introduces and assesses two efficient
computational approaches to (i) quantifying the visual stimuli or complexity of a façade
in a holistic way and (ii) simulating visual attention to the façade. Both approaches are
applicable to early design stages and are introduced hereafter.

The first approach treats the formal and geometric characteristics of a building as
indicators of visual stimulus. Multiple studies have sought to quantify the formal properties
of building exteriors [1,4,18]—typically through examination of geometric and/or non-
geometric variables—but they tend to focus on discrete architectural properties, rather
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than an entire façade. One method, however, measures the visual complexity of an entire
façade, providing a mathematical indicator of the volume of visual stimulus spread across
it. This method of fractal dimension analysis has been used for the measurement of
visual complexity in art and architecture [19,20], and it has been shown to be significant
predictor of aesthetic preference. Fractal dimensions have been used to quantify the
complex structure of both natural patterns and aesthetic works [21]. In addition, recent
studies reveal that fractal dimensions play a role in the experience of architectural and urban
form [20,22,23]. Thus, the first method examined in this paper is fractal dimension analysis,
which provides an efficient means of understanding visual complexity and stimulus in
a façade.

The second approach in this paper investigates visual attention, which is a key factor
in human spatial experience. For over a century, visual attention has been studied in
psychology, neurophysiology and perceptual science [11]. In the fields of architecture
and urban design, visual attention has been explored through the use of eye-tracking
technology [5,12–14]. Importantly, such research shows how pre-attentive processing in
vision can reveal the ways the visual stimuli of a building facade instantly attract the eyes,
and thereby predict visual experience and human behaviours [24]. Hollander et al. [25]
also highlight how unconscious (pre-attentive) eye movements shape human responses to
urban environments. Thus, the present paper focuses on “pre-attentive” or “first-glance”
vision (the initial 3–5 s of viewing), that is automatically processed without consciousness.
Past eye-tracking studies have, however, been time-consuming and labour-intensive to
undertake, whereas recent developments in visual attention software (VAS) emulate the
results of human eye-tracking experiments, providing fast and effective results [26,27]. VAS
algorithmically captures and simulates human “pre-attentive processing” [28]. The present
paper uses VAS to simulate potential unconscious visual responses to façade design.

This paper is divided into three main sections. The following section introduces fractal
dimensions and visual attention in architectural design. Following this, the two compu-
tational methods are described and used to simulate the visual impacts of architectural
drawings of two facades. The simulation results, using two applications (ImageJ (version
1.53e)+FracLac (version 2015Sep090313a9330) and VAS (version 1.0.6)), are then presented
with a discussion about their implications and limitations.

2. Fractal Dimension and Visual Attention
2.1. Fractal Dimension Calculation

Fractal Dimension analysis is a rigorous approach to measuring “the relative density
and diversity of geometric information in an image or object” [20] (p. 3). Whereas the close
observation of fractal geometry reveals “a cascade of never-ending, self-similar, meandering
detail as one observes them more closely. The fractal dimension is a mathematical measure
of meandering of the texture displayed . . . [it] provides a quantifiable measure of the
mixture of order and surprise in a rhythmic composition” [29] (p. 3). Even though there
is often confusion about the difference between fractal dimension and fractal geometry,
Ostwald and Vaughan [20] distinguish fractal geometry—particular geometric sets only
existing in topological space and exhibiting high levels of self-similarity—from fractal
dimension that is used to describe “the space-filing properties of irregular objects which
may exist in either topological or the material world” (p. 9). Figure 1a shows an example
of fractal geometry, the Sierpiński triangle.
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Figure 1. Determining the number of boxes (or squares) (Ns) by (a) box counting and (b) differential
box counting (adapted from [20,30]).

Even though Mandelbrot identifies multiple approaches to measuring fractal di-
mensions [20,31], two types of box counting methods, (a) traditional box counting and
(b) differential box counting, as shown in Figure 1, can be applied to determine the fractal
dimension of an image, or of a façade. While both methods are used in different domains,
the former has been explored in many architectural studies, while the latter is only rarely
used of architectural or urban research. Theoretically, the traditional box counting method
is reliable and accurate [29,32]. Since being introduced for architectural and urban research
in the 1990s [29,32], a range of studies have used box counting to analyse various archi-
tectural forms: Mesoamerican architecture [33], Teotihuacan architecture [34], Ottoman
houses [35], the Wright’s Robie House and Le Corbusier’s Villa Savoye [29], Sinan’s Kılıç
Ali Paşa Mosque [36], 85 20th Century houses (designed by 16 famous architects) [20] and
French Gothic cathedrals [37].

The fractal dimension (D) of an image, as calculated using the box counting method,
is determined by the slope of the least square regression line (or trendline) for the log-log
plot of box count (Ns) versus box size (s). The original box-counting theorem is:

D = lim
ε→0

log Ns

log(1/s)
(1)

In essence, the dimension can be estimated by a comparison between two sequential
grids [20], using this formula:

D =
[log Ns2 − log Ns1]

[log(1/s2)− log(1/s1)]
(2)

Where s2 is a smaller (or magnified) grid than s1. For example, in the 3 × 3 grid (thick
lines) of Figure 1a the image has 7 boxes with detail (or foreground pixel) contained in
them, and its box size (scale) is 4. The second grid (6 × 6 grid) using thin lines identifies
24 boxes and its box size is 2. Thus, the fractal dimension using only two grids is:

D =
log 24− log 7
log 1

2 − log 1
4
=

1.7776
1.0000

= 1.7776

This simple calculation is useful for a quick determination, but the fractal dimension
(D) using multiple box sizes should use the slope of the least square regression line. The
choice of a logarithmic base is not important because fractal dimension is the slope of
the line or the log-log relation. Theoretically, it is 2, because the box counting is basically
involving binary decisions (bits).
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While the box counting method is useful for determining the fractal dimension of
architectural elevations and plans [20], it is only applicable for binary images. However,
while most plans and elevations are binary images, this image type cannot capture the
texture of a building, which is part of the visual complexity of a façade. Stamps’ “surface
complexity” (percentage of pixels covered by elements in the second septave) is the most
important factor for visual preference in his study [1]. In addition, unlike experienced
architectural designers, laypeople may find it difficult to interpret a line drawing of a
façade that represents a complex, articulated form. Thus, using differential box counting,
which enables the analysis of textural complexity of grey scale images, may compensate
for this issue [30,38].

The differential box counting method can estimate the fractal dimension of grey scale
images [30,38,39]. It is a generalization of the traditional box counting method to take into
account an additional textural dimensional, image intensity: see Figure 1b. In other words,
the third coordinate (z) encapsulates grey-levels ranging from 0 to 255 [39]. Such a box
count (Ns) requires a different approach from the binary process of traditional box counting.
Firstly, let the minimum and maximum grey-levels (intensity) of the surface in the image
plain of a grid (i, j) fall in box number k and l, respectively [30,39]. The contribution (ns) to
the box counting is then:

ns(i, j) = l − k + 1 (3)

For example, the box counting of the image intensity surface in Figure 1b is 3 − 1 + 1.
In this way, the box counting that considers contributions from all blocks is:

Ns = ∑ ns(i, j) (4)

The final fractal dimension is then estimated using the least square regression line
of the log-log plot as described above. In this way, the fractal dimension of a grey scale
image can be determined by both box counting methods, because it can be automatically
converted to a binary image. Thus, this paper analysing grey scale façade images produces
two types of fractal dimensions, (a) D-density (Dd) using the box counting method and
(b) D-intensity (Di) using the differential box counting method.

In essence, regardless of Dd and Di, the values of fractal dimensions (D) of images are
between 1 and 2, indicating the degree of complexity [20,40]. A lower D value indicates a
less fractal or less complex form, while a higher D, indicates a steeper slope of the trendline,
which is more complex, differentiable or irregular. The latter also means that complexity
increases as the box size decreases. Thus, the determination of box sizes is very important
for both methods. Previous studies suggest box sizes should be between 0.25l (maximum)
and 0.03l (minimum), where l is the height of the shorter side of either the outline (or
silhouette) of an image [40–42] or simply a bounding box (bbox)—the smallest rectangle
enclosing the foreground pixels of a digital image [43]. For example, the maximum box size
in a L× L image in Figure 1a is 0.25l. This ideal maximum size is still valid for this research,
but the minimum size of 0.03l may be less so for small size images like 480 × 360 pixel
greyscale images [42]. However, in our multiple pilot tests, it is observed that even small
boxes between 5 to 10 pixels can generate meaningful box counting without an error. Thus,
this study uses a minimum box size of 10 pixels, regardless of the height (l).

In past research fractal dimensions have been correlated to human visual prefer-
ence [19] and there is evidence that they can be used to develop insights into the aesthetic
experiences of art, architecture and urban landscape [20,22]. Past studies have used various
types of images—in terms of details, sizes and patterns—to identify different preference
ranges of D [21]. For example, some researchers argue that D values in the range of 1.3–1.5
are the most preferred [44], while others propose that the most preferred D value for
computer-generated grid-like patterns is around 1.8 [45]. In [20], the overall average D
of more than 300 elevations is 1.4148 and its interquartile range is from 1.3698 to 1.5104.
Thus, if appropriate knowledge about the preferable D range is developed, it can be used
to evaluate the visual complexity of a design and predict human visual preferences. Thus,
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it is very important for applications of fractal analysis to consistently use optimal settings
(e.g., grid sizes, scaling coefficient and grid positions) and image processing approaches.
In this way, D offers a powerful, repeatable measure for examining visual complexity in
design, which can in turn be used to understand how architecture reflects human physical
experience and response [23]. Consequently, D provides a connection between form, for
example of a façade, and “sensual or cognitive participation” [46].

2.2. Visual Attention Simulation

Visual attention refers to a set of cognitive operations associated with sight. It en-
ables us to selectively process visual scenes that consist of both relevant and irrelevant
information [47]. This selectively is significant, because human capacity to process visual
information is limited in various ways [11,12]. Visual attention can be categorised into three
types: spatial attention, feature-based attention and object-based attention. The common
feature of all three, “attention”, relates to the way an observer is led to look at a particular
location (spatial attention) or specific aspects (e.g., colour or orientation) of objects in an
environment (feature-based attention). Attention can also be guided by object structure
(object-based attention) [11]. In addition, people’s visual experiences depend on multiple
factors, such as viewing distance, moving speed and visual permeability [6]. Furthermore,
visual attention is related to visual working memory and pattern recognition [48]. As such,
human cognitive processing depends on visual information including the geometrical
characteristics of forms and images [26].

Traditionally, visual attention has been divided into two sequential types, pre-attentive
and attentive [24,49]. According to a “feature-integration theory” of attention [50], pre-
attentive processing in vision extracts object features (visual stimuli) such as colour, size,
orientation and direction [24,49] and develops “proto-objects”, which are then selectively
formed into a coherent object representation during subsequent attentive processing [51–53].
Figure 2 illustrates Rensink’s human visual system model consisting of (i) early visual,
(ii) attentional and (iii) setting systems [51,52]. The early visual system is a high-capacity
process that rapidly and unconsciously creates proto-objects across the visual field. The
limited-capacity attentional system constitutes the set of proto-objects into a coherent
representation, spatially and temporally (spatio-temporal coherence). The setting system
is a non-attentional system that provides a context to guide attention, allocating focused
attention based on long-term knowledge. These three processes are also reminiscent of aes-
thetic responses in Nasar’s probabilistic model [18], where perception of building attributes
is followed by cognition (judgments of building attributes). Perception directly effects
emotional reactions and cognition has affective appraisals and connotative meanings [18].
The combination of perception and cognition develops our aesthetic responses.

Figure 2. Visual attention mechanism (adapted from [51–53]).
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As described in Figure 2, the attentional system in vision consciously refers to indi-
vidual long-term knowledge, relying on individual intentions or goals. In contrast, the
pre-attentive is unconsciously dealing with information (visual stimuli) from the environ-
ment. Importantly, the early visual system has three stages, transduction (pixels), primary
processing (edges) and secondary processing (proto-objects) stages [53]. In the early vision,
photoreception occurs and linear or quasi-linear filters measure image properties. Finally,
proto-objects become the operands for the following attentional system [53]. More salient
proto-objects attract more attention [54]. In this way, the pre-attentive stage unconsciously
responds to the visual stimuli of architecture, formulating our visual experience in the built
environment. Thus, this paper specifically addresses early vision, where stimulus salience
(unconscious) can be more important than intentions or goals (conscious). Early vision
offers an effective indicator of the stimulus-sensation relationship in design.

In the vision system, not all visual information (or stimuli) of a design can be processed
at any one time, because of our limited processing capacity [47]. Visual attention is
processed either overtly or covertly and deals with either a particular character of an object
or of an entire object [47]. As past observation research has been unable to reveal these
selective processes in vision or visual experience (e.g., [1,4,6]), eye-tracking technologies
have been used to more precisely capture eye movements and fixations in response to
varying façade designs [12–15].

Eye-tracking can be used to identify both the attentive elements of a design and the
lengths of attention [12]. Thus, it captures participants’ visual explorations and experiences,
because gaze distributions can show how people visually engage with the design. In
addition, mobile eye-tracking has been used to capture visual engagement with facades or
urban street edges in everyday life. Past studies [5] reveal that social and spatial factors
impact such visual engagement, and the amount of visual engagement is also dependent
on pedestrians’ everyday activities as well as street types (non-pedestrianised and pedes-
trianised). Eye-tracking technology is also used to capture people’s perception of cityscape
design in a virtual reality (VR) environment [55]. Furthermore, human interaction with 3D
virtual models can be investigated through eye-tracking in terms of end-users participation
in the design process or their satisfaction [56]. Thus, both screen-based and wearable eye-
tracking technologies allow for the investigation of how architectural elements (geometric
edges, contrasts, intensity and facial features) impact on visual attention [57]. Regardless
of the different research themes being investigated in past research, two forms of graphical
presentations of eye-tracking data, heat map (or hotspot map) and gaze sequence (fixation
map or gaze plot) are common (Figure 3). Both of these graphical representations describe
the participants’ fixations and eye movements [14,15].

The heat map is a 2D density plot that represents where the participant “attentively
observes” [12]. Thus, it identifies which part (or element) attracts the participant’s attention.
The heat map illustrates both the points that that the participant looked at and the fixation
time [15]. For example, a more intense warm colour indicates a longer fixation time on
that location. That is, the dark “red” areas in Figure 3a are the most attractive (“hot”)
spots. The non-coloured areas are ones the participant ignores. As such, the heat map
captures the intensity of the participant’s attention and fixation activities. “As interest
in a stimulus increases, the eye tends to fixate more (i.e., increased fixation count) and
for longer durations” [25] (p.159). The second representation type, gaze sequence—also
sometimes called a “fixation map”, but “gaze sequence” better captures its content—
addresses the sequence of gaze points (fixations) that occur during the observation. The
gaze plot commonly illustrates a series of time-stamped, connected circles that represent
the way the eye moves across an image. As shown in Figure 3b, the diameter of each
circle can vary corresponding to the fixation time [15]. The number inside the circle
shows the sequence of fixations and lines represent the paths between gaze points. Due
to the limited human capacity of visual processing, attention is allocated one task at a
time [12,58]. Thus, these data-based graphics are used in the fields of architecture and
urban design to model and understand the allocation of visual attention over a visual
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stimulus. Obviously, an “engaging” façade can better attract public interest, which is a
factor that an architect or urban planner should take into account, depending on the type
of building being designed [26]. In this context, the heat map and gaze sequence can help
designers to examine the way their façade proposal will visually engage with people after
it is constructed. Furthermore, the visual attention simulation method can be applied
to examine and predict aesthetic experience in artworks such as painting and sculpture.
In terms of dynamism, artists can examine visual saliency within a painting [59], and
quantify how audiences will observe it [60]. Specifically, if an artwork has a clear purpose
in attracting the eyes of viewers, knowing the eye fixation data in the artwork would be
very useful for shaping its creation.

Figure 3. Heat map and gaze sequence example (Medieval facades on the market square of Bre-
men, Germany).
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3. Methodology

In this paper, both fractal dimensions and visual attention properties of façades
are examined using two software programs, ImageJ+FracLac [43,61] and VAS [26,28],
respectively. Using these programs, this paper presents four measures—D-density (Dd),
D-intensity (Di), heat map and gaze sequence—which capture the stimulus-sensation
relationship in a facade. To present Dd and Di, the first stage of this research (stimulus)
measures two types of fractal dimensions, (i) a box-counting method for binary façade
images and (ii) a differential box-counting method for grey scale images. The second
stage (sensation) simulates the pre-attentive vision over each façade image used in the first
stage, visualising its (iii) heat map and (iv) gaze sequence. Finally, this paper discusses the
computational results, focusing on the visual character of a façade and its impacts.

3.1. Two Computational Applications (ImageJ+FracLac and VAS)

ImageJ is an image analysis program, developed by Wayne Rasband at the National
Institutes of Health (NIH), which is largely used in the biological and physical sciences [61].
Karperien [43] developed FracLac, open-source software for fractal analysis using ImageJ’s
box counting algorithm. Even though there are other programs available for fractal analysis,
the combination of ImageJ+FracLac is ideal for the purposes of this paper because it can
calculate both Dd and Di.

To consistently determine the fractal dimension of each façade image, this research
uses Ostwald’s and Vaughan’s optimal architectural settings in Table 1 [20]. The scaling
coefficient indicates the ratio between one grid and the next. In the architectural application
of box counting method, a ratio of

√
2:1 (approximately, 1.4142:1) can be optimal [20]. In

addition, the final value of fractal dimension is the average of four D values determined by
four grid positions (four corners of the pixelated part (outline) of the image), because using
a different grid position can result in a different box count (Ns).

Table 1. Variables and settings for fractal analysis.

Variable Optimal Setting Variable Optimal Setting

Scaling coefficient 1.4142:1 Maximum grid size 0.25l
Grid position Four corners * Minimum grid size 10 pixels

* Four corners of the pixelated part (outline) of the image (bbox).

Visual attention software (VAS) is used to mimic human perception and reproduce
eye-tracking data without the use of real eye-tracking experiments [26]. Even though actual
eye-tracking can produce more meaningful results, VAS provides a rapid and effective
simulation of pre-attentive processing which is more useful during design. VAS models
early vision caused by four elements (edges, intensity of colour hue, contrast among
colour hues and similarity to a face). Thus, pre-attentive vision can be algorithmically
predicted [26,28]. In addition, the VAS algorithm is theoretically based on Salingaros’
mathematical model of design complexity [62] and cognitive Architecture [46]. Since the
software has already been verified in cognitive psychology and neuroscience [26], this
paper uses it to model pre-attentive processing in vision and to produce heat maps and
gaze sequences. In VAS, heat maps show the probability that each part of the image is seen
during the early vision, while gaze sequences visualise the four most likely gaze locations
in a sequential order.

3.2. Image Processing

Since VAS requires a minimum image size of 600 × 600 pixels [28], the most important
setting for both accurate VAS and fractal analysis is image size. In general, there is no
singular optimal size for analysing architectural drawings or images, although high-quality
images will typically produce more accurate D values [20,43,63]. For example, Mayrhofer-
Reinhartshuber and Ahammer [63] test seven image sizes from 128 × 128 (27 × 27) to
8192 × 8192 (213 × 213) pixels for fractal analysis. Their study on a new “pyramidal
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fractal dimension” reveals 1024 × 1024 (210 × 210) pixels or larger images lead to increased
accuracy of D values. Their comparison between multiple fractal dimension methods
including the differential box counting then adopts a resolution of 4096 × 4096 (212 × 212)
pixels. In this context, the present research tests two sizes of façade images (bbox sizes),
1024 × 1024 and 4096 × 4096.

Unlike the use of scanned images in the biological sciences, this study analyses line
drawings and rendered images produced using Building Information Modelling (BIM)
software (Autodesk Revit and ArchiCAD), which exports a design image as a PDF or
a JPG. For this purpose it is important that both line weight and image resolution are
“1 pt” and “175 dpi”, respectively, as suggested in [20]. However, the fractal analysis
software processes bitmap images, not vector graphics. That is, any vector graphic should
be converted to a bitmap image like a JPG. In addition, when comparing two or more
different designs all images require, consistent image size and therefore additional image
processing using a graphics editor like Adobe Photoshop is required. Furthermore, an
image for fractal analysis is basically regarded as a scanned image that is full of grey scale
pixelation. However, architectural drawings or rendered images can involve white space.
Since the software used in this paper automatically detects the bbox of an image, the optimal
white space (e.g., 40%–50% of image size) [20] is not necessary. Nonetheless, a marginal
white space is considered for this image processing to make various samples a consistent
image size. Given the maximum box counting size (0.25l), this paper considers white space
of a quarter of the length of the maximum bbox size in Figure 4. Collectively, the final image
(field) size developed in this paper is 1536 × 1536 or 6144 × 6144 pixels. Nevertheless, the
maximum box size is still 0.25l and the minimum box size is 10 pixels. All of these settings
ensure reliable, consistent image comparisons.

Figure 4. Image size processing example (Atelier Bow-Wow’s Juicy House).

In addition to these methodological settings or parameters, this paper compares
several different levels of representation and the impacts of two “entourage elements”
(which are scale features architects add to drawings). Five “levels” of façade design
representation used in the following early design stage tests are: level 1—a line drawing,
level 2—a façade design rendered with one grey scale for a main body of building only
(brightness: 80%), level 3—a façade design rendered with two grey scales for a main body
of building (brightness: 80%) and openings (brightness: 40%), level 4—a façade design
rendered with two grey scales and a tree, and level 5—a façade design rendered with two
grey scales, a tree and three people.

Entourage elements, typically people, cars and trees, are added to architectural draw-
ings to give a sense of human scale, and to assist people to imagine themselves within a
building or streetscape. In practice, there is an assumption that such elements can shape the
way people view and respond to an elevation or plan, which is why in most computational
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studies they are excluded because they are confounding factors [34]. However, in a study
which considers visual fixation and attention, their inclusion can be informative.

Figure 5 illustrates the five levels of representation of Frank Gehry’s Spiller House
and their binary images for the box counting method of fractal analysis. As shown in this
figure, the binary images of levels 1 and 2 are the same because light grey colours (over
50% of brightness) become white in a binary image.

Figure 5. The five levels of representations of Frank Gehry’s Spiller House.
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The following section presents the result of four measures—D-density (Dd), D-intensity
(Di), heat map and gaze sequence—of five levels of representation for two façade designs,
Spiller House and Juicy House. These facades (one Postmodernist and one Minimalist)
were chosen based on past research which identifies them as possessing, respectively,
complex and simple forms [34]. For example, Frank Gehry’s 1980 Spiller House (which is
sometimes regarded as an early deconstructivist work) appears as a series of boxes and
rectangles, with exposed stud frames creating multiple window mullions. Its scaffolding-
like character gives it a complex visual quality. In contrast, Atelier Bow-Wow’s 2004 Juicy
House is a relatively simple and compact design for a residence as shown in Figure 4. The
same size and position of a tree and people are applied for the fourth and fifth levels of
representation of the two designs.

The two different styles of architecture are selected only for the demonstration purpose
of the methodology in this paper. It is, however, significant that the two computational
approaches have been independently applied to characterise and compare architectural
styles [20,26]. That is, the combined method presented in this paper can be used to
holistically investigate how different architectural styles and their design elements work in
terms of both visual complexity and engagement.

4. Results
4.1. Fractal Dimension

Table 2 describes the D-density (Dd) values of the Spiller House and Juicy House
façades, along with the different levels of representation. The table also reports the Dd
values of the different image sizes (maximum bbox sizes). When using the box counting
method, the Dd values of levels 1 and 2 are theoretically the same due to the use of binary
images (see Figure 5). The minor differences between the two levels in Table 2 are caused
by the automated image conversion of the software (ImageJ+FracLac). Expectedly, the
fractal dimension increases with each additional component (renderings, a tree and people)
included in the representation. Thus, the last level develops the highest Dd value of each
image. Notably, the fractal dimensions of the Spiller House are higher than those of the
Juicy House, regardless of the levels of representation. This result confirms that the former
façade is a more complex than the latter. However, from the third level, the disparities
between the two are significantly reduced. Interestingly, the Dd values of the first levels of
representation (line drawing only) of the low-quality images (1024 × 1024) are higher than
the high-quality images (4096 × 4096). In contrast, the Dd values of the last three levels of
the small images are lower. This anomaly may be caused by the image conversion process
(from vector to bitmap) and can potentially lead to inconsistent results.

Table 2. D-density (Dd) values of two façades.

Façade Design Image Size
(bbox Size) Level 1 Level 2 Level 3 Level 4 Level 5

Spiller House 1024 × 1024 1.5366 1.5333 1.5489 1.7251 1.7431
4096 × 4096 1.5241 1.5245 1.6140 1.7678 1.7803

Juicy House 1024 × 1024 1.3076 1.3063 1.5255 1.6597 1.6859
4096 × 4096 1.2856 1.2856 1.6033 1.7266 1.7357

The final D values are the average of four D values determined by four grid positions
(four corners of the pixelated part of the image) as shown in Figure 6, because using a
different grid position can result in a different box count (Ns). For example, the D value of
the low-quality (1024 × 1024) image (level 1 of the Spiller House) is 1.5366, which is the
average of four slopes of the least square regression lines in Figure 6a:

D =
1.5495 + 1.5264 + 1.5372 + 1.5335

4
=

6.1466
4

= 1.5366.
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Figure 6. The four plots and trendlines of log (Ns) versus log(1/s) using four positions (two different
sizes of façade images—(a) 1024 × 1024 and (b) 4096 × 4096 bbox sizes—of the Spiller House).

The determination of fractal dimension of the small image uses 9 box sizes from 11
to 180 pixels, while the fractal analysis of the large image uses 13 box sizes from 11 to
723 pixels. In this way, the large (higher quality) images can produce more accurate D
values. In addition, the large image can depict details of each design more accurately than
the small image. Thus, the high-quality images (4096 × 4096) should be used for fractal
analysis of architectural drawings.

The D-intensity (Di) values of the two façades determined by the differential box
counting method are in Table 3. Like the Dd values in Table 2, the last level of representation
provides the highest Di value of each image. However, the third level develops the lowest
Di values. This is unexpected, because the fractal dimension commonly increases with
additional layers of information [20]. The differential box counting method is, however,
based on the difference between the minimum and maximum grey-levels of the image
surface. As all façade images used in this measurement include black line drawings, the
grey renderings (levels 2 and 3) give the images less contrast. Collectively, in terms of
visual complexity D-density (Dd) tends to represent the formal complexity of the image,
while D-intensity (Di) identifies its textural complexity.

Table 3. D-intensity (Di) values of two façades.

Façade Design Image Size
(bbox Size) Level 1 Level 2 Level 3 Level 4 Level 5

Spiller House 1024 × 1024 1.4331 1.4160 1.3865 1.5410 1.5524
4096 × 4096 1.4567 1.4465 1.4391 1.5478 1.5527

Juicy House 1024 × 1024 1.2462 1.2308 1.2090 1.4120 1.4306
4096 × 4096 1.2723 1.2683 1.2653 1.4271 1.4375

Both Dd and Di can be used to holistically examine visual stimuli at the early design
stage. In spite of this, there are some differences between the two fractal dimension
measures. Figure 7 shows the change in D-density (Dd) and D-intensity (Di) with increase
in level of representation. In the Dd measure of Figure 7a, rendering openings with the
dark grey (40% of brightness) in level 3 and inserting a tree in level 4 are responsible for the
biggest increases in the chart. In contrast, only the fourth level makes a notable increase in
the Di chart of Figure 7b. Because the tree itself has a complex fractal dimension—Dd is
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1.7818 (1024 × 1024) and 1.8184 (4096 × 4096), and Di is 1.5832 (1024 × 1024) and 1.6582
(4096 × 4096)—the result for level 4 makes sense.

Figure 7. Change in D-density (Dd) and D-intensity (Di) with increase in level of representation.

Unexpectedly, in the simple façade design for the Juicy House, the third level of
representation develops the biggest increase of Dd value. As a result, from the third level of
the Dd chart there is a little differentiation between the Spiller and Juicy designs, although
the D values of the former design are continuously higher than the latter design in this
chart. In contrast, the Di chart is clearly identifying the complexity differences between
the two designs, regardless of the level of representation. In addition, the Di values of the
high-quality images are also consistently higher than the low-quality images. Collectively,
the differential box counting method can be regarded as an appropriate fractal analysis
measure to examine visual complexity in various levels of representations in design process.

4.2. Visual Attention

The VAS results are depicted in two eye-fixation maps: heat map and gaze sequence.
The heat map illustrates the intensity of attention—green (medium), red (considerable)
and dark red (maximum)—while the gaze sequence map illustrates the first four fixation
spots the eye moves to, without conscious awareness [26]. Firstly, the heat maps in Figure 8
show the different hotspots of each level of representation of the Juicy House. Specifically,
the heat maps of the 1024 × 1024 bbox image in Figure 8a identify the different attractive
spots from the ones of the 4096 × 4096 bbox image in Figure 8b. For example, major
hotspots in the first two levels of the small image are limited to frames of openings and
handrails, while the eyes are more distracted by multiple points in the first two levels of
representation of the large image. This may be caused by the inaccurate representation
of the low-quality image. One explanation for this might be that the frames or handrails
are clearly represented as double lines in the high-quality image, but they are merged,
shaded, or obscured in the smaller image. As a result, the merged lines become tightly
packed pixels, which attracts the eyes. This black-white contrast generally draws visual
attention [57]. For this reason, the 1024 × 1024 bbox images might be inappropriate for the
visual attention simulation of line drawing images.

The heat maps and gaze sequences in Figure 8 clearly capture the sequential additions
of visual stimuli in the level of representation. Significantly, in the third level of representa-
tion, both different bbox images show similar heat maps and gaze sequences, because the
dark grey renderings are gaze attractors in the images. The third level also draws the eye to
the entrance, whereas in the fourth and fifth levels, the tree attracts and holds the eyes sig-
nificantly longer than the other areas. Biophilia is a visceral attraction [26,64] and although
it is only an image of a natural object, it adds a distinct level of visual interest to the facade.
In addition, the fourth level of representation develops the significant increases in both Dd
and Di charts. Thus, it is evident that these visual fixation patterns in Figure 8 are related to
the visual complexity changes in Figure 7 in terms of the stimulus-sensation relationship.
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Figure 8. Heat maps and gaze sequences with increase in the level of representation of Juicy House.

The heat maps and gaze sequences of the Spiller House in Figure 9 show similar
pre-attentive processing characteristics to the façade representations of the Juicy House
(Figure 8). Since the Spiller House façade is regarded as a more complex design, the eye-
fixation maps seem to present more attractive design elements than the ones of the Juicy
House. For example, curtain wall mullions and balusters (or handrails) at the centre of
façade and a stair enclosure are hot spots as well as one of four gaze locations in the first
three levels of representation. In both bbox images, the third level of representation clearly
captures major hotspots and their corresponding gaze sequences. It may also increase
visual interest inside the façade design and keep the eyes fixated on it. Considering that a
4096 × 4096 bbox image is more appropriate for the fractal analysis of façade design at the
early design stage, the third level of representation should be a best option to study both
visual stimulus and visual attention at the same time.
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Figure 9. Heat maps and gaze sequences with increase in the level of representation of the Spiller House.

5. Discussion

This paper has explored the potential application of two computational approaches to
design, and especially to the early design stages. Through a series of simulations using
five levels of façade representation, this paper has demonstrated how to measure the
visual character of a façade in terms of visual stimulus and its impact on early vision. The
four visual properties—D-density (Dd), D-intensity (Di), heat map and gaze sequence—of
a façade design can be used as quantitative and qualitative indicators for architectural
practice. Firstly, the D values can be applied to characterise and compare the visual
complexities of design variations of a façade. With the development of knowledge about
the D range [20], this approach can support the creation of a new designs consistent with
an architectural type or style. For example, as demonstrated in Stamps’ work [1], different
styles or design elements (geometry, patterns, textures and details) can be examined at
the conceptual design or schematic design stage. That is, like spatial and even structural
configurations, the impacts of façade design decisions can be modelled and predicted
during early stages, contributing to the development and refinement of the façade. To do
this, D calculations of a collection of existing designs are necessary.

The analytical programmes used in this research are all dependent on the mode of
representation of a façade. Again, multiple levels of representation should be consid-
ered before the calculations are undertaken. For example, a perspective rendering of a



Buildings 2021, 11, 163 17 of 21

façade may be useful for both D measurement and visual attention simulation. Moreover,
colour-rendered images are more suitable for VAS, because its algorithm considers two
colour contrasts (“red-green” and “blue-yellow”). Nonetheless, the combination of two
computational approaches using greyscale images is still useful for providing predictability
in architectural aesthetic experience and assessments.

Even though this paper has primarily addressed holistic ways of measuring architec-
tural character (visual complexity), it is acknowledged that other architectural properties
can also impact on our visual experience. For example, Nasar [18] suggests a probabilis-
tic model of aesthetic response, highlighting three types of formal attributes of building
exteriors: enclosure, complexity and order. The aesthetic variables are further extended
to include symbolic aesthetics (style) and schemas (typicality). Interaction between the
aesthetic variables of a building and an individual’s knowledge structures shapes the indi-
vidual’s experience and responses to a building design [18]. Order, moderate complexity
and popular styles can support pleasant responses, while high complexity, atypicality and
low order may produce excitement for the public. Thus, the fractal dimension, visual com-
plexity, presented in this paper can be regarded as just one of the formal design properties
that shape visual attention.

Interestingly, the VAS algorithm (not its empirical basis) used this paper is based
on Klinger’s and Salingaros’s model [62], which is inspired by Christopher Alexander’s
essay, “the nature of order” [65]. To predict a building’s emotional impact, their model
highlights architectural temperature (T), harmony (H), life (L) and complexity (C) [62].
Each variable is quantified by several indexes. For example, T is a loose analogy of
thermodynamic temperature, which is determined by design components such as intensity,
density, curvature and colour, which are graphically presented in VAS (see Figures 8 and 9).
The model then defines C as T (10− H) and L as TH. Finally, L corresponds to the emotional
perception of a building design. In this way, the thermodynamic analogy model clearly
presents one more important factor, harmony, which is not addressed in the present study.

Nonetheless, the methodological configurations suggested in this paper not only help
us to use the two applications (ImageJ+FracLac and VAS), but also contribute to the inves-
tigation into fractal dimension and visual attention in the fields of architectural and urban
design. First of all, this paper suggests starting with a high-resolution (4096 × 4096 bbox)
image for both fractal analysis and visual attention simulation at the early design stage. In
addition, a façade image rendered with two grey scales for a main body of building and
openings is potentially optimal for both applications. In contrast, a colour-rendering may
be more suitable for the visual attention simulation. An extended differential box counting
method can then be applied to determine the fractal dimension of colour images [66], but
there is no viable software available for this purpose. Thus, a colour-rendering for fractal
analysis will need to be converted into binary or greyscale images. Fractal analysis has
been regarded, for many years, as a repeatable and reliable method for determining visual
complexity in design [20], while the series of Dd and Di calculations in Tables 2 and 3
indicate the ways D is reliant on the quality and level of design representation. In addition,
many studies in the fields of architecture and urban design have addressed the traditional
box counting method, but this study reveals that the differential box counting method
can be a better option to compare the fractal dimensions of some types or styles of façade
designs regardless of the level of representation. Thus, a future study should examine the
differential box counting method for fractal analysis in more detail.

Traditionally, the scale of the data developed from eye-tracking experiments has
been too large to quantitatively correlate with the other formats of data. Nonetheless,
numeric gaze data can be useful to statistically identify the stimulus-sensation relationship.
For example, heat maps illustrate the intensity information of visual attention that is
represented by the colour gradient. This feature is very similar to the D-intensity (Di) value
determined by the differential box counting method. Thus, extracting numeric values from
the images can be valuable. That is, the eye-fixation images can also be investigated using
image analysis applications like ImageJ+Color Histogram. On the other hand, even if an
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eye-tracking experiment produces massive data, it might be more useful than the quick
and simple VAS outcome in terms of the quantitative comparison.

The tree in the fourth and fifth levels of representation significantly influences both
fractal dimension and visual attention, and arguably by these levels of representation
the software is no long measuring the façade, but the entourage elements. Biophilia and
natural patterns in architecture are generally a big determinant in early vision [26,64].
Natural structures (or “non-linear fractal images” [40]) in the image are also close to fractal
geometry, which can significantly affect the determination of its fractal dimension. In this
study, the addition of fractal geometry to a façade image results in the notable increases
of Dd and Di values, which may also be related to the eye-fixations in the image. This
interesting phenomenon should be further investigated in a future study with a sufficiently
large sample size.

6. Conclusions

As noted at the start of this paper, it is widely understood that façade design involves
important visual information which shapes our visual experience. Knowing this, the lack
of tools, methods or systems to support architects to examine early design options is an
obvious gap in disciplinary knowledge. To begin to fill this gap, this paper presents two
computational approaches to examine the stimulus-sensation relationship at the early
design stage: (i) measuring the visual characteristics of façade design (visual stimulus) and
(ii) capturing intrinsic visual engagement without conscious awareness (pre-attentive visual
attention). Whilst the focus of this paper has largely been on methodological exploration,
the simulation results contribute to understanding the visual consequence of façade design
and the ways people may respond to a façade.

Despite the various forms of façade analysis presented in this paper, it should also
be clear that the fractal dimension measures, D-density (Dd) and D-intensity (Di), are
quantitative, while the results of eye-tracking simulation are only graphically presented
by “heat map” and “gaze sequence”. The sample size is also limited, because this paper is
focused on a test of the computational approaches, not on developing larger arguments
about statistical validity. Thus, the actual stimulus-sensation relationship in a façade design
is neither fully, nor empirically identified in this paper. Acknowledging that the scope
and sample of this paper are limited, a future study will focus on a few potential design
variables as visual stimulus as well as the advanced analysis on eye-fixation data.

Architectural aesthetic character can have a strong impact on people’s pre-conscious
physiological and emotional reactions, shaping their behaviours. With the rapid integration
of design and construction processes, decision-making and problem solving at the early
design stage has become an increasingly prominent activity in this industry. With this in
mind, it is not surprising that there is a growing need for tools or methods that can help
architects predict the visual consequences of a façade design. This paper, examining visual
character and predicting its impacts, suggests some ways future designers might employ to
improve façade design. The computational approaches presented in this paper also enable
them to consider laypeople’s perceptions in a conceptual computer-aided architectural
design (CAAD) process. Furthermore, these approaches can be applied to characterise,
compare and assess architectural styles or types. Even though this research has analysed
the completed façades, the approaches can be used to examine and compare multiple
designs and variations during the design process before the final façade is determined.
Thus, this paper contributes to the disciplinary knowledge gap about visual reasoning
in design.

Author Contributions: Conceptualization, J.H.L. and M.J.O.; methodology, J.H.L. and M.J.O.; data
analysis, J.H.L. and M.J.O.; writing—original draft, J.H.L.; writing—review and text development,
M.J.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by UNSW Scientia Academics (research) program.

Institutional Review Board Statement: Not applicable.



Buildings 2021, 11, 163 19 of 21

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stamps, A.E., III. Physical determinants of preferences for residential facades. Environ. Behav. 1999, 31, 723–751. [CrossRef]
2. Stevens, S.S. On the psychophysical law. Psychol. Rev. 1957, 64, 153–181. [CrossRef]
3. Dehaene, S. The neural basis of the Weber–Fechner law: A logarithmic mental number line. Trends Cogn. Sci. 2003, 7, 145–147.

[CrossRef]
4. Hollander, J.B.; Anderson, E.C. The impact of urban façade quality on affective feelings. Archnet-IJAR Int. J. Archit. Res. 2020,

14, 219–232. [CrossRef]
5. Simpson, J.; Freeth, M.; Simpson, K.J.; Thwaites, K. Visual engagement with urban street edges: Insights using mobile eye-tracking.

J. Urban Int. Res. Placemaking Urban Sustain. 2019, 12, 259–278. [CrossRef]
6. Gehl, J.; Kaefer, L.J.; Reigstad, S. Close encounters with buildings. Urban Des. Int. 2006, 11, 29–47. [CrossRef]
7. Kusenbach, M. Street phenomenology: The go-along as ethnographic research tool. Ethnography 2003, 4, 455–485. [CrossRef]
8. Heffernan, E.; Heffernan, T.; Pan, W. The relationship between the quality of active frontages and public perceptions of public

spaces. Urban Des. Int. 2014, 19, 92–102. [CrossRef]
9. Lee, J.H.; Ostwald, M.J. Creative decision-making processes in parametric design. Buildings 2020, 10, 242. [CrossRef]
10. Olewnik, A.T.; Lewis, K. On validating engineering design decision support tools. Concurrent Eng. 2005, 13, 111–122. [CrossRef]
11. Carrasco, M. Visual attention: The past 25 years. Vision Res. 2011, 51, 1484–1525. [CrossRef]
12. De la Fuente Suárez, L.A. Subjective experience and visual attention to a historic building: A real-world eye-tracking study. Front.

Archit. Res. 2020, 9, 774–804. [CrossRef]
13. Hollander, J.B.; Sussman, A.; Purdy Levering, A.; Foster-Karim, C. Using eye-tracking to understand human responses to

traditional neighborhood designs. Plann. Pract. Res. 2020, 35, 485–509. [CrossRef]
14. Suurenbroek, F.; Spanjar, G. Exploring eye-tracking technology: Assessing how the design of densified built environments

can promote inhabitants’ well-being. In Urban Experience and Design: Contemporary Perspectives on Improving the Public Realm;
Hollander, J.B., Sussman, A., Eds.; Routledge: New York, NY, USA, 2021; pp. 91–103.
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