
buildings

Article

Condition Assessment Framework for Facility Management
Based on Fuzzy Sets Theory

Deniz Besiktepe 1,*, Mehmet E. Ozbek 2 and Rebecca A. Atadero 3

����������
�������

Citation: Besiktepe, D.; Ozbek, M.E.;

Atadero, R.A. Condition Assessment

Framework for Facility Management

Based on Fuzzy Sets Theory. Buildings

2021, 11, 156. https://doi.org/

10.3390/buildings11040156

Academic Editor: Ana Silva

Received: 5 March 2021

Accepted: 6 April 2021

Published: 10 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Operations and Management Department, University of Wisconsin-Stout, Menomonie, WI 54751, USA
2 Construction Management Department, Colorado State University, Fort Collins, CO 80523, USA;

mehmet.ozbek@colostate.edu
3 Civil and Environmental Engineering Department, Colorado State University, Fort Collins, CO 80523, USA;

rebecca.atadero@colostate.edu
* Correspondence: besikteped@uwstout.edu

Abstract: Condition information is essential to develop effective facility management (FM) strategies.
Visual inspections and walk-through surveys are common practices of condition assessment (CA),
generally resulting in qualitative and subjective outcomes such as “poor”, “good”, etc. Furthermore,
limited resources of the FM process demand that CA practices be efficient. Given these, the purpose
of this study is to develop a resource efficient quantitative CA framework that can be less subjective
in establishing a condition rating. The condition variables of the study—mean time between failures,
age-based obsolescence, facility condition index, occupant feedback, and preventive maintenance
cycle—are identified through different sources, such as a computerized maintenance management
system, expert opinions, occupants, and industry standards. These variables provide proxy measures
for determining the condition of equipment with the implementation example for heating, ventilating,
and air conditioning equipment. Fuzzy sets theory is utilized to obtain a quantitative condition
rating while minimizing subjectivity, as fuzzy sets theory deals with imprecise, uncertain, and
ambiguous judgments with membership relations. The proposed CA framework does not require
additional resources, and the obtained condition rating value supports decision-making for building
maintenance management and strategic planning in FM, with a comprehensive and less subjective
understanding of condition.

Keywords: facility management; building maintenance; facility condition assessment; fuzzy sets
theory; condition variables

1. Introduction and Purpose

Condition assessment (CA) is a fundamental practice of facility management (FM)
that provides information regarding the current condition of the built environment to
plan appropriate actions for preventing future deficiencies. ASTM International (formerly
known as American Society for Testing and Materials), defines CA as a walk-through sur-
vey of the built environment with the goal of identifying physical deficiencies, defects, and
maintenance needs of building systems, components, or equipment. The “condition” in
ASTM’s definition refers to determining the physical state of building systems, components,
or equipment utilizing the descriptions of excellent, good, fair, poor, satisfactory, unsat-
isfactory, etc. [1]. In this study, ASTM’s definition of “condition” is used as an accepted
definition for the physical state of a building system, component, or equipment.

Budgetary issues and resource constraints are major obstacles to implementing es-
sential FM practices, such as CA. As part of traditional CA practices, visual inspections
and walk-through surveys require additional resources, and the need for resource-efficient
processes in condition assessment is apparent. In addition, the subjective results of visual
inspection decrease the effective use of condition assessments for strategic planning and
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decision-making in FM [2]. To better utilize the outcome of CA in building maintenance
and FM, less subjective, data-driven, and quantitative processes are necessary.

In light of the need for an enhanced approach to CA, this study aims to develop a
quantitative CA framework that can be less subjective, and an alternative to visual inspec-
tions, to establish a condition rating value for building maintenance in FM. Furthermore,
this study provides an implementation example of the developed framework for heating,
ventilating, and air conditioning (HVAC) equipment using a brief case study. HVAC
equipment is targeted in the case study because it is a high-value asset of buildings, with
a high impact on building performance and energy efficiency in case of any defects [3].
The proposed condition rating value is derived using mean time between failures (MTBF),
age-based obsolescence, facility condition index (FCI), occupant feedback, and preventive
maintenance cycle variables. Fuzzy sets theory is utilized to obtain a quantitative condition
rating value that would be less subjective than that obtained through visual inspections,
as fuzzy sets theory deals with imprecise, uncertain, and ambiguous judgments with
membership relations.

The proposed framework benefits FM departments in the absence of, or as an alterna-
tive to, visual inspection and walk-through surveys. The proposed framework allows for a
holistic assessment and a comprehensive understanding of the condition by considering
multiple variables from different resources, such as a computerized maintenance manage-
ment system (CMMS), expert opinions, occupants, and industry standards. As such, the
condition rating obtained through this framework supports decision-making for building
maintenance management, as well as strategic planning.

The CA framework proposed in this study is illustrated through a brief case study
using the framework to determine the condition of chiller equipment in a higher education
institution in the state of Colorado. This case study demonstrates how fuzzy sets theory can
be applied with identified condition variables focused on the HVAC system. It is important
to note that different building equipment or systems may require the consideration of
additional variables. Furthermore, not all of the identified variables in the framework
may be applicable to other types of building equipment. Acknowledging this fact, addi-
tional condition variables based on equipment type might improve the accuracy of the
condition rating value obtained through the developed CA framework. Furthermore, the
developed framework can be used in the absence of, or to support, visual inspections or
walk-through surveys, and additional assessment might be required for identifying the
absolute condition.

2. Background

The background section of this study comprises the importance of condition informa-
tion, current CA studies in FM, and fuzzy sets theory, with its applications in CA practices.
Through the literature review, it was identified that the application of fuzzy concepts in
the context of CA in building maintenance and FM is limited. Therefore, studies in civil
and structural engineering CA are also presented in the background section to reveal the
benefits of fuzzy concepts in CA processes.

2.1. The Importance of Condition Information

The National Center for Education Statistics (NCES) highlights the significance of facil-
ities’ condition information as a primary source for effective maintenance management and
maintenance decision-making. Additionally, NCES indicates the need for having accurate
and timely condition information as an increasing demand in the resource-constrained en-
vironment of FM [4]. Condition information can be utilized as a benchmark for preventive
maintenance, maintenance prioritization, and performance measurement [5].

Instead of determining the condition at a particular moment in time, an over-time con-
dition analysis provides trends of deterioration and the information that helps to improve
building maintenance practices [6]. Moreover, over-time condition information has the
potential to assist budget projections, as well as resource allocation. The National Research
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Council’s Stewardship of Federal Facilities study [7] identified a lack of quantitative in-
formation to justify maintenance budgets, which is essential for presenting maintenance
funding requests. FM professionals must be able to effectively communicate and establish
maintenance needs with the executive level while determining the risks of possible failures.
Considering these demands, condition data and information are essential for developing
effective building maintenance and FM practices.

One of the most common practices of CA in FM is using the Facility Condition Index
(FCI) as an indicator of condition. The FCI considers solely the financial aspect of condition,
based on the formula that divides the value of deferred maintenance cost by the value
of total replacement cost on a scale between 0 and 100, where 0 is the best condition [8].
Even though FCI is applicable, starting from the equipment level to the overall building
level, Dejaco, Cecconi, and Maltese [9] identified the index as an “imperfect” measure
of the condition. The critical issue for the use of FCI is the need for a standardized
calculation for the deferred maintenance, or maintenance needs, of a system, component,
or equipment [10].

A comprehensive study [8] investigated various approaches in calculating FCI and
deferred maintenance, starting from its first version represented by Rush [11]. Despite FCI’s
wide acceptance in current FM practice, different approaches in calculations make its use
inconsistent. The extended versions of FCI, such as the ones including major rehabilitation
and replacement costs and costs of future maintenance recommendations, also decrease the
efficiency of FCI as an indicator of condition. Subsequently, the importance of condition
data and information remain obvious in FM, as well as the need for a holistic approach
in CA practices that considers multiple indicators of the existing condition of buildings,
systems, and equipment, in addition to the deferred maintenance cost or other financial
indicators.

2.2. Current CA Studies in FM

Teicholz and Edgar [12] referred to CA as a static tool that focuses on building defi-
ciencies rather than its capability to support strategic FM planning. Their study identified
the limitations in CA practices as follows: (i) absence of life cycle information, (ii) incon-
sistency in data collection and reporting, (iii) lack of integration with other FM data such
as maintenance history, and (iv) subjectivity of the assessments [12]. After almost two
decades, similar issues continue to be reported in CA practices, emphasizing the need for a
structured and less subjective method with quantitative results [13].

Recent studies in CA and FM have mostly utilized visual inspection and walk-through
surveys as part of their processes, which may or may not be feasible due to resource issues;
even if feasible, they could lead to subjectivity in the process. In addition, these studies
used various condition rating scales with linguistic definitions. The relevant studies and
their focus are presented in chronological order in Table 1.

Table 1. Recent Studies in CA applied in FM area.

Studies Focus

Brandt & Rasmussen, 2002 [14] Condition checklist for identifying the needs for retrofitting and functional obsolescence

Uzarski, Hicks, & Zahorak, 2002 [15]
The U.S. Army Engineering and Research Development Center, Construction Engineering Research

Laboratory (ERDC-CERL) condition assessment system BUILDER that uses condition indexes
within the range of failed to excellent (seven-point scale)

Grussing, Uzarski, & Marrano, 2006 [16] Condition prediction model using the Weibull probability distribution function and visual
inspection data

Abbott, McDuling, Parsons, & Schoeman,
2007 [17]

A five-point color-coded condition rating system for identifying the required maintenance needs
with budget allocation

Singh Ahluwalia, 2008 [18] Visual guidance for condition assessment with location-based inspection practice (four-point scale)

Salim & Zahari, 2011 [19] Development of a building condition rating on a scale from 1 (highest) to 5 (lowest) that considers
building type, building age, visual inspection, and the cost of repair

Eweda, Zayed, & Alkass, 2015 [20] Space-based condition assessment model using analytical network process (ANP), analytical
hierarchy process (AHP) techniques, and multi-attribute utility theory (MAUT) (six-point scale)
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Common characteristics of these studies include: (i) use of subjective and linguistic
condition rating and index values; (ii) lack of considering multiple variables for CA; (iii)
limited use of existing FM data, such as maintenance history, CMMS, or occupant feedback
in the CA process; (iv) dependence of CA on expert judgment and visual inspection; and (v)
lack of standardized and resource-efficient processes. In addition, limited efforts have been
made to integrate structured multicriteria techniques, such as AHP, revealing the research
gap of a standardized and quantitative process in CA and FM. Moreover, these studies
rely on visual inspections or walk-through surveys, which are the primary sources of
subjectivity in existing CA practices. Moreover, both in-house operations and out-sourcing
in CA require additional resource allocation, mainly for visual inspections or walk-through
surveys, which increases the need for resource-efficient practices. Consequently, the
limitations identified by Teicholz and Edgar [12] in CA practices still remain, and a holistic
and comprehensive approach is needed to address these existing issues.

2.3. Fuzzy Sets Theory and Its Applications in CA

Zadeh first introduced the fuzzy sets theory, which is the fundamental concept of
fuzzy logic, fuzzy control, fuzzy decision-making, fuzzy neural network, and other fuzzy
techniques, in 1965 [21]. Since then, there have been extensive applications of fuzzy sets
theory in several concepts and areas. Fuzzy sets theory seeks to resolve the ambiguity in
subjective judgments measured in linguistic terms. For vague or approximate judgments
such as “big”, “very high”, “average”, “too fast”, and “poor”, the nature of human language
is fuzzy, and the definition of these linguistic judgments varies in different contexts [22].
Fuzzy sets theory aids in translating uncertain linguistic variables into numerical and
quantitative representations, characterized by membership functions. The elements in a
fuzzy set may have partial membership in the set ranging between 0 and 1, where the
representation of 0 is no membership, and 1 is full membership.

Fuzzy techniques have been increasingly applied in construction management re-
search areas since the beginning of the 1990s. Chan et al. [22] conducted a comprehensive
literature review of 52 journal articles to overview the applications of fuzzy techniques in
construction management research. Their study revealed that the fuzzy research efforts
in construction management could be classified into three fields: (i) fuzzy sets theory, (ii)
fuzzy logic, and (iii) hybrid fuzzy applications. Furthermore, fuzzy research in construc-
tion management focuses on decision-making, performance, evaluation/assessment, and
modeling applications [22].

A recent study investigating fuzzy techniques in construction engineering and man-
agement supported the increasing trend of fuzzy applications in the field [23]. Fuzzy
hybrid techniques with multicriteria decision-making, optimization, machine learning, risk
analysis, and contingency determination were highlighted in the same study. Moreover,
the application of fuzzy techniques was determined “essential” in problems involving
expert judgment and subjective uncertainty [23].

The application of fuzzy sets theory and fuzzy concepts in the CA literature for
building or infrastructure elements has been mostly performed in civil and structural
engineering. Mitra, Jain, and Bhattacharjee [24] utilized fuzzy sets theory to transfer the
visual inspection data of corrosion-distressed reinforced concrete building elements into
a quantitative condition index. Their study highlighted that the obtained condition in-
dex can support the decision-making process about repair needs of the assessed concrete
elements [24]. Additional studies utilizing fuzzy concepts in CA were focused on the eval-
uation of pipe condition including structural damage and environmental risks [25], airport
pavement condition and maintenance-needs assessment [26], and condition assessment
of reinforced concrete bridges [27]. These studies indicate that the use of fuzzy concepts
benefits CA processes by dealing with subjectivity and decreasing time, costs, and efforts
in the process. Additionally, fuzzy concepts were used for the performance evaluation and
remaining life assessment of reinforced concrete bridge girders [28], and for modeling the
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service-life prediction of exterior natural stone claddings [29] that supports developing
effective maintenance strategies.

However, the use of fuzzy concepts in building maintenance and FM has not received
enough attention in the existing literature. Hadipriono [30] proposed using fuzzy sets
theory for performance evaluation of facilities during and after the construction period.
Another study proposed a fuzzy sets-based framework for facility life-cycle cost analysis
for handling the subjective uncertainty of expert opinion in the process [31]. Fuzzy concepts
were used in the selection of a performance-based procurement system for maintenance
and FM services, such as roofing contractors and janitorial services, with the backward
chaining method [32]. Though, none of these studies focused on utilizing fuzzy concepts
in the CA process of a building system or equipment.

Applications in civil and structural engineering areas show the promise of fuzzy sets
to aid in addressing the subjectivity in the CA process, as well as to develop resource-
effective CA practices. In addition, very few studies utilized fuzzy concepts in the context
of building maintenance and FM, revealing the gap of fuzzy applications in the FM area.

2.4. Motivation of the Study

Condition has several impacts on the performance and function of a building. More-
over, condition information has the potential to assist in failure detection and prevention,
and maintenance planning, which then supports effective resource allocation and occu-
pant comfort [15]. Without proper knowledge of the condition, it is impractical to sustain
effective building maintenance strategies.

Prior to this study, the researchers held several discussions with FM professionals
in the state of Colorado regarding common issues in the FM industry. These discussions
supported that, due to the lack of sufficient resources, visual inspections and walk-through
surveys were not performed regularly in their organizations, and neither were any other
systematic ways to assess the condition of their buildings, systems, and equipment used.
These FM professionals and their organizations were reliant mostly on expert judgment.
Another issue mentioned in these discussions was the subjectivity of CA processes and the
need for a less subjective and more quantitative condition rating value. Although FCI is a
common practice in FM, the FM professionals confirmed that FCI only provides condition
information from the financial perspective.

FM data, including maintenance history and maintenance backlog in CMMS, build-
ing automation, energy management, building performance, recommissioning data, and
occupant feedback, are often underutilized in developing effective FM strategies [33,34].
Subsequently, CMMS data comprising the corrective and preventive maintenance activities
in building maintenance have the potential to support the development of less subjective,
quantitative, and data-driven CA practices [35].

The challenges due to subjectivity and the lack of standardized CA practices in
building maintenance and FM need to be addressed with a systematic and resource-
efficient approach. Although condition assessment is critical in successfully implementing
effective building maintenance and FM strategies, in practice, there are many challenges.
Mostly, these come from dependence on visual inspections and walk-through surveys,
which may or may not be feasible due to resource issues. Additionally, even if they are
feasible, they lead to subjectivity in the process. Even with accurate expert opinions,
existing CA practices often involve subjectivity resulting in a qualitative outcome such as
“bad”, “poor”, “good”, etc.

Applying fuzzy sets theory in civil and structural engineering CA is promising to
overcome these challenges. In addition, the limited number of studies in the applications
of fuzzy concepts in CA and FM reveals the gap in consideration of fuzzy sets theory
and fuzzy concepts in CA practices. In light of these, the motivation of the proposed
CA framework is to utilize FM data, such as equipment failures in CMMS and occupant
feedback, as well as expert opinion and industry standards, which are mostly underutilized,
in the absence of, or alternative to, visual inspections or walk-through surveys. Moreover,
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this study aims to decrease subjectivity in the interpretation of condition, obtained with
the FM data, utilizing fuzzy sets theory.

3. Methodology

The CA framework proposed in this study was developed through the integration of
the following steps, based on the application of fuzzy sets theory: (1) identification of the
variables which may represent the condition of building equipment through a literature
review; (2) development of condition scales for each variable integrating expert opinion,
literature review, and industry standards; (3) determination of the membership functions
for condition variables based on condition scales and fuzzification; (4) defuzzification
and obtaining condition rating. The methodology of the condition assessment framework
is presented in Figure 1. The following subsections provide details of the proposed CA
framework.
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Figure 1. Methodology of the proposed CA framework based on fuzzy sets theory.

3.1. Identification of Condition Variables

The condition of buildings and their equipment depends on several factors, such as
age, climate, occupancy, material type, equipment type, and maintenance performance [36].
In addition, several studies revealed the factors that contribute to building equipment
deterioration, degradation, or failures, including service life, failure trends, and mainte-
nance strategy [37]. It is apparent that CA in building maintenance and FM must consider
multiple factors.

The condition variables identified in this study focused on HVAC equipment as a
representative example of the proposed framework. HVAC equipment is mostly considered
a high-value asset, and it has a significant impact on building performance [38]. Any
issue or failure in HVAC equipment may have severe impacts on the building and its
occupants [39]. In addition, a recent study in building maintenance revealed that HVAC
equipment receives a higher number of work orders in CMMS data [40].

The condition variables in this study identified for high-value HVAC equipment,
such as chillers, air handling units (AHU), and rooftop units (RTU), are: (i) Mean Time
Between Failures (MTBF), (ii) Age-based Obsolescence, (iii) Facility Condition Index (FCI),
(iv) Occupant Feedback, and (v) Preventive Maintenance Cycle. These variables are proxy
measures for determining the condition of the equipment. Each condition variable is
evaluated with a different technique, such as using CMMS data, expert opinion, occupant
feedback, and industry standard. The approach for processing raw data for each variable
is explained in detail in the following subsections, discussing the identified condition
variables with detailed explanations, as well as their computations and measures.

3.1.1. Mean Time between Failures (MTBF)

Building systems are complex and failures may occur at the equipment and compo-
nent level due to deterioration, lack of preventive maintenance, and improper operation
and maintenance practices. Although effective FM strategies aim to enhance the efficiency
of these systems, breakdowns are inevitable through the lifecycle of building systems. In
addition to several other definitions, Torell and Avelar [41] discussed the definition of
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“failure” within equipment and component levels. Equipment level failure was identi-
fied as the breakdown of essential parts that sustain the equipment’s required functions.
Additionally, component-level failure comprises the breakdown of components, which
decreases the required performance of equipment without the termination of its required
function [41]. Based on these definitions, the focus of this study is on equipment level
failures, the management of which is critical to reduce the downtime and functional loss of
equipment that affect the building performance and occupant comfort.

Equipment failures may result from several reasons, such as systematic, operational,
and random issues. These failures lead to other problems, affecting operations, building
performance, and occupant comfort. Tracking equipment failures and identifying any
trends in these failures are critical in maintenance management [42]. Preventive and
corrective maintenance data support the reliability, availability, and maintainability of the
building equipment and assists identification of failure trends [43]. Integrating failure
trend information in maintenance planning and prioritization is important in the success
of maintenance practices and performance [44].

Mean time between failures (MTBF), is the average period between breakdowns,
and an essential indicator for the reliability and availability of equipment, which leads
to determining its performance and condition. MTBF has broad applications in manufac-
turing, industrial and electronic equipment. In addition, the use of MTBF is important
in information technology (IT) and mission-critical businesses building equipment, such
as chillers, AHU, and RTU. The reliability and availability information are essential in
mission-critical businesses building equipment to ensure the business continuity.

CMMSs in building maintenance comprise a large amount of data regarding build-
ing equipment performance and failure [45]. CMMS is a tool that supports maintenance
functions of any organization based on information technology, including asset manage-
ment, maintenance planning and monitoring, work order and day-to-day activity tracking
features [46]. Manufacturing, production, and utility management areas have integrated
CMMS and its data in developing effective maintenance management strategies [47]. The
use of CMMS in building maintenance and FM has been limited, and the capabilities
of CMMS underutilized, especially in strategic planning and decision-making [48–51].
However, a recent study revealed that CMMS data in FM, despite its wide use in tracking
day-to-day activities, has the potential to identify failure trends that will assist developing
effective maintenance and FM strategies [52].

Moreover, Hale et al. [49] presented operations and maintenance data collection efforts
on 240 power generation, power distribution, and HVAC items in various facilities. Their
study was intended to prioritize maintenance procedures with calculated availability
values such as MTBF [49]. Another study focused on HVAC systems failure mode and
effects analysis, and proposed the use of MTBF as a “powerful metric” in their model [53].
Although CMMS software is capable of data storage regarding the average time between
breakdowns, the use of MTBF is not a common practice in building maintenance.

Considering these facts, this study focused on utilizing CMMS data in identifying
failure trends of building equipment, specifically, investigating the mean time between
failures (MTBF) concept. The study proposes the use of MTBF as one of the variables
representing the condition of the equipment in the developed CA framework. Specifically,
MTBF is calculated as the ratio of the equipment’s annual working hours to the number of
failures obtained from CMMS data presented in Equation (1).

MTBF =
Annual Hours of Operation

Annual #of Failures in CMMS
(1)

The annual hours of operation in Equation (1) differ according to the location, climatic
conditions, occupancy, facility type, and organization’s operational policy. For instance,
while a chiller works 24/7 in a manufacturing facility, a chiller in an office building might
work 17 h (5:00 am–10:00 pm) a day. The annual number of failures in the same equation
refers to the number of failures gathered from the work orders in the organization’s
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CMMS. However, not all work orders indicate failures that correspond to equipment
conditions. Work orders generated because of water flow issues, operator errors, or
building automation system (BAS) errors are external and indirect issues, and they are not
related to the equipment condition. Therefore, they are not considered as part of MTBF in
the proposed CA framework. It is essential to identify the failure source of work orders
to utilize them in the proposed condition assessment framework. In other words, while a
work order related to operator error would not be included in the “Annual # of Failures
(CMMS)” in Equation (1), a work order related to “pressure issues” or “loud noise” would
be considered. This is because pressure issues or loud noise most likely arise from any
issues related to the equipment parts, such as the motor and related to the equipment
condition. The “annual hours of operation” and the “annual number of work orders
(CMMS)” utilized in Equation (1) would be determined for related equipment individually
in each case.

3.1.2. Age-Based Obsolescence

Any part of the built environment is subject to deterioration, a natural part of its life-
cycle and the aging process. Even though deterioration is unavoidable, effective operation
and maintenance practices help minimize impacts that lead to decreased service life of the
built environment [54]. The effective age of equipment, which considers the impact of the
operation and maintenance practices on the deterioration and aging of the equipment, can
be established based on the operation and maintenance practices of any organization.

The total time between when building equipment is put into service until it deterio-
rates to the minimum acceptable level of performance is determined as its “service life” [37].
Several research efforts focused on the service life and life cycle assessment of buildings
and building systems, equipment, and components [55–57]. Multiple factors affect the
service life of building equipment, such as design and material selection, temperature
changes, corrosion, moisture and water, chemical leakage, and change in the occupancy of
the building [54]. The consideration of service life in the condition assessment process of
building systems, equipment, and components were highlighted in recent research studies,
where age and the impact of deterioration and degradation were the main indicators [15,58].
Predictions for the expected service life of any building equipment or component are chal-
lenging [16] and most building equipment can continue to perform the necessary functions
even after they complete their expected service life, with higher risks of failure, higher
maintenance costs, and lower performance [59]. Therefore, the condition information needs
to consider the period where equipment serves beyond its expected service life.

Age is an important indicator in condition assessment; however, depending on the
operational conditions, maintenance actions, and environmental factors, the condition
may differ for the same type of equipment at the same age. In addition, the impact of age
on deterioration cannot be considered to be linear in time. Therefore, there is no single
curve that can be adopted to identify the change in condition of an equipment solely based
on its age [60]. Considering these facts, the proposed condition assessment framework
in this study considers the impact of time on the condition of the equipment with “age-
based obsolescence”, identified in Grussing’s study [60], and the calculation is presented in
Equation (2).

Age− Based Obsolescence =
Age

Expected Service Life
(2)

Grussing’s study used the obsolescence index as a proxy indicator, solely based on
age, without any adjustment, such as inspection observations [60]. The obsolescence index,
based on a Weibull probability model used to project condition degradation over time,
is used in their study to consider functional loss deriving from age-based obsolescence.
In addition, expected service life in Equation (2) is derived from Grussing’s study, and it
indicates the period between the equipment’s install year and end of use. The age-based
obsolescence variable contributes to identifying the condition of equipment as a function
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of time. This is different from how the previously discussed variable MTBF contributes to
identifying the condition of equipment, as a function of failures.

The Preventive Maintenance Guidebook of Building Owners and Managers Associa-
tion (BOMA) International, which is produced by a globally recognized organization with
more than 16,500 members maintaining 9 billion square feet of commercial properties, has
determined the estimated service life (average useful life) of building systems [61]. The
estimated service life of ten HVAC system categories, based on “3500 operating hours, 1800
equivalent full load hours use/year and a normal amount of on-off cycles, with regular pre-
ventive maintenance properly performed at prescribed frequencies”, were identified in the
guidebook ([61], p. 76). The identified service lives for HVAC equipment in the guidebook
are accepted as baseline for age-based obsolescence calculation in this study. Individual
components and parts of HVAC equipment might have different service lives, and climatic
and environmental conditions might have an increased or decreased impact on the esti-
mated service life of these components. A focus on the condition at the component level is
not in the scope of this study. Therefore, the guidebook of BOMA provides a representative
value for service life in the illustrative case study. Utilized values need to be considered
individually for various cases concerning operating conditions and maintenance levels.

Although it is widely accepted that the older the equipment is, the worse its condi-
tion, the service life and condition of building equipment does not depend on age alone.
Notwithstanding this, the “age-based obsolescence” variable utilized in this study uses
the ratio of age and expected service life, which considers the equipment’s functionality
beyond its expected service life. As mentioned earlier, operation and maintenance practices
are important and might impact age-based obsolescence as well. The effects of operation
and maintenance practices on condition are considered separately as individual condition
variables in the proposed CA framework, as will be described in the subsequent sections.

3.1.3. Facility Condition Index (FCI)

Financial challenges in FM lead to a common practice in building maintenance, which
is postponing the repair needs of building equipment, systems, or components to align
with available funds [62]. This concept is called deferring the maintenance, or deferred
maintenance. Hamid, Alexander, and Baldry [63] investigated the cause and effects of
deferred maintenance on higher education buildings. In addition to financial constraints,
poor FM strategies that result in allocating current resources to emergencies was revealed
as another cause of deferred maintenance in their study [63].

As mentioned previously, the FM industry commonly uses FCI as a single variable to
identify the condition of buildings and their systems, but this value reflects the condition
only from a financial perspective and it is not feasible to use it as a single variable to identify
the condition. Additionally, various calculations of the FCI reveal a lack of consistency
in its value, as well as ineffective use in practice [13]. However, FCI is a valuable piece
of information in the condition assessment process as a proxy reflecting the existing
maintenance log. In addition, a well-defined approach in the calculation of FCI would
benefit the condition assessment by including deferred maintenance information in the
process. This study uses the FCI as one of the condition variables in the proposed CA
framework. The equation for FCI calculation in this study is presented in Equation (3).

FCI =
Deferred Corrective Maintenance Cost

Total Replacement Value
(3)

FCI in this study uses the corrective maintenance backlog in the deferred maintenance
cost estimation. In other words, the deferred maintenance cost definition in this study
includes only the deferred costs of corrective maintenance activities that are often related
to the repair and replace decisions in building maintenance activities. Moreover, corrective
maintenance activities reflect the current condition of building equipment, including
unplanned and day-to-day activities that are considered in the deferred maintenance
definition of this study. Hence, the deferred maintenance costs of preventive maintenance or
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any other maintenance activities, such as remodeling, renovation, and capital renewal, are
not included in the accepted deferred maintenance definition. This is because remodeling,
renovation, and capital renewal costs are not directly related to the current condition of the
building or component, and the focus of each variable in the study is mainly to identify the
current condition of building equipment based on different perspectives.

The total replacement value of the equipment subject to condition assessment is
utilized as the benchmark in computing the FCI. The total replacement value is identified
as the cost of replacing the equipment without considering any wear and tear due to its age
or operational requirements Since wear and tear due to the equipment age is considered in
the “age-based obsolescence” condition variable of this study, it is not considered in the total
replacement value to avoid double counting the effect of the same variable in the framework.
If the deferred maintenance cost of the equipment is closer to the total replacement value,
the condition rating of this equipment based on the deferred maintenance cost will be
worse. Depending on the type of equipment, total replacement value might include the
required construction and demolition costs to replace that equipment.

3.1.4. Occupant Feedback

Significant research has focused on identifying building performance by occupant
surveys through conducting post-occupancy evaluation (POE). Utilizing occupant feedback,
POE compares a building’s actual performance to the intended criteria, and measures over
the life cycle of the building [64]. Occupant feedback in this study refers to feedback on
maintenance issues and performance, which is different from POE.

Artan, Donmez, Tekce, and Ergen [65] integrated occupant feedback to use building
information modeling (BIM) in FM effectively. Their study showed that occupant feedback
includes the location of the maintenance problem, source of the problem, and the time
when the problem occurred. This information has the potential to assist in condition as-
sessment practices. Another study by Zagreus, Huizenga, Arens, and Lehrer [66] identifies
building occupants as “a rich source of information” in indoor environmental quality,
which is also supported by effective operation and maintenance strategies. Goins and
Moezzi [67] revealed the importance of utilizing occupant feedback in determining build-
ing performance. Their study analyzed occupant complaints related to thermal comfort,
air quality, lighting, acoustics, and cleanliness. It specifically mentioned that occupant
feedback gathered in their case studies was useful for operators in revealing maintenance
problems and necessary actions to address these problems [67].

Therefore, this study proposes the use of occupant feedback as one of the variables
representing the condition of equipment in the developed CA framework. At the beginning
of this study, the researchers conducted a pilot survey with occupants of a mixed-use
building (office and student center) in a higher education institution in the state of Colorado.
The purpose of the survey was to collect occupants’ annual maintenance feedback based
on common maintenance complaints, such as too hot, too cold, light bulb change, electrical
outlet failure, electricity cut off, equipment noise, and ceiling leak. Moreover, the occupants’
feedback regarding these issues was collected based on location or space in the building
and time of year measured on a monthly basis. Based on the frequency of the complaints
and location, it was possible to identify equipment issues serving that area. For instance,
higher frequency of “too hot” issues in May, June, July, August most likely refers to HVAC
equipment issues. The occupants took the survey once to provide their feedback for one
year with a monthly breakdown. However, the results showed that the occupants only
provided general feedback based on their complaints or maintenance issues for the year
they had been asked. They could not provide the timing of the maintenance issues with a
monthly breakdown.

In light of these facts, occupant feedback in this study is aimed to be collected by a short
survey focusing on occupants’ comfort level with the building performance experience.
Since the focus of the case study is on HVAC equipment, the multiple-choice thermal
comfort question was developed as follows:
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Q1. Please indicate your annual thermal comfort level considering space (room/office area/lab
etc.) where you spent most of your time in the building, on a scale of 1 to 5. (1 represents bad, 5
represents excellent).

1: Bad 2: Poor 3: Average 4: Good 5: Excellent

Following this, the second question is open-ended and requests the occupants’ re-
sponse for any feedback regarding maintenance performance or ongoing issues.

Q2. Please provide your feedback regarding your answer in question 1, with specific informa-
tion that you would like to provide for any thermal comfort-related maintenance issues.

The results of the first question are planned to be analyzed by quantifying the mean
of answers. Since the second question comprises qualitative responses, any possible trend
of similar feedback, such as cold issues during the winter season, frequent ceiling leak or
equipment noise, are aimed to be identified by content analysis and the frequency of the
feedback based on equipment type.

Conducting a survey for a single piece of equipment or a single maintenance issue
would not be feasible, with the opportunity to collect very limited information. Any effort
gathering occupant feedback would need to be more comprehensive, as utilized in previous
research efforts, including all types of maintenance issues [67]. While this is acknowledged,
it is worth mentioning that the main point of utilizing the “occupant feedback” variable
in this study is to emphasize its importance and value in the CA process. In addition, the
developed short survey in the illustration is a preliminary effort for collecting occupant
feedback, and the development of an occupant survey for gathering maintenance feedback
could be an additional future research study with a comprehensive approach on the data
analysis, such as analyzing and integrating qualitative and quantitative results.

3.1.5. Preventive Maintenance Cycle

Preventive maintenance is regularly performed maintenance to improve equipment
performance and prolong service life. For instance, a filter in an AHU is replaced every 3
or 6 months and replacement is considered part of preventive maintenance practices [68].
Several studies in the literature focus on the benefits of preventive maintenance on the
performance of equipment, effective scheduling of preventive maintenance, and fault
detection aspects of preventive maintenance [69,70]. Au-Yong, Ali, and Ahmad [3] studied
the impact of HVAC performance on occupant satisfaction. Their study revealed that
appropriate preventive maintenance strategies have a positive impact on occupant comfort
and satisfaction. It is beyond dispute that preventive maintenance is an essential piece of
effective maintenance practices. A robust preventive maintenance program will increase
the longevity of equipment, as well as buildings and their systems.

Given these, a “preventive maintenance cycle” is considered one of the variables rep-
resenting the condition of the equipment in the developed CA framework. The American
Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard
180-2018 [71]: “Standard practice for inspection and maintenance of commercial building
HVAC systems”, is utilized as a base standard for the preventive maintenance practices
in this study. ASHRAE is a global organization focusing on building systems, energy
efficiency, indoor air quality, and sustainability, with the mission of continuous education,
research, and industry standards development [72]. ASHRAE 180-2018 comprises the stan-
dard practice for inspection and maintenance of HVAC equipment in buildings to provide
consistency in maintenance practices and improve thermal comfort, energy efficiency, and
indoor air quality in buildings.

The total number of maintenance activities annually in the standard is accepted
as the benchmark value. The annual number of preventive maintenance work orders
compiled from the CMMS database was compared to the benchmark value. In other
words, the ratio of the equipment’s annual preventive maintenance work orders to the total
number of preventive maintenance activities recommended in ASHRAE Standard 180-2018
were found and utilized as the “Preventive Maintenance Cycle” condition variable in the
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proposed CA framework. The computation of the preventive maintenance cycle variable is
presented in Equation (4).

Preventive Maintenance Cycle =
Annual # of PM work orders

Annual # of PM activities in ASHRAE 180− 2018
(4)

Time is an important component in the maintenance process, and the effect of deferring
any maintenance activity may have an additional impact on the condition of equipment.
Deferring preventive maintenance activities may progressively accelerate the deteriora-
tion process. However, this study does not consider the progressive impact of missing
preventive maintenance activities on the condition of equipment due to its limited scope.

To summarize the preceding discussion, the variables that are included in the proposed
CA framework, their computations, and the origin of data with reference standards are
presented in Table 2.

Table 2. Variables Considered in the Developed CA Framework.

Condition Variables Computation Data Origin and Reference Standards

1-Mean Time Between
Failures (MTBF)

Annual Hours of Operation1a

Annual # of Failures in CMMS1b

1a-FM data
(based on building and equipment type, unit loading,
geographic location)
1b-CMMS data
(annual # of work orders per equipment)

2-Age-Based Obsolescence Age2a

Expected Service Life2b

2a-The age of equipment at the time of CA
2b-BOMA
(suggested expected service life for HVAC equipment)

3-Facility Condition Index
(FCI)

Deferred Corrective Maintenance Cost3a

Total Replacement Value3b

3a-FM data
(corrective maintenance backlog)
3b-FM data
(the cost of replacing the equipment without
considering any wear and tear)

4-Occupant Feedback The analysis of occupant satisfaction survey
data regarding building maintenance 4a

4a-Occupant satisfaction survey focusing on the
building maintenance performance

5-Preventive Maintenance
(PM) Cycle

Annual # of PM work orders 5a

Annual # of PM activities in ASHRAE 180−2018 5b

5a-CMMS data
(annual # of PM per equipment)
5b-ASHRAE 180-2018
(suggested annual # of PM in the standard)

3.2. Development of Condition Scales

The five-point condition rating scale: bad, poor, average, good, and excellent, is used
to identify equipment conditions in this study. The condition scale was then utilized in the
application of fuzzy sets theory to obtain corresponding values of equipment condition
in a numerical representation. The condition scale utilized in this study is presented in
Figure 2.

Even though the utilized scale is referred to as a five-point scale, the corresponding
values of each condition refer to a set of numbers represented in Figure 2. For example,
the “average” condition numerically comprises the set of numbers between two and four,
where the “good” condition comprises the set of numbers between three and five. The
set of numbers can be mathematically represented as follows, for “average” and “good”
condition examples:

f (x) = 2 < x < 4

where x represents “average” condition,

f (x) = 3 < x < 5
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where x represents “good” condition.
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Figure 2. Condition rating scale used in this study.

Based on these, any number between three and four would refer to both “average”
and “good” conditions; in other words, they overlap. Linguistically, any condition between
average and good can be expressed as “above average” or “pretty good”. However, the
definition of these expressions may change from person to person, including subjective
judgment with inconsistency. Subsequently, fuzzy sets theory aids in translating linguistic
definitions into numerical representations with their degree of memberships. As such, the
numerical representation of any condition has varying degrees of memberships in the fuzzy
sets. Based on the identified range of fuzzy sets for each condition, crisp values such as
one, two, three, four, and five best correspond to the related condition. For instance, three
best corresponds to “average” condition, where four best corresponds “good” condition.
Any value between three and four is identified with the degree of its membership (using a
range of 0 to 1), such as 0.25 membership of average condition and 0.75 membership of
good condition. Details of the membership concept of fuzzy sets theory are provided in
Section 3.3.

The values of condition variables best correspond to condition definitions are identi-
fied based on different data sources presented in Table 2. The condition variables identified
in this study include equipment specific and general variables. MTBF and preventive
maintenance cycle variables can be treated as equipment specific, where aged-based ob-
solescence, FCI, and occupant feedback are general variables, which is important in the
development of condition scales for individual variables. As mentioned earlier, based on
equipment and building type, condition variables might vary, as well as their best corre-
sponding values to condition definitions. This study focuses on using multiple variables for
the condition assessment considering failure trends, cost, deterioration, human perspective,
and maintenance practices, which can be represented with other variables for different
building equipment. While acknowledging that the best corresponding values of condition
variables to bad, poor, average, good, and excellent condition are determined with different
methods in this study.

Expert opinion is utilized in determining the relation of MTBF values with the condi-
tion definitions. In other words, expert opinion is needed to determine the actual MTBF
hours for each condition definition, as best corresponding values, such as: 1241 h best cor-
respond to average condition. The identified values of MTBF for the condition definitions
are equipment specific in the case study example, and, based on equipment type, working
hours and operating conditions, MTBF might vary.

For the age-based obsolescence condition variable, the condition scale is adapted from
a comprehensive study by Grussing [60], performed for the life cycle asset management
methodologies for buildings. The condition index and age/expected service life curve in
their study is presented in Figure 3. The curve fits the concept of considering functional
loss based on age and expected service life in the proposed CA framework. Their study
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developed the curve based on the Weibull probability distribution model for condition
degradation of building systems over time, identified in Grussing et al.’s study [16].
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In the computation of the curve, age and the expected service life of the building
components are considered as main indicators with respect to the condition index of 0
to 100; where 100 refers to no obsolescence and 0 refers to total deterioration [60]. While
adapting the curve, the condition index in the y axis is normalized to the five-point
condition scale utilized in this study. The 0–100 scale is normalized to a bad, poor, average,
good, and excellent condition scale, with 20 referring to “bad” condition and 100 referring
to “excellent” condition. Since this study’s condition scale is referred to a five-point scale,
the normalized values of Grussing’s condition index utilized in this study follow the same
five-point interval. Therefore, the value 20 in the Grussing’s condition index refers to bad
condition (numerical value 1) in the utilized condition scale of this study.

Although the FCI concept has inconsistencies within various computations of deferred
maintenance, this study considers deferred corrective maintenance activities in FCI compu-
tation. The FCI concept was first introduced by Rush in 1991 and, within three decades
since its first introduction, scales ranging from three levels to five levels have been used.
This study utilized the five-level condition scale of FCI, which is consistent with the logic
and structure of the proposed CA framework. The ratio of the deferred maintenance cost
to total replacement value ranges from 0 to 100 percent. The five-level condition scale of
FCI adapted in this study is: good (0–5%), fair (6–10%), poor (11–30%), critical (31–50%),
and divest (51–100%), based on the original formula and scale concept developed by Rush
in 1991. The lower the value of FCI reflects the better condition within different intervals in
the scale, considering the exponential impact of deferred maintenance.

The best corresponding values of occupant feedback variable to condition definitions
are determined based on the same five-point scale used in the survey questionnaire. As
mentioned previously, the presented survey questionnaire for gathering occupant feedback
in this study is a preliminary effort emphasizing the importance of utilizing occupant
feedback in the CA processes. Lastly, for the best corresponding values of preventive
maintenance cycle variable, ASHRAE standard 180-2018 is utilized as a benchmark for
the excellent condition. The total annual number of preventive maintenance activities
for the water-cooled chiller is obtained from the standard, and that number is assigned
as the best corresponding value for excellent condition. Since preventive maintenance
practices are critical for the longevity of the equipment and the full application of suggested
preventive maintenance activities, in ASHRAE, 180-2018 is determined as the establishing
value for excellent condition. The following values of preventive maintenance cycle
that best correspond to the good, average, poor, and bad conditions are determined by
the researcher with equal intervals. Table 3 represents the values best corresponding to
condition definitions for each variable in the proposed CA framework.
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Table 3. The values best corresponding to condition definitions for each variable.

Condition
Definition MTBF (Hours) Age—Based

Obsolescence [60] FCI

Occupant
Feedback (Mean
of the Occupant

Answers)

Preventive
Maintenance Cycle
(Based on ASHRAE

180—2018)

Bad 620.5 1.25 51—100% 1 6
Poor 886.4 1.00 31—50% 2 11

Average 1241 0.80 11—30% 3 17
Good 2068.3 0.60 6—10% 4 22

Excellent 6205 0.10 0—5% 5 28

3.3. Determination of Membership Functions and Fuzzification

Membership function, which is a fundamental concept of fuzzy sets theory, is the
numerical description of the relation of variables with the condition scale [73]. Membership
functions provide the numerical representation of a relationship, such as “0.8 grade or
degree of membership” instead of “very good” or “very poor”, that identifies the value of
belonging for that variable in the condition scale. The shape of the membership function
varies based on the interval and the upper and lower bound values for each variable. Even
though there are no certain rules or guidelines, nor a consensus for generating the appro-
priate membership function, it is recommended that the generation of the membership
functions should be flexible [74]. Ross [73] suggested six methods to assign membership
values or functions: (i) intuition, (ii) inference, (iii) rank ordering, (iv) neural networks,
(v) genetic algorithms, and (vi) inductive reasoning. In addition, there are two main ap-
proaches for developing the membership function in the literature: expert-driven and
data-driven [23–25,73,75].

Triangular and trapezoidal-shaped membership functions are the most commonly
used, based on their simplicity and flexibility, in several kinds of problems [23]. In addition,
Barua, Mudurnuri, and Kosheleva [76] mentioned the use of trapezoidal and triangular
membership functions were “practical” compared to other, different shapes. According
to Norwich and Turksen [77], membership values should be defined on intervals. In
their study, a method called “direct rating procedure” was identified, where the subject
is presented with a series of values and then the membership degree to rate each value is
determined [77].

In this study, single values that best correspond to the condition definitions (bad, poor,
average, good, and excellent) are determined in Table 3, and these values have the full
membership for the corresponding conditions. As such, for example, in the “occupant
feedback” condition variable, mean value three best corresponds to the “average condition”
of the equipment with full membership, and mean value four best corresponds to the
“good condition” with full membership. Occupant feedback values between three and
four are associated with the “degree of membership” or “the grade of membership”, with
corresponding numbers from 0 to 1, based on the membership function.

As a graphical representation of the membership function concept, Figure 4 shows a
triangular membership function for the occupant feedback variable with corresponding
intervals of condition scale: bad, poor, average, good, and excellent. In the figure, the y axis
represents the membership values, where the x axis represents the corresponding values of
the variable. Based on the membership function in Figure 4, a mean value of 3.7 occupant
feedback has 0.7 degree of membership to good condition and 0.3 degree of membership to
average condition, which can be linguistically expressed as “slightly below good condition”
or “considerably above average condition”.
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As these different linguistic phrases indicate, it is not possible to describe the relation
of the value 3.7 to the condition scale with a single linguistic expression; this is where fuzzy
sets theory is useful to express this relation mathematically. Moreover, since there is no
membership for the other conditions—bad, poor, excellent—the degree of membership of
value 3.7 to these conditions will be zero. In light of these, the mathematical representation
of the membership function as a discrete fuzzy set for the value of 3.7 is as follows in
Equation (5).

f (3.7) =
{

0.00
1

+
0.00

2
+

0.30
3

+
0.70

4
+

0.00
5

}
(5)

The numbers in the numerator represent the degree of membership, and the denomi-
nators represent the best corresponding value of the occupant feedback for each condition,
respectively. The division and addition notation in the membership function are only used
for illustration of the discrete fuzzy set, and they do not represent the binary operations of
addition and division. The calculation of the function, which is the defuzzification step in
fuzzy sets theory, is explained in Section 3.4.

Even though the best corresponding values regarding the condition definitions are
determined for membership functions in Table 3, the relation of the condition definitions,
with respect to crisp numbers, are still not deterministic and have uncertainty. In addition,
regarding Figure 4, each condition is identified by a set of triangular or trapezoidal areas,
as a result of the subjectivity in the linguistic expressions. For instance, the mean value
of occupant feedback three is determined as the best corresponding value for “average
condition”; however, any mean value of occupant feedback within two and four, under
the triangular area of the function, are still considered in “average condition” with partial
belonging. Given that, the process of expressing a single value with a corresponding scale
in the form of discrete fuzzy sets is identified as fuzzification in fuzzy sets theory. However,
while fuzzification is referred to as converting crisp values into fuzzy values [73], it is
clear that the relation of the crisp values to the condition is not deterministic and, in the
condition scale, crisp values have uncertainty arising from the linguistic and subjective
definitions of each identified condition.

The membership function used for the variables of this study is represented in Equa-
tion (6), and the triangular and trapezoidal shapes of the membership function are illus-
trated in Figures 5 and 6, respectively. The values a, b, and c in the equation represent the
boundaries of membership functions in fuzzy sets theory. The triangular and trapezoidal
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membership functions are selected in the fuzzy sets theory application of this study, which
is explained in detail in Section 3.4.

f (x|a, b, c) =


0 for b < x < a,

2(x−a)
(b−a) (c−a) for a ≤ x ≤ c,

2(b−x)
(b−a)(b−c) for c < x ≤ b.

(6)
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3.4. Defuzzification and Obtaining the Condition Rating

Defuzzification, which is the last step of implementing the fuzzy sets theory, produces
a quantifiable value by converting membership values into a single scalar quantity [73].
Several methods are described in the literature for defuzzifying fuzzy output. Ross [73]
and Hellendoorn and Thomas [78] focused on four methods: (1) max membership princi-
ple, (2) centroid method, (3) weighted average method, and (4) mean max membership.
While there is not a clear guideline in the literature for the selection of a defuzzification
method, Hellendoorn and Thomas [78] identified some criteria for defuzzification methods,
including: continuity, disambiguity, plausibility, computational complexity, and weight
counting. These criteria consider the impact of the method on the final output. For instance,
continuity is described as “a small change in the input of the fuzzy controller should
not result in a large change in output”, and computational complexity emphasizes the
importance of the practical applications of methods [78].

The weighted average method is the most frequently used defuzzification method
because of its computational efficiency and simplicity [73]. Based on these, the weighted
average method is the preferred defuzzification method in this study. The weighted average
method uses the mean, or the centroids, of the respective membership functions in its
computation. Including multiple variables with the goal of obtaining one single condition
variable, defuzzification is an important step in the fuzzy sets theory application in the
proposed CA framework that allows combining several fuzzy variables into one single
rating. For example, for obtaining one single number with the following two fuzzy discrete
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sets, the application of defuzzification with the weighted average method is presented
below in Equations (7)–(9).

f (3.7) =
{

0.00
1

+
0.00

2
+

0.30
3

+
0.70

4
+

0.00
5

}
(7)

f (24) =
{

0.00
1

+
0.00

2
+

0.00
3

+
0.67

4
+

0.33
5

}
(8)

Z∗ =
[(3 × (0.30)) + (4 × (0.70))] + [(4 × (0.67)) + (5 × (0.33))]

(0.30 + 0.70 + 0.67 + 0.33)
= 4.015 (9)

*defuzzified value.

4. Implementation of the Proposed CA Framework

The CMMS and FM data of the chiller equipment utilized in the case study were
collected from a higher education institution in the state of Colorado. The characteristics of
the building and the chiller are provided in Table 4.

Table 4. Characteristics of the case study building and the chiller.

Building Chiller

Building type Office and classroom Chiller type Water-cooled condenser (Vapor compression, Screw)
Building age 38 years Chiller age 8 years
Building area 156.261 gross square feet Chiller capacity 200 tons

The CMMS data comprise the corrective and preventive work orders of the chiller.
Corrective maintenance work orders related to the chiller’s condition, such as pressure
issues or loud noises, are included in the MTBF calculation of the case study. In addition,
preventive maintenance work orders were utilized in the computation of the “preventive
maintenance cycle” variable. Deferred maintenance cost, the total replacement value of the
chiller, and the chiller’s present age were obtained from the higher education institution’s
FM department. As mentioned earlier, occupant feedback was intended to be collected
with a survey instrument; however, during this study’s data collection process, most of the
buildings in the state of Colorado, much like elsewhere across the globe, were not occupied
due to the COVID-19 pandemic precautions and safety protocols. Therefore, an assumed
value was utilized for the occupant feedback variable in this case study just to be able to
show how the developed framework could be implemented.

The following subsections explain the development of the membership functions,
fuzzification in discrete fuzzy sets, and defuzzification with the collected data in a brief
case study. Development of the membership functions with the data is explained for each
condition variable individually. The final step, defuzzification, illustrates how to obtain the
condition rating as an output of the proposed CA framework.

4.1. Development of Membership Functions
4.1.1. Membership Function for the Mean Time between Failures (MTBF) Variable

The membership function of the MTBF is developed based on expert opinion. The
number of failures corresponding to each condition level was determined by the higher
education institution’s facility manager. The researchers acknowledge that the feedback of
multiple experts would increase the accuracy of the corresponding membership functions;
however, in this case study, the feedback of one expert was utilized for illustration purposes.

The chiller’s working hours for the calendar year are reported as 17 h per day (5:00
am–10:00 pm) from the FM department; and consequently, the chiller’s annual working
hours are 6205 h (17 h × 365 days = 6205 h annually). As shown in Equation (1), the
annual working hours as a ratio to the annual number of failures is the MTBF condition
variable in this study. Even though the expert opinion provides the best corresponding
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annual number of failures per each condition, the boundaries in the linguistic definitions
are uncertain due to these definitions’ subjectivity. The identified annual number of failures
for each condition are utilized in the MTBF calculation in Equation (1) for obtaining the best
corresponding values of MTBF for each condition definition. The membership functions
regarding bad, poor, average, good, and excellent conditions of MTBF are presented in
Figure 7. Since the best corresponding values of the MTBF in condition descriptions are
identified with a single value in Table 3, the shape of the membership function is triangular,
as that single value refers to the peak value in the function with full membership. Even
though each function’s shape is triangular, each triangle’s interval is not the same or equally
divided.
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4.1.2. Membership Function for the Age-Based Obsolescence Variable

Grussing [60] emphasized consideration of the service life in the life cycle asset
management for buildings. Because of the complexity of building systems and equipment,
a building has increased maintenance needs as its age increases. In addition, several factors,
such as climatic conditions, operation and maintenance practices, and occupancy, can
contribute to the uncertainty in these needs, which substantially impacts the lifecycle of
buildings, systems, and equipment [60].

The estimated service life for the water-cooled chiller is determined as 20 years in the
BOMA [61] reference. When the chiller’s remaining service life is 20 years, the present age
is 0, and the corresponding condition is “excellent”. Based on the adapted curve, when the
equipment reaches the estimated service life of 20 years, its condition is considered as poor.
As mentioned earlier, most equipment might serve more than its estimated life depending
on operations and maintenance practices. In light of these, the membership function of the
age-based obsolescence variable is presented in Figure 8. Similar to the MTBF membership
functions, the values of the age-based obsolescence variable best corresponding to the
condition descriptions are identified with a single value in Table 3. The shape of the
membership function is triangular, each triangle’s interval is not the same or equally
divided.
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4.1.3. Membership Function for the Facility Condition Index (FCI) Variable

The definition of the deferred maintenance cost in this study considers the costs
of deferred corrective maintenance activities regarding equipment condition. The FM
department where the data were collected reported that the estimated total replacement
value for the water-cooled chiller is USD 285,000. When the chiller’s deferred maintenance
cost is USD 285,000, which is the total replacement value, the corresponding condition is
“bad”. Conversely, if the deferred maintenance cost is USD 0, the corresponding condition
is “excellent”. The higher the deferred maintenance cost, the poorer the condition in the
scale. In addition, Facilities Maintenance & Repair Costs with RSMeans Data [79] can be
used to identify the total replacement value of the equipment subject to CA.

The membership function of the FCI condition variable is presented in Figure 9. It is
important to note that the corresponding percentages of the ratio of deferred maintenance
cost to total replacement value in condition definitions refer to an interval or a set of
values; therefore, the shape of the membership function is trapezoidal. In other words, the
peak values in the membership function with the full membership fall into the interval of
percentages, such as 0–5% or 6–10%.
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4.1.4. Membership Function for the Occupant Feedback Variable

As discussed earlier, the occupant feedback condition variable is intended to be iden-
tified through a short occupant survey. Even though the survey could not be performed
in the context of this study, the five-point Likert scale used in the survey directly corre-
sponds to values of condition scale for “occupant feedback”. For simplicity and consistency
purposes, the membership functions for the “occupant feedback” condition variable are
developed as triangular functions, as presented in Figure 10.
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4.1.5. Membership Function for the Preventive Maintenance Cycle Variable

Membership functions for the preventive maintenance variable are developed based
on the maintenance cycles identified in the ASHRAE standard 180-2018. When the number
of preventive maintenance activities performed for the chiller is 28 annually, which is
the total value obtained from the standard, the corresponding condition is “excellent”.
For simplicity and practicality, the corresponding condition values are assumed within
equal intervals, as presented in Figure 11. It is important to acknowledge that the input
of expert opinions for the preventive maintenance cycle is important, and the preventive
maintenance numbers obtained from the standard might be discussed with the maintenance
supervisor or facility manager of the organization.
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4.2. Fuzzification in Discrete Fuzzy Sets

The identified condition variables of the proposed framework were computed based
on the collected data and computations detailed in the methodology section.

a Mean Time Between Failure (MTBF) Annual working hours = 17 h/day × 365 days
= 6205 h The annual number of failures in CMMS data = 4 MTBF = 6205/4 = 1551 h
(linguistic condition, “above average”)

b Age-based obsolescence Estimated service life = 20 years Present age = 8 years Age-
based obsolescence = 8/20 = 0.4 (linguistic condition, “very good”)

c Facility Condition Index (FCI) Deferred maintenance cost = $4500 Total replacement
value = $285,000 FCI = (4500/285,000) × 100 = 1.6% (linguistic condition, “excellent”)

d Occupant Feedback The assumed mean of the occupant feedback is 4.2 on the Likert
scale. (linguistic condition, “above good”)

e Preventive Maintenance Cycle

The annual number of preventive maintenance activities conducted = 24
ASHRAE 180-2018 annual number of preventive maintenance activities recommended

= 28
Preventive maintenance cycle = 24 (linguistic condition, “very good”)
The chiller’s measured condition for each variable and the discrete fuzzy sets repre-

sentation based on the membership functions of each condition variable are presented in
Table 5.

Table 5. Chiller condition data and fuzzy discrete sets.

Condition Variables Condition Data Fuzzy Discrete Sets

MTBF 1551 h f (1551) =
{

0.00
1 + 0.00

2 + 0.60
3 + 0.40

4 + 0.00
5

}
Age-based obsolescence 0.4 f (0.4) =

{
0.00

1 + 0.00
2 + 0.00

3 + 0.60
4 + 0.40

5

}
FCI 1.6% f (1.6) =

{
0.00

1 + 0.00
2 + 0.00

3 + 0.00
4 + 1.00

5

}
Occupant feedback 4.2 f (4.2) =

{
0.00

1 + 0.00
2 + 0.00

3 + 0.80
4 + 0.20

5

}
Preventive maintenance cycle 24 f (24) =

{
0.00

1 + 0.00
2 + 0.00

3 + 0.67
4 + 0.33

5

}

4.3. Defuzzification and Obtaining the Condition Rating

Based on the membership functions, fuzzy discrete set representations of the five vari-
ables, and the weighted average defuzzification method, the chiller’s obtained condition
rating value is 4.27 on the 1 to 5 scale, with 1 representing bad and 5 representing excellent.
The weighted average method uses the degree of membership values as the weight of each
condition variable.

CR =
[3× (0.6) + 4× (0.4)] + [4× (0.6) + 5× (0.4)] + [5× (1.0)] + [4× (0.8) + 5× (0.2)] + [(4× (0.67) + 5× (0.33)]

0.6 + 0.4 + 0.4 + 0.6 + 1.0 + 0.8 + 0.2 + 0.67 + 0.33
(10)

CR = 4.27
Considering the data for the brief case study, corresponding linguistic conditions for

the condition variables are presented in Table 6.
It is clear that, without the mathematical representation of fuzzy sets theory, it is

not possible to obtain one single definition expressing the overall condition of the chiller.
Utilizing fuzzy sets theory, the obtained condition value of 4.27 can be expressed as “slightly
above good” if there is a need to use any linguistic definitions.
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Table 6. Linguistic conditions for condition variables.

Condition Variables Linguistic Condition

Mean time between failures (MTBF) Above average
Age-based obsolescence Very good

Facility Condition Index (FCI) Excellent
Occupant feedback Above good

Preventive maintenance cycle Very good

5. Discussion, Conclusions, and Future Research

The effectiveness of decisions for building maintenance activities often relies on
condition information, which involves subjectivity and uncertainty as part of the visual
inspection or walk-through survey processes. Common linguistic definitions of CA, namely
bad, poor, average, good, and excellent, are subject to human judgment, and the association
of these definitions to the condition may vary from one expert to another [15,80]. In
addition, the use of these definitions in CA may lead to misinterpretation.

This study developed a less subjective and more quantitative CA framework, as an
alternative to visual inspections, to obtain a condition rating value for building maintenance
in FM. Furthermore, this study illustrated an example implementation of the framework
to heating, ventilating, and air conditioning (HVAC) equipment using a brief case study.
Mean time between failures (MTBF), age-based obsolescence, facility condition index (FCI),
occupant feedback, and preventive maintenance cycles were identified as variables that can
be used to obtain the proposed condition rating value. Along with these variables, fuzzy
sets theory, which deals with imprecise, uncertain, and ambiguous judgments with the
membership relations, was utilized to obtain a less subjective and quantitative condition
rating value.

The values utilized in the brief case study are representative measures for imple-
menting fuzzy sets theory. In identifying the membership functions, several individual
techniques were utilized, such as using CMMS data, expert opinion, occupant feedback,
and industry standards. The effective use of CMMS and FM data is promising in develop-
ing resource-efficient building maintenance and FM strategies. This study is an important
step in utilizing CMMS data for CA practices. It also reveals the possibility of using CMMS
data in FM, in addition to tracking daily activities or work orders.

This study contributes to the body of knowledge in the FM domain by introducing a
framework that uses multiple variables in the CA process (as opposed to a single source
of information, such as visual inspections) and utilizes fuzzy sets theory in the context
of building maintenance and FM. It is worth mentioning that every variable identified
in this study might be the topic of an individual future research study to further refine
the variables use. For instance, the development of the occupant feedback survey for
maintenance issues might be a more comprehensive effort, focusing on several building
systems. Moreover, other variables, such as MTBF and preventive maintenance cycle,
might be studied in the context of different building equipment and building types. For
example, the condition variables or condition rating scale for building equipment in a
healthcare facility might be different from similar equipment in an office building.

The proposed CA framework does not require additional resources or funding, which
is a significant constraint in existing FM practices; the framework merely requires applying
the principles of fuzzy sets theory to readily available data to obtain a condition rating. The
obtained condition rating may potentially benefit FM departments by helping to prioritize
maintenance activities, justify maintenance budget requests, and support decision-making
processes. In addition, CA framework developed in this study is a promising effort to
introduce enhanced processes in FM practices, which will likely lead to the adoption
of advanced systematic applications. The issue of subjectivity in visual inspection and
walk-through surveys is addressed by using multiple variables and by applying fuzzy sets
theory. Moreover, the integration of CMMS data, expert opinion, occupant feedback, and
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industry standards provides a systematic approach in the CA process, which also increases
the efficiency and reliability of the process outcome.

Limitations of the study include constraints in comprehensive data collection that
result from potential inconsistencies in CMMS data, a lack of expert opinion for the
preventive maintenance cycle values obtained from standards, and a lack of real time
data collection for occupant feedback due to COVID-19 precautions and safety protocols.

Further studies can be extended to include other building equipment in the CA pro-
cess. It is worth mentioning that different building equipment or systems may require
considering additional factors, as the identified factors for HVAC equipment might not
be applicable for other equipment or systems. For example, while the mean time between
failures (MTBF) is a variable that is relevant to the condition assessment of HVAC equip-
ment, assessing a building façade may need a different variable that considers climate or
environmental factors. Moreover, future research efforts can focus on identifying addi-
tional condition variables for other building equipment or systems. The reliability of the
obtained condition rating value in the proposed CA framework can be further investigated
by comparing it to the outcome of traditional CA methods, such as visual inspection or
expert opinion. Future studies can also investigate if and how the condition rating obtained
through the proposed framework can be used in conjunction with, and thus supplement,
condition ratings obtained through visual inspections and walk-through surveys.

In addition, future studies can focus on the development of the membership functions
for the proposed CA framework, including several experts. The outcome of the different
defuzzification methods can be investigated in applications of fuzzy sets theory. This study
is a promising effort for future applications of fuzzy concepts in the CA, building mainte-
nance and FM areas, providing a systematic and mathematical approach to linguistically
ambiguous results.
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