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Abstract: In this paper, a building control algorithm is proposed to reduce the electricity consumption
of a building with a variable refrigerant flow (VRF) system. The algorithm uses sequence-to-sequence
long short-term memory (seq2seq LSTM) to set target electricity consumption, and uses a VRF air
conditioner system to reduce electricity consumption. After setting target electricity consumption, the
algorithm is applied as a method of updating target electricity consumption. In addition, we propose
two methods to increase the performance of the seq2seq LSTM model. First, among the feature
selection methods, random forest is used to select, among the numerous features of the data, only
those features that are most relevant to the predicted value. Second, we use Bayesian optimization,
which selects the optimal hyperparameter that shows the best model performance. In order to control
the air conditioners, the priority of air conditioners is designated, the method of prioritization being
the analytical hierarchy process (AHP). In this study, comparison of the performance of seq2seq
LSTM model with and without Bayesian optimization proved that the use of Bayesian optimization
achieved good performance. Simulation and demonstration experiments using the algorithm were
also conducted, and showed that building electricity consumption decreased in a similar manner to
the reduction rate by means of the algorithm.

Keywords: building control algorithm; variable refrigerant flow system; sequence-to-sequence long
short-term memory; random forest; Bayesian optimization

1. Introduction

Worldwide energy consumption in the building sector accounts for 20-30% of major
energy consumption. In particular, heating, ventilation, and air conditioning (HVAC)
systems for comfort and lighting systems to maintain a bright interior account for about
50% of the total electricity consumption of a building [1]. Additionally, more than 80%
of the GHG (Greenhouse gas) emissions take place mainly from electricity consumption
for HVAC, water heating, lighting, and entertainment during the building’s operation
phase [2]. This means that reducing buildings” electricity consumption is important. Al-
though existing buildings have partially implemented automatic control systems to reduce
electricity consumption, and technology that, after collecting data on the operation and
electricity consumption of the system in the building, applies various rule-based controls
based on IoT devices, practical energy optimization control is not systematic. Therefore, in
order to systematically proceed with energy optimization control, it is necessary to predict
building energy demand, analyze the condition of the building, and judge the situation.

The building control algorithm is devised to optimize building energy based on the
intelligent load control (ILC) algorithm [3]. While the ILC algorithm aims to reduce peak
demand, the building control algorithm aims to reduce the electricity consumption of the
entire building. Additionally, target electricity consumption to reduce peak demand is
selected one value, but target electricity consumption to reduce the entire building energy is
selected as various values in relation to time. Although the user may arbitrarily determine
the target electricity consumption, the user cannot predict the electricity consumption
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of the entire building in the future, and there is a limit to arbitrarily setting the target
electricity consumption every day. Thus, this study predicts and sets the target electric-
ity consumption in the future. The prediction method uses sequence-to-sequence long
short-term memory (seq2seq LSTM), one of the machine learning methods. Additionally, if
the electricity consumption in the previous time zone did not meet the target electricity
consumption because the aim is to reduce the electricity consumption of the entire building,
the actual total electricity consumption may not meet the total target electricity consump-
tion per day or week, and then the target electricity consumption is redistributed to a new
target electricity consumption in the next time zone.

The building HVAC system used to validate the building control algorithm is the
variable refrigerant flow system. The variable refrigerant flow (VRF) system [4], which
was introduced in Japan, is a system that can precisely control the refrigerant flow rate
through an expansion valve or control valve through an inverter compressor and control
technology. The VRF system connects several types of air conditioners to one outdoor
unit, and can operate the air conditioners individually, according to the characteristics of
zone use. When the outside temperature in winter is low, it uses inverter technology to
increase the compressor speed, so normal heating without a separate auxiliary heater is
feasible. This has the advantage of securing performance. Recently, many VRF system-
related studies using machine learning have been conducted with the scheme of fault
detection and diagnosis [5-7]. Other studies have proposed algorithms to predict the
cooling energy of the VRF system using an artificial neural network (ANN), one of the
machine learning methods, and developed the algorithms to determine the optimal set
point of the air conditioner for energy efficiency using the cooling energy predicted by the
simulation [8], evaluate the energy savings of the VRF system using EnergyPlus, which is
a whole building energy modeling software [9], and develop a new VRF model for heat
pump mode operation using EnergyPlus to improve VRF system performance [10].

Deep learning is one of the technologies that are frequently used in research to predict
the amount of electricity consumed by buildings. In particular, recurrent neural networks
(RNN) and long short-term memory (LSTM) of deep learning are used to predict building
electricity consumption. LSTM, proposed by Hochreiter et al. [11], is a modified structure in
RNN that is used in various fields, such as language and voice recognition. Kong et al. [12]
proposed the LSTM RNN-based load forecasting framework for individual residential
households, and LSTM learning of long-term temporal connections has been proven.
Marino et al. [13] presented an energy load forecasting methodology based on LSTM. By
comparing Standard LSTM and LSTM-based sequence-to-sequence, we proved that LSTM-
based sequence-to-sequence has better performance than standard LSTM. Shi et al. [14]
proposed PDRNN (Predictive model based on the diagonal recurrent neural networks) to
address the overfitting challenges brought by the naive deep network. The novel PDRNN
was proven to outperform the classical deep RNN. Agrawal et al. [15] proposed LSTM for
long-term load forecasting with hourly resolution. The deep learning model used in this
study is LSTM-based sequence-to-sequence. The performance of the deep learning model
varies greatly depending on the hyperparameter, and there is no set optimal value. There-
fore, it is essential to optimize the hyperparameters. Bayesian optimization [16], which
was used in this study for hyperparameter optimization, is a method that automatically
searches for hyperparameters while reflecting prior knowledge, and selects the optimal
hyperparameter.

If there are many features in data, there is a risk of overfitting the deep learning model,
while if there are few features, there is a risk of being oversimplified, and a risk that the
model will not learn in an ideal direction. Feature selection, one of the ways to solve this
problem, is a method of improving the performance of the model by filtering out relevant
or redundant features, and generating a concise subset. Feature selection has the advantage
of reducing the learning time, because it reduces the number of features, learning more
robustly by reducing the variance of the model, and simplifying the model and making
the results easier to interpret. Geoffrey et al. [17] compared the accuracy in the prediction
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of electricity energy consumption among feature selection methods (regression analysis
and decision trees) and neural networks, and proved that the decision tree model is the
most accurate model. Cheng et al. [18] proved that the recursive feature elimination (RFE)
process, one of the feature selection methods, can significantly reduce the computation
load while enhancing the model performance.

This paper is structured as follows. Section 2 presents the prediction model of the
seq2seq LSTM model, hyperparameter optimization, feature selection for the deep learning
model performance, and target value setting using the predicted value, and describes the
overall building control algorithm used in this study. Section 3 gives an overview of the
implementation of the algorithm. Finally, Section 4 presents the results and analysis of
the prediction model, a simulation applying the algorithm, and the field test applying the
algorithm, and Section 5 then concludes the paper.

2. Methods

Rather than reducing the peak demand, which was the purpose of previous stud-
ies, the purpose of the building control algorithm, the algorithm used in this study, is
to reduce the total building electricity consumption while maintaining user convenience
(comfort, etc.). In order to reduce the total building electricity consumption, the target
electricity consumption according to the time zone is necessary. In order to determine the
target building electricity consumption, it is necessary to predict how the future building
electricity consumption will change, and the prediction must be accurate. Therefore, to
determine the target building electricity consumption, a weekly prediction model and
a daily prediction model to determine the target building electricity consumption were
used, and the predicted model in this study was seq2seq LSTM. Figure 1 shows a flow
chart of the algorithm. First, the weekly model is used to set the total reduced electricity
consumption for a week. After dividing the reduced electricity consumption for a day, the
target electricity consumption is set using the daily model and the reduced electricity con-
sumption for a day, according to the applicable day. If the current electricity consumption is
higher than the target, the air conditioner to be controlled is selected by identifying the air
conditioner to be operated. The selected air conditioner changes the set temperature to the
control set temperature. Thereafter, when the control time exceeds the maximum control
time, the air conditioner is set to be operated normally, and the air conditioner changes to
the normal set temperature. The target electricity consumption is changed every hour, and
after a day passes, the algorithm is repeated by setting the target electricity consumption
in units of 1 h, using the daily model and the reduced electricity consumption for a day.
This chapter describes the data preprocessing procedure for the performance of machine
learning, the seq2seq LSTM, the type of machine learning used in the study, and the more
detailed algorithm.

1
Parges: target electricity Start Measure the control time
consumption

Pyuitding: building
electricity consumption
teontort: control time
tyyn: total control time

No

Set reduced building electricity
consumption with seq2seq model
(weekly model) IYCS
| Select the air conditioner that is subject
Set target building electricity to termination of control based on
consumption with seq2seq model reverse priority
(daily model)

Poitaing = Prarget >0 teontrot 2 teontolmax

Change the set temperature before

Recognizing the operated air control of the air conditioner

conditioner
) - — Extract of end-of-control | Yes Is it the air conditioner
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Extract the list of actual air without control? [No
conditioners to be p— (4 Update target electricity | No
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“—  building electricity trunday = trun,daymax

Select the control air conditioner

Change the set temperature of the air consumption [ Yes
condi‘noncr End

Figure 1. A flow chart of the building control algorithm.
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2.1. Data Preprocessing

The quality of the data is important, because a deep learning model learns and
understands the correlations between data to draw conclusions. No matter how much
data are available, if there are many missing values and the data are inaccurate, good
performance of the deep learning model cannot be achieved. Therefore, data preprocessing
must be performed, and data preprocessing proceeds in the order of data integration, data
cleansing, and data selection, as shown in Figure 2. In data integration, the predicted
feature is the electricity consumption of the VRF system installed in the building, and the
electricity consumption is recorded in the building management system (BMS) through the
power meter. Since the electricity consumption, the data of the air conditioner and the data
of the outdoor unit have different time intervals, the time interval is adjusted to combine
the data of the outdoor unit and the air conditioner corresponding to the power meter.
Data cleansing is the process of removing or replacing data by finding missing values and
outliers of data. Data selection is divided into useful and non-useful data by performing
feature selection, using useful data to separate the model into training data and test data to
be trained. Content related to data selection is further described in the next chapter.

Data Preprocessing

R B Id
5 - Building

/0\ ﬁ Information — Clean data set
_— B {;\ Floor | Zone —I
power — Label 1
ower ~ el
meter Qutdoor /4;\‘ Label 2

unit
Indoor
unit 1

’7 Validate data set

c—
Power \i

meter Qutdoor

unit d —
Inu:it:r Monitoring data Integrated data set
1. Data 2. Data 3. Data
Integration Cleansing Selection

Figure 2. Data preprocessing.

Feature selection is a method of finding a subset of data that given the original data,
can show the best performance to improve the predictive performance of the model. New
data are created by extracting only the features that are most closely related in the prediction
model. By reducing the dimension of data through feature selection, calculation speed
can be improved, and performance can be improved, compared to when the original data
were used, by removing irrelevant data, redundant data, surplus data, and noise that
may interfere with the prediction model. Random forest is one of the feature selection
methods; in order to improve accuracy rather than the classification of decision trees,
several trees are created, and the predictions of each tree are combined in total to draw a
conclusion. Random forest is effective in processing large amounts of data, improves model
accuracy by avoiding the overfitting problem that intensifies the noise of the model, and
has the advantage among ensemble algorithms of having a relatively fast execution speed.
Random forest consists of bagging and random node optimization. Bootstrap aggregation
(bagging) refers to making n prediction models by randomly sampling a subset from given
data n times (more precisely, randomly sampling observations and features), and voting
by n prediction models after bagging, to determine the prediction result. Random node
optimization aims to find the optimal value of the parameter 0 of the node division function
that maximizes the training objective function. Each node of the tree has a split function,
and can be expressed as the following equation, where 0 means false, and 1 means true. ¢
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selects only a few features from vector v as a filter function. 1 represents the geometric
characteristic of the partitioning function, and T is a parameter vector, which has threshold
values in the inequality of the binary test:

S(V, 9]) € {0, 1}

1
0=y 1) @

2.2. Seq2seq LSTM

Long short-term memory (LSTM) is one of the main models of recurrent neuron
networks (RNN); the larger the gap between the data (gap, difference in input position) in
the data with sequences, the more difficult it is to understand the context of the two items
of information, and LSTM is used to predict future data by taking into account historical
data, as well as previous data. LSTM has the same structure as Figure 3, and has an added
value called cell state. The hidden state and cell state at the previous time are used as
inputs to get the cell state and hidden state at the next time, and three newly added gates
to get the cell state and hidden state. LSTM equations are expressed as follows, where
f+ means the forget gate, i; means the input gate, 0; means the output gate, g; means the
memory cell state, c; means the cell state, and /; means the hidden state:

fe= U(thf Xt + Wi 1 + bhf) )
iy = O'(thl. Xt + Whh,vht—l + bhi) ®)
0t = 0 (W, Xt + WipoJt—1 + bpo) )
gt = tanh(thExt + Wi hy—q + bi) ®)
Ct=fiOc 1+t O& (6)
hy = oy © tanh(cy) @)
¥ f f

™

1

e
A I
he-s \

: Input gate —— ) T l
] y r‘% - I (A

gate] te g!x ¢
‘[1 I —— | [H’]LTJLFJL;’T o B e 5

Xe-1 Xt Xev1

Figure 3. Long short-term memory (LSTM) structure.

Seq2seq is a model consisting of an LSTM (or gated recurrent units (GRU))-based
encoder part, and a decoder part that receives a fixed dimension of input, and outputs
a variable length result value corresponding to the input value. The encoder reads the
input sequence to create a fixed-size context vector. The encoder uses a circulating neural
network (mainly stacked LSTM) to process the input sequence in reverse order. Processing
in reverse order makes it a little easier for the decoder to start generating output values,
making it easier to generate a suitable overall output value. The decoder generates a
sequence sequentially by inputting the context vector that is in the state generated by the
encoder. The decoder, like the encoder, is the same as stacked LSTM, but it is different from
the encoder in having the <EOS> token that initializes the hidden state as a context vector,
and signals the generation of output values. Additionally, the output, such as Figure 4, is
input again, and this process is repeated, until the <EOS> is reached.
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Figure 4. Seq2seq LSTM structure.

2.3. Bayesian Optimization

The hyperparameter is a value to be set in advance to perform learning. Table 1 shows
the types and default values of the hyperparameters of the deep learning model used in
this study. If the learning rate is too small, the speed of learning becomes too slow, and
vice versa, if it is too large, the results of learning may not converge, and may vibrate. The
regularization coefficient uses the L1 or L2 method to avoid overfitting problems, and in
this study, the L2 method is used. Dropout is a regularization technique to avoid overfitting,
a technique for general purpose in order to use overfitting models in the learning data, and
is used to exclude and learn neurons in the layer at a certain rate.

Table 1. Hyperparameter definition.

Hyperparameter Definition Default Value

The learning rate determines how fast it
moves in the direction of the gradient.
L2 regularization is used to control the
speed of the weight decay.
The number of LSTM layers is the
Number of LSTM layers number of layers between input and 4
output layers.
The number of LSTM cells is the

Learning rate 0.01

L2 regularization coefficient 0.003

Number of LSTM cells number of neurons (LSTM cells) 128
per layer.
Batch size The total numbgr of ‘training examples 1000
present in a single batch.
Dropout Dropout is the rate of neurons out. 0.5
The total number of iterations is the
Total number of iterations number of iterations of the 30,000

training model.

The deep learning model performance varies greatly depending on the hyperparame-
ter, and there is no set optimal value. Therefore, it is often determined by rule of thumb. If
the rule of thumb directly determines the hyperparameter, it is not possible to determine
whether it is an optimal hyperparameter, and among the different types of hyperparame-
ters, it is very difficult to apply the existing intuition to a single hyperparameter, because
there are some that, when they are found at the same time, show interdependence with
each other. Thus, this study used Bayesian optimization to automatically reflect prior
knowledge and explore hyperparameters. Bayesian optimization is a method that can
derive the minimum (maximum) value without finding an actual function (model), by
using real data and a surrogate model based on a random search and a statistical technique
(Gaussian distribution). Bayesian optimization creates a surrogate model by pairing the
corresponding hyperparameter of the search target function and the search target function,
sequentially updates through evaluation, and searches for the optimal hyperparameter
combination. Bayesian optimization consists of a surrogate model and an acquisition
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function, and the surrogate model is a model that performs probabilistic estimation of the
shape of an unknown objective function (the function to be found), based on the input
value-function points investigated so far. In this case, the objective function is assumed to
be a black-box function, and the surrogate model used in this study is a Gaussian process
(GP). GP is a stochastic process, such that a finite collection of those random variables has
multivariate normal distribution. Since the GP follows a multivariate normal distribution,
both the marginal and conditional distributions follow the normal distribution, which has
the advantage of being easy to calculate. When the random variables (the unknown objec-
tive function) for the elements of the finite set X have the same distribution as Equation (8),
the random variable f(X) is observed from the mean function m(x) and the covariance
function k(x, x"), and may be expressed as Equation (9):

f(x1) f(x1) k(x1, x1) - k(xy, x3)
RS2 i EE R VO R ®

f(xm) f(xm) k(xm, x1) - k(xm, x,)
f(X) ~ GP(m(X), k(X, X') )

The acquisition function is a function that recommends the hyperparameters to be
investigated next time, based on the result of probabilistic estimation of the objective
function by the surrogate model. The recommended hyperparameter is the ‘most useful’
in finding the best hyperparameter, and the acquisition function used in this study is
the extended impact (EI). EI is a function created using exploitation and exploration.
Exploitation means predicting that there will be better outcomes around the higher values
out of those that have come out so far, and exploration means predicting that there will
be better outcomes near the higher values, out of those that have been out so far. EI
defines the utility function in a linear format rather than 0 or 1, so the difference between
exploitation and exploration can be reflected. The utility function (u(x)) and the EI function
is as follows:

u(x) = max(0, f' — f(x)) (10)
El(x) = E[u(x) || x, D]
= [T N(fin(x), k(x, ¥))df (11)

= (f' =)@ (f5u(x), k(x, x')) +k(x, ¥') N(f'; p(x), k(x, 7))
Table 2 shows the range of navigation of hyperparameters and hyperparameters
targeted for Bayesian optimization in this study:

Table 2. Hyperparameter domain.

Domain
Hyperparameter — -
Minimum Maximum
Learning rate 0.001 0.05
L2 regularization coefficient 0.001 0.01
Number of LSTM layers 1 5

Number of LSTM cells 32 128
Batch size 1000 5000
Dropout 0.0 0.9

2.4. Selection of Target Electricity Consumption

In Sections 2.1-2.3, seq2seq LSTM model was described as the basis for setting target
electricity consumption. This chapter explains how to set the target electricity consumption
using the seq2seq LSTM model, and how to newly update the target electricity consumption.
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2.4.1. Selection of Reduced Electricity Consumption

Weekly reduced electricity consumption refers to the amount of electricity consumed
per week. Weekly reduced electricity consumption employs the seq2seq LSTM model,
and predicts the electricity consumption for a week. The weekly reduced electricity con-
sumption is determined using the predicted electricity consumption and the electricity
consumption reduction rate specified by the user. The daily reduced electricity consump-
tion is determined using the weekly reduced electricity consumption and the estimated
electricity consumption. At this time, the daily reduced electricity consumption is deter-
mined in proportion to the predicted electricity consumption, rather than distributing
the weekly reduced electricity consumption per day (d). The equation for calculating the
weekly reduced electricity consumption and daily reduced electricity consumption is as
follows, where P4, (w) is the reduced electricity consumption for the week, E is the
reduction ratio, Py, (d) is the reduced electricity consumption for the day, occ means the
occupied time, and Pyeexry, pred(h) is the predicted electricity consumption for the week.
Figure 5 provides an example of calculating the reduced electricity consumption with 10%
reduction ratio. The purple line means the predicted electricity consumption with weekly
model, the upper red dotted line means the sum of the predicted electricity consumption
for a week, and the difference between the red dotted lines means the reduced electricity
consumption for a week.

7
Preduce(w) = E % Z Pweekly, pred(d) (12)
d=1

Pweekly, pred (d)
2157:1 P weekly, pred (t)

0CCend

Pweekly, pred(d) = Z Pweekly, pred(h)r (d =123415,6, 7) (14)

h=occstart

Preduce(d) = Preduce (w) X

, (d=1,2,3,45,6,7) (13)

2500

—— Load forecasting (Weekly model)

20001

1500/

1000/

500/

Electricity consumption [kWh]

00801 08-02 08-03 08-04 08-05 08-06 08-07 08-08

Time
Figure 5. The reduced electricity consumption.

2.4.2. Selection of Target Electricity Consumption for a Day

Target electricity consumption refers to the amount of electricity consumption per day,
and is the amount of electricity consumption in units of 1 h. In order to calculate the target
electricity consumption, the seq2seq LSTM model predicts the electricity consumption
during the day. After calculating the daily reduced electricity consumption in proportion to
the predicted electricity consumption, the target electricity consumption is calculated using
the predicted electricity consumption and the reduced electricity consumption of 1 h. In
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this case, the daily reduced electricity consumption to be reduced per hour is determined
in proportion to the predicted electricity consumption, rather than distributing the daily
reduced electricity consumption per hour. At this time, because the algorithm controls
the air conditioners to reduce electricity consumption, target electricity consumption is
calculated using the occupied time, excluding the control time when air conditioners are not
operating during the occupied time. In addition, when the target electricity consumption
is calculated at this time, if it is less than the minimum electricity consumption specified
by the user, it is excluded from the occupied time. The equation for calculating the target
electricity consumption is as follows, where Pygrget (h) is the target electricity consumption,
and Pyiry,pred (1) is the predicted electricity consumption for the day. Figure 6 provides
an example of calculating the target electricity consumption with 10% reduction ratio.
The purple line means the predicted electricity consumption with daily model, green line
means the target electricity consumption and the difference between the purple and green
lines means the subtraction term of Equation (15).

Paaity, prea (h)
Ptarget(h) = Pduily,pred (h) - Prgducg(d) X any.pre

15)
0CCond - (
Zi:ggcstm Pdaily, pred (1)

00—
Preduce(2) X Occpda”y'pred(lo) —— Load forecasting (Daily model)
35 e Zizoi'zm, Paaily pred @ —— Target electricity consumption

w
Q

N
o

[
w

e

Electricity consumption [kWh]
—_ N
o (=)

o

0

10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00
08-02

Time
Figure 6. The target electricity consumption.

2.4.3. Adjustment Target Electricity Consumption

During the building control algorithm, the amount of power consumed during the
previous hour may be smaller or larger than the target electricity consumption, due to
user actions, or the number of algorithm events. In this case, if the next target electric-
ity consumption is kept unchanged, there is a high possibility that the target electricity
consumption for the day will not be met. Therefore, to solve this problem, a new target
electricity consumption is designated by using the electricity consumption of the previous
time, and the target electricity consumption of the previous time. At this time, if the
electricity consumption in the previous time period and the target electricity consumption
are equally distributed to the remaining target electricity consumption, there is not much
electricity consumption that can be reduced in a time period where the size of target elec-
tricity consumption is small. Therefore, as in Equation (16), it is distributed in proportion to
the size of the target electricity consumption, which reduces the amount of time when the
target electricity consumption is large, and decreases the time when the target electricity
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consumption is small. Pygjyst, Wget(h) is the adjustment electricity consumption and P(t) is
the building electricity consumption for a hour:

. h) = h hel Pduily,pred(h)
Pad]ust, target( ) - Pturget( ) + Z {Pturget(t) - P(t)} X Soomas |7

d .
t=0CCstart Zi:f+1 Pdaily,pred(z)
(occstart < h < 0CCopd)

(16)

2.5. The Building Control Algorithm

If the electricity consumption calculated through the exponential smoothing method
exceeds the target building electricity consumption, the algorithm is started to reduce
the building electricity consumption. The building control algorithm controls the air
conditioners that operate, so that the electricity consumption meets the target electricity
consumption. In order to control the air conditioners, the priority of air conditioners is
initially determined, and the number of air conditioners to be controlled is selected, and
controlled using the determined priority. When the control time elapses, it returns to the
original air conditioner setting, and the air conditioners are controlled through a method to
prevent rebound peaks that do not rotate at the same time, but partially return with time.

2.5.1. Judgement of Electricity Consumption

Once the target building electricity consumption has been determined, it is necessary
to determine whether the future building electricity consumption exceeds the target build-
ing electricity consumption, in order to maintain the total building electricity consumption
as the target building electricity consumption. Therefore, in this study, the exponential
smoothing method is used to determine the electricity consumption of the building. The
exponential smoothing method is a calculation target of all past periods, and it can be
expressed by Equation (17) as a method that gives a higher weight to recent data, where «
is the weight, P is the current use electricity consumption, and N is the period:

Pr=waP.+(1—a)P_
=Pt ()P -
+1

2.5.2. Selection of Air Conditioners for Control

The building control algorithm prioritizes air conditioners using the analytic hierarchy
process (AHP) to reduce the amount of building electricity consumption. AHP proceeds
with pairwise comparison between elements, derivation of relative importance (weight),
consistency verification, and prioritization of alternatives. Pairwise comparisons are per-
formed between the same hierarchy criteria. Relative weight is derived through pairwise
comparison between each element of the hierarchy, and a comparison matrix is created
by relative comparison between decision-making elements. Consistency is validated us-
ing the consistency ratio (CR). Priority of alternatives is selected using the eigen vector
verified through consistency verification and the alternative matrix. Figure 7 shows the
judgment criteria and AHP structure used in this study. The judgment criteria can be
divided into quantitative and qualitative criteria, where the qualitative criterion is the type
of zone, while the quantitative criteria are the difference between zone temperature and
zone set temperature, air conditioner operation time, difference in zone temperature, and
air conditioner electricity consumption.
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Goal Prioritize air conditioners for curtailment to manage target electricity consumption

4

Criteria i[]; % m /ET:] ®© ﬂ ; I%J (3%

Type of zone Difference between Air conditioner Difference of Air conditioner
zone temperature and operation time zone temperature electricity consumption
zone set temperature

Alternatives =~ - - ' 2
Air conditioner 1-1 Air conditioner 1-2 Air conditioner 2 Air conditioner 3 Air conditioner 4

Figure 7. Analytical hierarchy process (AHP) structure.

After detecting the operating state of the air conditioner and the electricity consump-
tion of the air conditioner, the air conditioner that can be controlled based on the detected
state is selected, and the air conditioner to be excluded from control is excluded. After
calculating the priority of the selected air conditioner using AHP, the number and order of
air conditioners to be controlled are selected using Equation (18), where Pigrget is the target
electricity consumption, P; is the predicted electricity consumption calculated using the ex-
ponential smoothing method, P;,,; is the electricity consumption of the air conditioner, A;;,4
is the priority of the air conditioners, and u;,4 is the operating state of the air conditioner
(0: air conditioner off, 1: air conditioner on):

m
Prarget(h) > Ptmin< Y Pind,t[)\ind]'uind,t[/\ind]> (18)
ind=1

2.5.3. Control Air Conditioners

After changing the operating state of the air conditioner in the order of control to
the low-power operation mode by using the set temperature increase (cooling mode) or
decrease (heating mode), the operation stop time (control time) of the air conditioner
set in advance is maintained. If the prediction of the amount of electricity consumption
does not exceed the target electricity consumption based on the operation stop time, the
electricity consumption of the air conditioner is continuously measured, and when the
target electricity consumption exceeds the estimated electricity consumption, the low-
power operation mode is delayed. As in Equation (19), if the zone temperature is not
within the temperature setting range, the low power operation mode is automatically
stopped, and changed to the original operation:

Tset,min < Tset,t < Tset,mux (19)

2.5.4. Reset of Controlled Air Conditioners

After the end of control of the algorithm, there is a problem with the rebound peak
electricity consumption problem that results in unwanted maximum demand, as a large
number of filings return to pre-control operation mode at the same time. In order to solve
the rebound peak electricity consumption problem, Equation (20) is used to determine the
air conditioners to return to normal operation. The selected air conditioners return to the
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normal set temperature, and the algorithm ends, where c;yg i, is the inverse priorities of
the air conditioners:

m
Prarget(h) — Pt > mﬂx( Y Pind, tlCind,inol- (1 = tina ¢[Cing, inv])) (20)
ind=1

3. Experiments

In this section, we illustrate the deployment and process of the proposed building con-
trol algorithm by conducting simulation on an occupied restaurant located in Philadelphia,
PA, USA, and field test on an occupied campus building located in Gwangju, Korea.

3.1. Description of the Simulation

The building for the simulation used a small commercial building simulation model.
The small commercial building simulation model was developed for simulating the dy-
namics of indoor environments and building envelopes using a reduced-order coupled
CFD model by Kim et al. [19].

The model building consists of a wine bar, a dining room, and a kitchen, and has a
total of four air conditioners. The building is a restaurant in suburban Philadelphia, with
occupied time from 10:00 to 00:00, and it can be seen that the air conditioners are normally
turned on from 10:00 to 00:00. Table 3 shows other information related to the simulation
building. The building data consist of air conditioner set points, air conditioner ON/OFF
signal, zone temperature, outdoor temperature, and building electricity consumption, and
are recorded every 5 min. To train the deep learning model, training data are used for
about 3 months as an hourly average through the building data from June 2019 to August
2019 (except the first week of August), and the test data are used for 1 week as an hourly
average through the building data from August 1st to August 7th:

Table 3. The simulation building information.

Category Information
Outdoor air temperature data TMY3 (Typical Meteorological Year 3)
Building location Philadelphia
Building size 23.34 m width, 19.82 m depth, 3.35 m height
Normal occupied /unoccupied set points (22/30) °C
Air conditioner compressor minimum run time 5 min

In the simulation, time is discretized with a 5 min step size, and we assumed that
thermal zones have temperature flexibility between 22 and 26 °C. Additionally, the target
electricity consumption was set to reduce the building electricity consumption by a total
of 5,10, and 15%. The test was conducted in summer, when the cooling system is used.
When the building electricity consumption exceeds the target electricity consumption, the
set temperature increases according to the priority of each air conditioner, using the AHP
process. To verify the performance of the algorithm, we compared the building electricity
consumption when applying the algorithm with the normal control (not applying the
algorithm) building electricity consumption.

Our co-simulation environment combines the Matlab R2014a, ActiveMQ (ver. 5.15.12),
and ZeroMQ (ver. 4.3.2) platform, which is an open-source platform for multi-protocol.
For the simulation deployment, Figure 8§ depicts the proposed algorithm, and the process
is as follows. First, when the simulation begins, the BCA (building control algorithm)
agent sends a start signal to the Matlab agent. Then, the Matlab agent sends information
(e.g., zone temperature, set temperature, etc.) from the CFD model to the BCA agent by
using a stomp of the ActiveMQ. After the BCA agent transmits the information to the
Load forecasting agent, the Load forecasting agent sets the target electricity consumption
using the seq2seq LSTM model, and sends the target electricity consumption to the BCA
agent using ZeroMQ. As the load forecasting agent communicates with the BCA agent,
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Envelope Model

ZeroMQ was used for agent-to-agent communication to minimize the time issues. The
load forecasting agent can be divided into two types: weekly (7 d) forecasting, and daily
(1 d) forecasting. The weekly forecasting is executed once a week, and the reduced target
electricity consumption for a week is set using the reduction ratio (i.e., 5, 10, 15%, etc.). The
daily forecasting is executed once a day, and the target electricity consumption during the
day is set in units of 1 h. When the target electricity consumption is set, the BCA agent
reads the information delivered by the Matlab agent every 5 min. If the exponential moving
average electricity consumption exceeds the target electricity consumption, the BCA agent
executes and selects the air conditioners to be controlled. Then, the set temperature of the
controlled air conditioner is transmitted to the Matlab agent.

--------------- ACTIVEMQ — ZeroMQ —
I ]  WESWHHIMWE e e e
| i 1
] 1 1
! Load forecasting | T2roet Demand ! | subscribe Model | !
! Agent Building data | SUB REQ 1
CFD Model 1 1 1
1 I 1
] 1 1
] I 1
] I 1
: : Message Bus :
1 ] 1
I I 1
] I 1
Building d
Reduced Coupled Model ! - (;An;n?ema;fsﬂ | '
STomP Ir [ STOMP | Point, Meter etc.) | I
J N 1
: BCA Agent i| Publish Model |,
Matlab Agent | Target Demand | .
1 | PR R R 1

Figure 8. Simulation implementation of the building control algorithm.

3.2. Description of the Field Test

The building for the field test located in Gwangju, Korea, consists of a number of
lecture halls, a hall, and a lounge, etc., has a total seven floors, and is served by air
conditioners in the VRF systems. The lecture hall is divided into a large lecture hall, a
medium-sized lecture hall, and a small lecture hall according to size, and the small lecture
hall has 1 air conditioner, while the middle and large lecture hall have 2 air conditioners
each. The total number of VRF systems is 14, each VRF system consists of 1 outdoor
unit and 5 to 11 air conditioners, the total number of outdoor units in the building is 14,
and the total number of air conditioners is 100. Since this building is a typical campus
building, its occupied time is from 8:00 to 18:00, and it can be seen that the VRF systems
are normally turned on from 8:00 to 18:00. The building data were obtained through the
building management system (BMS) connected to the building, and the BMS has a total of
6120 features that combine all the air conditioners and outdoor units of the building, and
records every minute. To train the deep learning model, training data are used for about
1 year as an hourly average through the BMS: from November 2018 to October 2019. Since
the field test is the heating mode, the model prediction performance is measured using the
data, using the heating mode as test data, from November 2019 to December 2019.

In our field test, time is discretized with a 1 min step size, and we assumed that
when in heating mode, thermal zones have temperature flexibility between 24 and 30 °C.
Additionally, the target consumption was set to reduce the energy of the building by a
total of 5, 10, and 15%. The test was conducted in winter, when the heating system is
used. When the building load exceeds the target electricity consumption, the temperature
set point decreases according to the priority of each room, and if the load is below the
target electricity consumption, the temperature set point increases to nearly the target
electricity consumption. To verify the performance of the algorithm, we compared the
energy efficiency of buildings to baseline with similar weather conditions and test results.
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For the field deployment, the proposed algorithm was implemented in the ActiveMQ
(ver. 5.15.12), and ZeroMQ (ver. 4.3.2) platform, which is an open-source platform for
multiple protocols. Figure 9 depicts the proposed algorithm, and the process is described
as follows. First, when the field test starts, the send agent transmits information (e.g.,
zone temperature, zone occupied information, and zone set temperature, etc.) to the BCA
agent, and uses pycopg2 module (ver. 2.8.6) in python to connect to the database server of
the BMS. The data received from the database server are stored in designated queues by
using a stomp of the ActiveMQ. After the BCA agent transmits the information to the load
forecasting agent, the load forecasting agent sets the target electricity consumption using
the seq2seq LSTM model, and sends target electricity consumption to the BCA agent using
ZeroMQ. Then, the BCA agent reads the information that is delivered every minute from
the send agent; and if the exponential electricity consumption exceeds the target electricity
consumption, the BCA agent is executed, the air conditioner to be controlled is selected,
and the set temperature of the controlled air conditioner is transmitted to the control agent.

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T E e ACTIVEMQ -~
| [ BROKER — BINDINGS - BROKER :
! | aooresses [EIZS) »| QUEUES m | aopresses (TS50 !
: STOMP X | 1. Load_handler ” 2. New_data || 3.control | STomP :
1 |
e e e e e e e e e e e e e e e e e e e e Em e e e e e e Y S
il ZeroMQ -,
| e | I | 1 1
! BMSSend ! |BMS Control | ! I
Agent ' Agent 1 Publish Model |'  zone Temp, Zone Temp
:l stomp |+« Psycopgz |! :| STOMP |->[ Requests |: | :4 Set Point, Meter, etc [srowe |
1 =1 L1 1 Pus REP 1= > BCA Agent
: | I f : Target Demand (24 h), Time
1 1
1 1
1 1
1 1
- 1 Message Bus 1
— 1 |
— ! !
- PostgresQL -I——-- — ) ! ' Target Demand (24 h), Ti .
i ostgresQ ' BMWF ! P arget Demand (24 1), Time | ) ad forecasting
| python . | SUB REQ |  Zone Temp, Zone Temp
1 DATABASE : : BMS server : 1 - 1 Set Point, Meter, etc.
L P 1 1 | Subscribe Model | 1
1 1
1 1

Figure 9. Field test implementation of the building control algorithm.

4. Results

This section illustrates the performance of the seq2seq LSTM model, and compares the
seq2seq LSTM model with and without Bayesian optimization. Additionally, it illustrates
the simulation and field test results applying the algorithm with various reduction ratios.

4.1. Simulation Result

Figure 10 shows the results of prediction of the electricity consumption using the
weekly model and simulation data trained in the seq2seq LSTM structure. In order to
evaluate the prediction accuracy according to whether it is with or without Bayesian
optimization, the red line of Figure 10 shows the result without Bayesian optimization,
while the green line shows the result with Bayesian optimization. For the red line, since
the input sequence length is 168 (7 d, time interval: 1 h) and the output sequence length is
168 (7 d), the increase in the electricity consumption when the predicted value is the actual
value and the occupied time are similar, but the pattern shows the difference. In contrast, it
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can be seen that the green line, Bayesian optimization, shows a similar pattern between
the predicted value and the actual value, unlike the model without Bayesian optimization.
In addition, looking at Table 4, which shows the prediction performance of the mode, the
prediction performance of the model with Bayesian optimization shows MBE of —3.8%
and Cv(RMSE) of 4.9%, which is numerically better than without Bayesian optimization
(MBE —25.9%, Cv(RMSE) 28.9%). Figure 11 shows the result of prediction of the electricity
consumption using the daily model and simulation data trained in the seq2seq LSTM
structure. In order to evaluate the prediction accuracy according to whether it is with or
without Bayesian optimization, the red line shows that the input sequence length is 24 h
(1 d), and the output sequence length is 24 h (1 d), and the pattern between the predicted
value and the actual value is similar. The green line, Bayesian optimization, shows that
when compared to the model without Bayesian optimization, the predicted value and the
actual value show more similar patterns. In addition, referring to Table 4, the prediction
performance of the model with Bayesian optimization is —0.6% and Cv(RMSE) 12.2%,
which is more predictive than the model without Bayesian optimization (MBE —3.7%,
Cv(RMSE) 14.2%). Table 5 shows the hyperparameters selected by Bayesian optimization.
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Figure 10. Load forecasting result with weekly model and simulation data.

Table 4. Error for test data with simulation data.

Model Hyperparameter MBE [%] Cv(RMSE) [%]
Optimization Types
! Manual Search —25.9 28.9
Weekly Bayesian optimization —-3.8 49
. Manual Search -3.7 14.2
Daily

Bayesian optimization —0.6 12.2
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Figure 11. Load forecasting result with daily model and simulation data.
Table 5. Hyperparameter values with simulation data.
Hyperparameter Input Output . o # of # of
Optimization Model Seq. Seq. Le;rar:;ng Reg:el?f];lczizzton LSTM LSTM ]3~Saitzce11 Dropout
Types Length Length Layers Cells
M 1 Weekly 168 168 0.01 0.003 4 128 1000 0.5
anua Daily 24 24 0.01 0.003 4 128 1000 0.5
Bavesian Weekly 168 168 0.025 0.006 2 119 891 0.435
y Daily 24 24 0.01 0.001 2 127 475 0.1

Simulation Results Applying the Building Control Algorithm

Figures 12 and 13 show the simulation result applying the building control algorithm,
and the electricity consumption without the algorithm was 380.5 kWh/d. When the re-
duction ratio was 5%, the electricity consumption with the algorithm was 352.5 kWh/d,
which was a 7.3% decrease, compared to the electricity consumption without the algorithm.
When the reduction ratio was 10%, the electricity consumption was 343.4 kWh/d, which
was a 9.7% decrease, and when the reduction ratio was 15%, the electricity consumption
was 329.7 kWh/d, which was a 13.4% decrease. Figure 12 shows the electricity consump-
tion with the algorithm and the predicted electricity consumption, the target electricity
consumption, the algorithm event, and the operated air conditioners. In Figure 12, if the
target is low, more algorithm events can proceed to match the target, but if the target if
high, it means that there is a possibility that less algorithm events will proceed. Although
the original occupied time of simulation progress is from 10:00 to 00:00, Figure 12 is from
10:00 to 23:00. Since the target electricity consumption at 00:00 is less than the minimum
electricity consumption of 10 kWh of the simulation, it was excluded from the occupied
time. Algorithm events were controlled nine times (5% reduction), 10 times (10%), and
15 times (15%). Comparing the target with the adjusted target and the electricity consump-
tion, the adjusted target at 11:00 is applied lower than the target, because the electricity
consumption at first at 10:00 is higher than the adjusted target. After 11:00, it can be seen
that the adjusted target is lower than the target, because the electricity consumption is
lower than the adjusted target. Under a 5% reduction ratio, since the building electricity
consumption is lower than the target, the difference between the initial target and the
adjustment target applied to the actual algorithm gradually increases over time, and the
last algorithm time, 22:00-23:00, shows that the difference between targets is about 10 kWh.
Under a 10% reduction ratio, when comparing the case with the algorithm and without
the algorithm, the reason that the adjustment target rises even though it is lower than the
target reduction rate is that the predicted electricity consumption is higher than that of the
building without algorithm, and the target based on the predicted electricity consumption.
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Under a 15% reduction ratio, since the building electricity consumption is lower than the
target, the difference between the initial target and the adjustment target is applied, the
actual algorithm gradually increases over time, and the last algorithm time, 22:00-23:00,
shows that the difference between targets gradually increases over time; but after 18:00, the
building electricity consumption is a higher target, so the difference between the targets
narrows, and it can be seen that the last algorithm time, 22:00-23:00, has a smaller adjust-
ment target than the initial target. Figure 13 shows a graph of the zone temperature, set
temperature, and the air conditioner status that are operated, and when an algorithm event
occurs, the number of air conditioners under operational status decreases, showing that
all of the controlled air conditioners during the revert time were not turned into normal
operation at the same time, but that some of the controlled air conditioners were turned
into normal operation, and then the remaining controlled air conditioners were returned
to normal operation over time. Additionally, the maximum temperature is at 10:00, just
before the air conditioner is turned on, and the algorithm was started after that. The set
temperature of the air conditioner to be controlled is 26 °C and the air conditioners were
often turned off and on. Figures 12 and 13 show that the algorithm first starts at about
11:00, and that there are a total of four or five controlled air conditioners. Even though only
one air conditioner operates, or no air conditioner operates, it can be seen that the zone
temperature does not exceed 27 °C, and the control duration time is 25-35 min. Although
the zone temperature exceeds the new set temperature (26 °C) during the building con-
trol algorithm, this zone temperature is not enough to cause occupant discomfort, as the
air conditioner is operated when the zone temperature exceeds the new set temperature.
Additionally, temperature difference between the zone and set temperature is under 1 °C.
Thus, the occupant comfort is not endangered.
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Figure 12. Simulation result with target, building electricity consumption and algorithm event time
applying the building control algorithm.
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Figure 13. Simulation result with zone temperature and the number of operating air conditioners applying the building
control algorithm. (a) Room1; (b) Room?2; (c) Room3; (d) Room4.

4.2. Field Test Result

Figure 14 shows the results of prediction of the electricity consumption using the
weekly model and simulation data trained in the seq2seq LSTM structure, in order to
evaluate the prediction accuracy, according to whether it is with or without Bayesian
optimization. The red line shows that the input sequence length is 168 (7 d) and the output
sequence length is 168 (7 d), and the patterns of the predicted value and the actual value
are similar. The green line, Bayesian optimization, shows that the predicted value and the
actual value have more similar patterns when compared to the model without Bayesian
optimization. In addition, looking at Table 6 the prediction performance of the model with
Bayesian optimization is MBE —17.1% and Cv(RMSE) 47%, which offers better prediction
than the model without Bayesian optimization (MBE —46.1%, Cv(RMSE) 64.4%). Figure 15
shows the result of prediction of the electricity consumption using the daily model and
simulation data trained in the seq2seq LSTM structure, in order to evaluate the prediction
accuracy according to whether with or without Bayesian optimization. The red line shows
that the input sequence length is 24 (1 d) and the output sequence length is 24 (1 d), and the
pattern between the predicted value and the actual value is similar. The green line, Bayesian
optimization, shows that when compared to the model without Bayesian optimization, the
predicted value and the actual value show more similar patterns. In addition, referring to
Table 6, the prediction performance of the model with Bayesian optimization is MBE 5.5%
and Cv(RMSE) 39.2%, which shows better prediction than the model without Bayesian
optimization (MBE —15.3%, Cv(RMSE) 48%). Table 7 shows the hyperparameters selected
by Bayesian optimization.
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Figure 14. Load forecasting result with weekly model and building data.
Table 6. Error for test data with simulation data.
Hyperparameter
Model yperpal MBE [%] Cv(RMSE) [%]
Optimization Types
Weekl Manual Search —46.1 64.4
cexly Bayesian optimization -17.1 47
Dail Manual Search —-15.3 48
atly Bayesian optimization 5.5 39.2
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Figure 15. Load forecasting result with daily model and building data.



Buildings 2021, 11, 131

20 of 33

Table 7. Hyperparameter values with simulation data.

Hyperparameter Input Output . N # of # of
Optimization Model Seq. Seq. Lela{rar;ng Recg::fafrilczi::::)n LSTM LSTM Bsaltzcil Dropout
Types Length Length Layers Cells
M 1 Weekly 168 168 0.01 0.003 4 128 1000 0.5
anua Daily 24 24 0.01 0.003 4 128 1000 0.5
Bavesian Weekly 168 168 0.024 0.008 2 36 1326 0.01
y Daily 24 24 0.013 0.002 3 115 1908 0.8

Reduction Ratio 5% Result

Figures 16 and 17 show the field test result applying the algorithm, with the total
air conditioners operated in heating mode, where the predicted electricity consumption
was 16,286.5 kWh/d. When the reduction ratio was 5%, the electricity consumption
with the algorithm was 15,186.5 kWh/d, which, compared to the predicted electricity
consumption, was a 6.8% decrease. Figure 16 shows a graph of the electricity consumption
in the building, the number of operating air conditioners, and the time when the algorithm
occurred, and the algorithm was controlled a total of 11 times. The blue line means the
electricity consumption with the algorithm, the yellow line means the predicted electricity
consumption, the red and green dotted line means the target electricity consumption, the
green and pink line means the algorithm event, and the navy line means the number of
operating air conditioners. In the experiments, the occupied time period is from 9:00 to
18:00, and during this period, the electricity consumption is lower than the target electricity
consumption, so the adjustment target electricity consumption is higher than the initially set
target (the target electricity consumption). Initially, there is not much difference between
the initial target and the adjustment target electricity consumption, but the difference
gradually increases with time. This is because the difference between the previous building
electricity consumption and the previous target electricity consumption is distributed to
the adjustment target electricity consumption in proportion to the predicted electricity
consumption from the next time zone to the last time zone of the occupied time. When
the target is lower than the electricity consumption, the algorithm is run more frequently,
the control duration is longer, and the number of operating air conditioners is likely to
decrease. Figure 17 shows a graph of the control set temperature, zone temperature, the
air conditioner status of lecture hall 205-1, 3F lounge, lecture halls 403-2, 504, and 605-1
on floors 2-6, and the time when the air conditioners are turned on. While when not
controlled, the set temperature used was set to 25-26 °C, the set temperature used to
control the air conditioner reduced by 2 °C at the set temperature used when not controlled.
The algorithm in lecture room 205-1 was controlled four times, which occurred at 9:24,
10:56, 12:47, and 17:05. The algorithm in 3F lounge 2 was controlled three times; in lecture
room 403-2, two times; in lecture room 504, three times; and in lecture room 605-1, two
times.
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Figure 16. Reduction ratio 5% result of the field test with the target, building electricity consumption,
and algorithm events applying the building control algorithm.
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Figure 17. Reduction ratio 5% result of the field test with the zone temperature, set temperature, and air conditioners
operating state applying the building control algorithm. (a) Lecture hall 205-1; (b) 3F lounge 2; (c) Lecture hall 403-2;
(d) Lecture hall 504; (e) Lecture hall 605-1.

Figures 18 and 19 show the field test results applying the algorithm, the total air
conditioners operated heating mode, and the predicted electricity consumption was
16,874.6 kWh/d. When the reduction ratio was 10%, the electricity consumption with
the algorithm was 15,267.6 kWh/d, which was a 10% decrease, compared to the predicted
electricity consumption. Figure 18 shows a graph of the electricity consumption in the
building, the number of operating air conditioners, and the time when the algorithm
occurred, and the algorithm was controlled a total of 16 times. The blue line means the
electricity consumption with the algorithm, the yellow line means the predicted electricity
consumption, the red and green dotted line mean target electricity consumption, the green
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and pink line means the algorithm event, and the navy line means the number of operated
air conditioners. In experiments, the occupied time period is from 8:00 to 18:00, and during
this period, the electricity consumption is higher than the target electricity consumption,
so the adjustment target electricity consumption is lower than the initially set target (target
electricity consumption). Initially, there is not much difference between the initial target
and the adjustment target electricity consumption, but the difference gradually increases
with time. This is because the difference between the previous building electricity con-
sumption and the previous target electricity consumption is distributed to the adjustment
target electricity consumption in proportion to the predicted electricity consumption from
the next time zone to the last time zone of the occupied time. When the target is lower than
the electricity consumption, the algorithm is run more frequently, the control duration is
longer, and the number of operated air conditioners is likely to decrease. Figure 19 shows a
graph of the control set temperature, zone temperature, the air conditioner status of lecture
halls 202-2, 305-2, 404, 5F lounge 1, and lecture hall 605-2 on floors 2-6, and the time when
the air conditioners are turned on. While the set temperature used when not controlled
was set at 25-26 °C, the set temperature used to control the air conditioner reduced by 2 °C
at the set temperature used when not controlled. The algorithm in lecture room 202-2 was
controlled six times, which occurred at 10:23, 11:49, 13:11, 14:11, 15:16, and 16:16. In lecture
room 305-2, the algorithm was controlled five times; in lecture room 404, one time; in 5F
lounge 1, six times; and in lecture room 605-2, three times.

—— Eleclricity consumption

Load Forecasling
—-—= Adjustment Target eleclricity consumption
- == Targel electricily consumplion

Electricity consumption
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8
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Figure 18. Reduction ratio 10% result of the field test with the target, building electricity consumption,
and algorithm events applying the building control algorithm.
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Figure 19. Reduction ratio 10% result of the field test with the zone temperature, set temperature, and air conditioners
operating state applying the building control algorithm. (a) Lecture hall 202-2; (b) Lecture hall 305-2; (c) Lecture hall 404;
(d) 5F lounge 1; (e) Lecture hall 605-2.

Figures 20 and 21 show the field test results applying the algorithm, the total air
conditioners operated in heating mode, and that the predicted electricity consumption was
8364.1 kWh/d. When the reduction ratio was 15%, the electricity consumption with the
algorithm was 7189.6 kWh/d, which compared to the predicted electricity consumption,
was a 14% decrease. Figure 20 shows the electricity consumption in the building, the
number of operating air conditioners, the time when the algorithm occurred, and that
the algorithm was controlled a total of 10 times. The blue line means the electricity
consumption with the algorithm, the yellow line means the predicted electricity, the
red and green dot line means the target electricity consumption, the green and pink
line means the algorithm event, and the navy line means the number of operated air
conditioners. In experiments, the occupied time period is from 8:00 to 18:00, and during
this period, the electricity consumption is lower than the target electricity consumption, so
the adjustment target electricity consumption is higher than the initially set target (target
electricity consumption). Initially, there is not much difference between the initial target and
the adjustment target electricity consumption, but the difference gradually increases with
time. This is because the difference between the previous building electricity consumption
and the previous target electricity consumption is distributed to the adjustment target
electricity consumption in proportion to the predicted electricity consumption from the
next time zone to the last time zone of the occupied time. When the target is lower than
the electricity consumption, the algorithm is run more frequently, the control duration is
longer, and the number of operated air conditioners is likely to decrease. Figure 21 shows
the control set temperature, zone temperature, the air conditioner status of lecture halls
201-1, 304, 402-2, 505-2, and 605-1 on floors 2-6, and the time when the air conditioners
are turned on. While the set temperature used when not controlled was set to 25-26 °C,
the set temperature used to control the air conditioner at the set temperature used when
not controlled reduced by 2 °C. The algorithm in the lecture room 201-1 was controlled
five times, which occurred at 9:53, 10:52, 11:37, 12:57, and 16:14. In lecture room 304, the
algorithm was controlled two times; in lecture room 402-2, one time; in lecture room 505-2,
four times; and in lecture room 605-1, two times.
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Figure 21. Reduction ratio 15% result of the field test with the zone temperature, set temperature, and air conditioners
operating state applying the building control algorithm. (a) Lecture hall 201-1; (b) Lecture hall 304; (c) Lecture hall 402-2;
(d) Lecture hall 505-2; (e) Lecture hall 605-1.

5. Conclusions

This study proposes the building control algorithm as a technique to reduce the
amount of electricity consumption in buildings, uses Seq2seq LSTM to set the target build-
ing electricity consumption in the algorithm, and uses AHP to prioritize air conditioners.
The proposed algorithm is aimed at reducing the overall electricity consumption of build-
ings rather than the peak electricity consumption of conventional algorithms, and the target
electricity consumption is selected using the predicted value of the seq2seq LSTM model.
By using a predictive model, we can expect automation of target electricity consumption
selection and more accurate target electricity consumption selection.
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The seq2seq LSTM model was used as a method of predicting the electricity consump-
tion of the building, and Bayesian optimization, one of the hyperparameter optimization
methods, was proposed as a method of selecting an optimized hyperparameter to improve
the performance of the model. It can be seen that the predicted power consumption is simi-
lar to the actual electricity consumption in all models using seq2seq LSTM, and analysis
showed that when Bayesian optimization is used, the prediction accuracy of the model
increases considerably.

The simulation result applying the algorithm was performed under the conditions of
different reduction ratio of 5, 10, and 15%, and the actual reduction ratio during simulation
was 7.3, 9.7, and 13.4%, respectively. The simulation result applying the algorithm is similar
to various reduction ratios targeted by the algorithm applied to the simulation, and it
was confirmed that the algorithm can effectively reduce the electricity consumption to
the target building electricity consumption while maintaining occupant convenience. The
field test result applying the algorithm was conducted under various target conditions,
such as a reduction ratio of 5, 10, and 15%. The reduction ratios are 6.8, 10, and 14%,
compared to the predicted electricity consumption for reduction ratios 5, 10, and 15%,
respectively. In addition, despite turning off the air conditioner while performing algorithm,
the zone temperature does not go below 20 °C, the maximum temperature of the algorithm,
indicating that the algorithm reduces electricity consumption while maintaining comfort.
Thus, the building control algorithm proposed in this study showed that the building
electricity consumption could be matched to the target electricity consumption while
maintaining occupant comfort. In addition, the field test with the building control algorithm
applied to real buildings proves that the building control algorithm can be used for real
buildings.
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Nomenclature

s Split function

k Covariance function
f Forget gate

i Input gate

0 Output gate

g Memory cell state

c Cell state

hy Hidden state

W Weight matrix

tanh Hyperbolic tangent function
GP Gaussian process

u Utility function

x Input set
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P Electricity consumption
E Reduction ratio
u Operating status of air conditioner
T Temperature
N Period
Max Maximum
Min Minimum
Cv(RMSE) Coefficient of variation of root-mean-square error
MBE Mean bias error
Subscripts
Week Week
D Day
pred Prediction
h Hour
target Target
occ Occupied time
adjust Adjustment
inv Inverse
t Time
« Weight value
c Current
Set Setting
max Setting maximum value
min Setting minimum value
Greeks
¢ Filter function
P Geometric characteristic of the partitioning function
0 Optimal value
U Mean function
o Sigmoid function
A Priority of air conditioner
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