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Abstract: Air conditioning (A/C) is generally responsible for a significant proportion of total building
energy consumption. However, occupants’ air conditioning usage patterns are often unrealistically
characterised in building energy performance simulation tools, which leads to a gap between sim-
ulated and actual energy use. The objective of this study was to develop a stochastic model for
predicting occupant behaviour relating to A/C cooling and heating in residential buildings located in
the Subtropical Sydney region of Australia. Multivariate logistic regression was used to estimate the
probability of using A/C in living rooms and bedrooms, based on a range of physical environmental
(outdoor and indoor) and contextual (season, day of week, and time of day) factors observed in
42 Sydney region houses across a two-year monitoring period. The resulting models can be imple-
mented in building energy performance simulation (BEPS) tools to more accurately predict indoor
environmental conditions and energy consumption attributable to A/C operation.

Keywords: occupant behaviour; air conditioning; residential; stochastic modelling; building energy

performance simulation

1. Introduction

Energy consumption of the residential building sector accounts for approximately 30%
of that consumed across all sectors [1]. According to the Department of the Environment
and Energy’s latest estimates of Australian energy end-use, space conditioning represents
a major component of residential energy consumption nationally. In effect, space heating
and water heating constitute the greatest part of the end use in terms of residential total
energy consumption in Australia [2]. With the aim of reducing energy consumed for space
conditioning, residential buildings are subject to relevant energy efficiency performance
requirements, in the form of a star rating system [3]. As in other jurisdictions, building
energy performance simulation (BEPS) tools have become the default method for predicting
the performance of residential designs, along with energy efficiency compliance assessment
in Australia.

BEPS tools predict the energy use of a building based on a series of assumptions
regarding building occupant behaviour profiles (e.g., window and shading adjustments,
HVAC system operation, etc.). However, such behaviour profiles often inadequately
represent actual occupants’ behaviours [4], leading to a gap between the simulated and
actual energy use (e.g., [5-9]). For example, the Australian study by CSIRO researchers [10]
investigated the thermal performance and cooling/heating energy use in a sample of
414 houses located in three capital cities and climate zones of Australia. While the result
confirmed that there was a 19% to 50% reduction in the actual heating energy use in
homes with higher thermal performance star-ratings compared to those with lower ratings,
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there was an inverse correlation between cooling energy use and thermal performance
rating. The average cooling energy use in summer was paradoxically greater in homes
with higher thermal performance for two of the three cities studied, notwithstanding the
similarity in the indoor temperatures observed in both lower- and higher-rated homes. The
results underscore a need to narrow the gap between simulated and actual energy use in
residential applications.

Implementing more realistic occupant behaviour profiles in BEPS tools would certainly
improve the validity of the simulation outcomes, and, in response, research activities
aiming at modelling real patterns of occupant behaviour have become more common
in the last decade or so (e.g., [11-17]). Tanimoto and Hagishima [11] used a Markov
chain to build a probability model for determining A/C state transition (shifting from
off-to-on state and vice versa). The model only used indoor globe temperature (a proxy
for operative temperature), ignoring other factors such as the time of day and events.
As a result, the Markov chain model could not be applied to actual simulation practice.
Another observational study [12] collected behavioural data from over thirty apartments
located in different climate zones within China. They developed a probability model
using discrete three-parameter Weibull distribution. Yao [13] developed behaviour models
for predicting A /C cooling state based on observations from a single, typical apartment
located in China using logistic regression as a function of outdoor and indoor temperatures.
Bruce-Konuah et al. [14] developed stochastic models of heating override behaviour using
logistic regression based on indoor and outdoor physical environment and time of the day
factor. The results reported factors other than indoor and outdoor temperatures could act
as drivers of A/C usage patterns. Andersen et al. [15] implemented window opening [16]
and heating set-point adjustments’ [17] behaviour models developed from the previous
study in a BEPS tool enabling stochastic predictions. However, the result showed that the
models did not predict the actual indoor environmental conditions well.

Generally, most of the previously published studies relied exclusively upon indoor and
outdoor temperatures as predictor variables to infer A/C state, but some have investigated
the impact of non-thermal, contextual factors such as outdoor environmental conditions
and time of day to enhance model validity. The study by Bruce-Konuah [14] reported that
factors other than indoor and outdoor temperatures can also be a key driver for occupants
to operate A/C. Thus, a general consensus seems to be emerging in the literature regarding
the complexity of influences on residential occupants” A/C use behaviour.

Furthermore, the majority of previous studies developed models that predict the A/C
state itself, i.e., either turned on or off, rather than the change-of-state (i.e., turning off-to-on
or vice versa). This becomes problematic if the predictor variables used in the model
are influenced by the state of the A/C. In winter, for example, high indoor temperatures
would be monitored when A/C heating is turned on and not when A /C is turned off. The
analysis in such a case would lead to the counterintuitive observations of A/C heating
being turned off with decreasing indoor temperatures, and to be turned on with increasing
indoor temperatures. This problem can be overcome by modelling the change of A/C state
(turned off-to-on or vice versa) rather than the state per se. This approach should reveal the
variables most relevant to A/C turning on behaviour and turning off behaviour, separately.

The research literature also indicates that occupant behaviour can vary widely de-
pending on context [18-20]. This is presumably because occupant behaviour is not simply
deterministic, but rather the result of myriad, interacting factors including cultural norms,
climatic setting, building design, and adaptive comfort opportunities available within
the building. The main objective of the current study is to develop stochastic models for
predicting A/C cooling and heating use behaviours in Australian residential buildings
based on longitudinal field observations of physical environmental (outdoor and indoor)
and contextual (season, day of week and time of day) factors as well as A/C use behaviour
in living rooms and bedrooms.
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2. Materials and Methods
2.1. Samples

A total of 42 households in two adjacent cities on Australia’s eastern seaboard, Sydney
and Wollongong, participated in the study. Both cities fall within the humid sub-tropical
climate zone of eastern Australia and so, for the purposes of this study, can be regarded
as a single sample. Field measurements were conducted across two years, from March
2012 through March 2014. Indoor air temperature and humidity were recorded every
15 min for the duration of the study at various locations within the occupied zones of
each participating house (including living room, bedroom, dining room, kitchen, and
study) using iButtons (accuracy +0.5 °C, 5% RH) [21]. The iButtons were installed at
about 0.6-0.8 m above the floor level, e.g., underneath the tables, desk or cabinets, to
avoid exposure to direct sunlight. iButtons were also placed on the air outlet of the air
conditioning system or fan-coil unit.

The delta-temperature between the A/C supply outlet and the occupied zone has
been previously used to determine when A/C was operational using the iButton’s 15-min
logging interval [22]. First, if the difference between two sequential supply air temperature
measurements was greater than 3.5 K, then the A/C was considered to be switched on
within that 15-min period. The temperature in the occupied zone when the A/C was
operational and two subsequent measurements were analysed in consideration of thermal
capacity of the sensor. If the difference between the maximum of the three temperatures in
the occupied zone and the supply air temperature was greater than the threshold specified
for that house (nominally 3 K but adjusted to individual cases), then heating was deemed
to be in use. If not, the same logic was applied to the minimum of the three measurements
to test if cooling was being used. This logic was continued until neither case was true and
then the A/C was flagged as not in use. This method was applied to the observations
made in the current study; 30 living rooms, 15 bedrooms, 6 dining rooms, 6 study room:s,
3 kitchens, and 2 lounges across the participating households. We believed the sample
sizes of the occupied zones other than the living room and bedroom were too small to be
representative of typical Australian households. For this reason, this study excluded data
from households who installed iButtons in the occupied zones other than the living room
and bedroom. As a result, the data set used in this study consists of the measurements in
the 30 living rooms and 15 bedrooms from the 36 participants” homes.

The main features of the houses and their occupants are summarised in Table 1. Most
of our house samples comprised masonry construction (double brick 27.8% or brick veneer
30.6%), and 25 houses (69.4%) had ceiling insulation. The most common house type was
single storey (38.9%), followed by double storey (25%), and then split-level (11.1%). The
most common number of occupants in the houses were 2 persons (45.7%), 4 persons (28.6),
3 persons (14.3%) and more than 4 persons (11.4%).

Table 1. Description of the sample of Sydney region residents and characteristics of their houses.

Number of Average Age Number of House Part1c1p.at10n IEQ Sensor  Participating
House Index . of the . Duration . a
Residents . Storeys Construction Location Season
Residents (Years)
1 4 19 Two Storey ~ Double brick 0.8 Living SMI;\;II;IUT/
2 2 35 Other Other 0.7 Living/Bed SMR/AUT/
WIN
. .. SPG/SMR/
3 4 19 One storey Brick veneer 1.5 Living AUT/WIN
4 2 35 One storey Double brick 0.3 Living SPG/WIN
Lightweight .
5 2 35 One storey cladding 0.3 Living/Bed SPG/SMR
6 2 35 Other Double brick 0.6 Living SPG/SMR/

AUT
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Table 1. Cont.
Number of Average Age Number of House Part1c1p'at10n IEQ Sensor  Participating
House Index . of the . Duration .
Residents . Storeys Construction Location Season ®
Residents (Years)

_ . SPG/SMR/

7 3 40 One storey Brick veneer 2.1 Living/Bed AUT/WIN
' ] SPG/SMR/

8 3 40 Split level Timber 2.1 Bed AUT/WIN
) . SPG/SMR/

9 o 35 Other Double brick 1.1 Living/Bed AUT/WIN
) . SPG/SMR/

10 3 45 One storey Double brick 2.1 Living AUT/WIN
) . SPG/SMR/

11 5 25 Two Storey Composite 1.6 Living AUT/WIN
. SPG/SMR/

12 4 33 Two Storey Brick veneer 1.6 Bed AUT/WIN

13 2 30 Other Other 0.3 Living SPG/WIN
14 2 65 Other Other 0.6 Living/Bed SPCXS? ©

15 6 38 Split level Composite 0.3 Bed SPG/SMR
) . SPG/SMR/

16 4 41 Two Storey Double brick 2.1 Living/Bed AUT/WIN
_ . SPG/SMR/

17 2 30 One storey Brick veneer 2.1 Living/Bed AUT/WIN
. SPG/SMR/

18 4 32 One storey Other 1.8 Living AUT/WIN
19 2 35 One storey Double brick 1.5 Living SPC;/S};/I R/
Lightweight - SPG/SMR/

20 3 24 Other dadding 17 Living AUT/WIN

21 2 35 One storey Other 1.8 Living/Bed SPR/WIN

2 _ - Other Other 1.3 Bed SMR/AUT
. . SPG/SMR/

23 4 24 One storey Brick veneer 2.1 Living AUT/WIN
. . SPG/SMR/

24 6 33 Two Storey Brick veneer 2.1 Living AUT/WIN
25 5 30 Other Double brick 0.8 Living SPRA/I_S]¥[R/
) . SPG/SMR/

26 2 35 Other Double brick 14 Living AUT/WIN

27 2 60 Two Storey  Double brick 13 Bed SMR/AUT
] . SPG/SMR/

28 3 34 Two Storey ~ Composite 12 Living AUT/WIN
. . SPG/SMR/

29 2 55 Split level Brick veneer 1.2 Bed AUT/WIN
_ . SPG/SMR/

30 2 45 One storey Brick veneer 1.2 Living AUT/WIN
. . SPG/SMR/

31 4 28 One storey Brick veneer 0.8 Living AUT/WIN
. . SPG/SMR/

32 2 65 Two Storey Brick veneer 1.1 Living/Bed AUT/WIN
] . SPG/SMR/

33 4 19 One storey Timber 1.1 Living AUT/WIN
' . SPG/SMR/

34 4 21 One storey Brick veneer 1.1 Living AUT/WIN
. . SPG/SMR/

35 2 60 Split level Other 0.8 Living AUT/WIN
) . SPG/SMR/

36 4 21 Two Storey ~ Composite 0.9 Living AUT/WIN

2 SPG, spring; SMR, summer; AUT, autumn; WIN, winter.
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A/C usage behaviour is known to be weather sensitive [14,22,23]. Concurrent meteo-
rological observations (excluding solar radiation) were obtained from the nearest official
Australian Bureau of Meteorology (BOM) stations. Generally, all houses in the sample fell
within a 7 km radius of the closest BOM stations. Concurrent solar radiation observations
were obtained from the Department of Environmental Sciences Automatic Weather Station
at Macquarie University [24].

2.2. Preparation and Processing of Data

Simultaneous outdoor and indoor environmental data were merged to build a 15-min
resolution dataset. Regarding the dependent variables for modelling, A/C cooling and
heating states were coded as binary variables for each 15-min time step. When A /C state
change occurred (off to on/on to off), the immediately preceding time step was flagged
as a state-change event. For example, if A/C was turned on at 10:00 a.m., 9:45 a.m. was
coded as a ‘turning on’ event. Four possible state codes comprised ‘turned off’, ‘turning
on’, “turned on” and ‘turning off” for both cooling and heating modes of operation (referred
to as ‘cooling action” and ‘heating action’). Therefore, the data set was filtered depending
on the purpose of the four A/C usage models (i.e., cooling on, cooling off, heating on,
and heating off). For example, data with ‘turned off” and “turning on” for cooling action
were used for developing a cooling on model that represents the probability of A/C being
turned from off to on at the next time step.

Table 2 lists all the variables used to derive A/C usage models. Thus, three categorical
variables were computed to capture different behavioural patterns, depending on sea-
son (summer/winter/intermediate), day-of-week (weekday/weekend) and time-of-day
(night/morning/afternoon/evening). Outdoor and indoor environmental parameters
were represented as continuous variables. The prevailing mean outdoor air temperature
(PMA) was also calculated based on the weighted 7-day running mean method defined
in ASHRAE Standard 55 [25]. Logarithmic transformation was applied to solar radiation,
wind speed, and rainfall observations to obtain a more normalised distribution, as shown
in Table 3.

Table 2. List of explanatory variables.

Variable Unit
Categorical
Season Summer/Winter /Intermediate
Day of week Weekday/Weekend
Time of day Night/Morning/Afternoon/Evening
Continuous
Outdoor air temperature (T,) °C
Outdoor relative humidity (RH,) %
Solar radiation (Rad) W/m?
Wind speed (WS) m/s
Rainfall (RF) mm
Prevailing mean outdoor temperature (PMA) °C
Indoor air temperature (Tj) °C
Indoor relative humidity (RHj;) %

Table 3. Variable transformation. Log indicates the natural logarithm.

Variable Unit
Solar radiation (W/m?) Log(Solar radiation + 1) (Log(W/m?))
Wind speed (m/s) Log(Wind speed + 1) (Log(m/s))

Rainfall (mm) Log(Rainfall + 1) (Log(mm))




Buildings 2021, 11, 122

6 of 15

2.3. Statistical Analysis

Multivariate logistic regression was used to develop the A/C usage models as it has
been widely adopted in modelling occupant behaviour [13,14,16]. The probability function
can be expressed as follows:

log(lfp> =a+bix;+byxo+ -+ byxy 1

where p is the probability of turning on/off A/C; a is the intercept; b is the coefficient; and
x is the explanatory variables.

The monitored A/C usage behaviours in the living room and bedroom were different,
as shown in Figure 1. Thus, the fitted regression coefficients differed. For example, an
increase in solar radiation might increase the probability of an A/C turning on in the
living room, but the same increase might result in a smaller increment in bedroom A/C
probability. This is because the A/C in the living room was usually turned on during the
daytime, whereas an A/C in the bedroom was turned on more frequently in the night-time.
Consequently, A/C usage behaviours in the living room and bedroom were modelled
separately, suggesting 8 (2 x 2 x 2) different models, i.e., cooling/heating, turning on/off,
in the living room/bedroom.

The explanatory variables selected in each model were determined based on a forward
and backward selection using the Akaike Information Criterion (AIC). The procedure
begins from the null model and adds in variables one by one (forward selection). The AIC
is calculated for each case, and the variable with the lowest AIC is selected. The remaining
variables are then tested one by one again with the selected variable. If the bivariate model
has a higher AIC than the univariate model, the univariate model is chosen. However, if the
bivariate model has a lower AIC, the procedure progresses to a three variable model, and
so on. At each step, the AIC for models obtained by removing each of the selected variables
are also calculated for comparison (backward selection). For example, additional three
bivariate models can be obtained from a three variables model. This process continued
with the same criteria, up to n variables models.

To evaluate the influence of explanatory variables within each model, the coefficient
should be taken into account with the scale. Schweiker and Shukuya [26] suggested the
absolute value of the coefficient multiplied by the scale of the explanatory variable (max-
min value), to get an indication of the magnitude of the impact of each variable on the
overall model. For example, the magnitude of the impact of solar radiation on A/C cooling
turning on and turning off behaviours in living rooms were 0.4 (|0.051 x 7.1]) and 0.9
(]—0.124 x 7.1]), respectively.

Logistic regression assumes negligible collinearity amongst the explanatory variables
because it inflates the estimated variance accounted by the inferred coefficients of the
variables contained in the model. Accordingly, possible inflation of the estimated variance
due to multicollinearity was assessed for all variables in each model using a generalised
variance inflation factor (GVIF). A GVIF of 1 indicates that there is no correlation between
the explanatory variables. A GVIF between 1 and 5 indicates a moderate correlation, and
over 5 denotes a high correlation. Generally, a GVIF of 10 was recognised as the maximum
acceptable level, but the value of 4 has been recommended [27]. The GVIFY @xDf) was
calculated to estimate the inflation of the variance due to multicollinearity. The GVIF
values for all the explanatory variables contained in cooling and heating usage models are
presented respectively in Tables 4 and 5. The values were all less than 4, indicating the
level of the inflation of the estimated variance of the coefficients was acceptable.

All statistical analysis described in this paper was conducted in R version 3.6.3 [28].
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Figure 1. Number of A/C turning on in the living rooms and bedrooms. (a) Cooling, (b) Heating.
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Table 4. GVIF analysis results from A /C Cooling on and off models.

Cooling On Cooling Off
Variable
GVIF Df  GVIFY2xDP9  GVIF Df  GVIFV/2xD9
Living
Season 1.8 2 1.2
Day of week 1 1 1
Time of day 7 3 14 6.9 3 14
Rad 6.5 1 2.6 6.3 1 2.5
RF 1 1 1
WS 13 1 1.1 13 1 1.1
PMA 19 1 1.4 13 1 1.1
To 49 1 2.2 3.6 1 1.9
RH, 3.8 1 2 4.8 1 2.2
T; 2 1 14 12 1 1.1
RH; 2 1 14
Bed
Season 2.8 2 1.3 2.3 2 1.2
Day of week 1 1 1
Time of day 1.6 3 11 10.1 3 1.5
Rad 6.4 1 2.5
RF 1.1 1 1
WS 13 1 12 1.6 1 1.3
PMA 3.1 1 1.7
To 1.8 1 1.3 5.3 1 23
RH, 7.1 1 2.7
T; 3.5 1 1.9
RH; 1.3 1 1.1 4.9 1 2.2
Table 5. GVIF analysis result from A/C Heating on and off models.
Heating On Heating Off
Variable
GVIF Df  GVIFV2xD9  GVIF Df  GVIFV2xD9
Living
Season 3 2 13 29 2 1.3
Day of week 1 1 1
Time of day 3 3 12 5.4 3 13
Rad 2.4 1 1.6 43 1 2.1
RF 1.1 1 1.1
WS 15 1 12 1.1 1 11
PMA 3.3 1 1.8 3 1 1.7
T, 4.4 1 2.1 1.8 1 1.3
RH, 3.1 1 1.8
T; 2.3 1 1.5 1.3 1 1.1
RH; 19 1 14
Bed
Season 7 2 1.6
Time of day 3.2 3 12 8.5 3 14
Rad 2.6 1 1.6 5.8 1 2.4
WS 12 1 1.1 12 1 1.1
PMA 7.4 1 2.7 2.7 1 1.6
To 3.5 1 1.9 3.7 1 1.9
T; 1.7 1 1.3 2.1 1 1.5
RH; 12 1 1.1
3. Results

Following the procedure described above, a total of eight A/C usage behaviour
models, i.e., cooling/heating turning on and off in a living room and bedroom, were
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developed. Table 6 presents descriptive statistics of all the variables used in each of the A/C
usage behaviour models. Tables 7 and 8 present the coefficients, their confidence interval
estimates, and magnitudes of the impact of each variable on the overall model included
in the cooling and heating models respectively. The coefficients, ‘season-intermediate’,
‘day of week-weekday’ and ‘time of day-afternoon’ are missing because they are used as
references for the corresponding categorical variables.

Table 6. Descriptive statistics of monitored data.

To RH, Rad WS RF PMA T; RH;
Living Bed- Living Bed-
Room Room Room Room
A/C Off
Max 459 100 1218.9 74 25.8 25.3 43.1 471 91.7 91.5
3rd 22 84 319.2 17 0 21.7 24.6 24.7 66.8 66.4
quarter
Mean 18.4 68.8 183.5 11.4 0 18.4 21.6 21.7 57.6 55.1
Median 18.8 70 5.5 10 0 19 21.7 22.1 58.9 56.4
Lst 14.9 56 0 5 0 15.3 19.1 18.7 50.1 449
quarter
Min —22 4 0 0 0 8.5 9.1 5.6 12.4 12.5
A/C Cooling on
Max 459 100 1154 63 18 25.3 36.2 36.6 91.5 91.5
3rd 27.4 76 350.3 22 0 23.2 26.2 25.2 61.1 85.1
quarter
Mean 25.6 61.5 206.2 154 0 22.1 24.7 23.2 54.8 69.7
Median 24.6 65 14 15 0 22.5 24.6 23.1 54.1 70.9
Lst 225 51 0 9 0 21.6 232 212 47.6 59
quarter
Min 5.8 7 0 0 0 11.3 14.1 11.6 14.9 12.5
A/C Heating on
Max 36.3 100 1013.8 59 6.4 25.3 35.7 37.7 91.5 91.5
3rd 14.5 89 43.9 15 0 13.9 21.6 19.7 60.9 65.7
quarter
Mean 12.6 70.8 73.8 11 0.1 13.3 19.7 16.7 50.4 51.8
Median 12.5 71 0 9 0 12.8 19.6 15.6 52 51.2
Lst 10.7 55 0 5 0 12 17.2 13.1 41 37.5
quarter
Min —0.2 10 0 0 0 8.5 10.1 9.1 12.5 12.5
Table 7. Coefficients and magnitudes of variables inferred from cooling on and off models.
Variables Cooling On Cooling Off
Coefficient Confidence Interval Magnitude Coefficient Confidence Interval Magnitude
2.50% 97.50% 2.50% 97.50%
Living
room
Intercept —17.881 —18.956 —16.822 1.481 0.349 2.603
Summer 0.224 0.044 0.408
Winter —0.976 —2.178 —0.072
Weekend 0.326 0.199 0.451
Evening 0.637 0.34 0.931 —0.123 —0.439 0.189
Morning —0.563 —0.775 —0.358 0.233 —0.049 0.505
Night —1.398 —1.928 —0.905 —0.44 —0.844 —0.042
Rad 0.051 —0.004 0.107 0.4 —0.124 —0.183 —0.066 0.9
RF —1.071 —2.179 —0.213 3.5
WS 0.135 0.041 0.231 0.6 —0.082 -0.171 0.009 0.3
PMA 0.134 0.092 0.177 2.3 —0.079 —0.118 —0.039 1
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Table 7. Cont.

Variables Cooling On Cooling Off
T, 0.173 0.15 0.195 8.3 —0.103 —0.13 —0.075 3.6
RH, 0.009 0.004 0.015 0.9 —0.022 —0.029 —0.014 2
T; 0.139 0.114 0.164 47 0.04 0.01 0.07 0.9
RH; 0.029 0.022 0.036 2.2
Bedroom
Intercept —14.813 —16.081 —13.58 0.309 —1.158 1.764
Summer 0.417 0.178 0.664 0.115 —0.145 0.382
Winter 0.931 0.316 1.523 0.832 0.073 1.595
Weekend 0.38 0.215 0.543
Evening 0.786 0.577 0.997 0.152 —0.305 0.603
Morning —0.423 —0.698 —0.155 0.551 0.206 0.894
Night 0.038 —0.288 0.357 —0.037 —0.542 0.463
Rad 0.074 —0.009 0.157 0.5
RF 0.906 0.15 1.577 22
WS —0.098 —0.194 0.001 0.4 —0.156 —0.256 —0.055 0.6
PMA 0.162 0.1 0.225 2.6
T, 0.181 0.162 0.201 8.4 —0.195 —0.247 —0.145 7.8
RH, —0.012 —0.025 0.001 1.1
T; 0.153 0.103 0.204 3.8
RH; 0.01 0.004 0.016 0.8 —0.009 —0.02 0.002 0.7
Table 8. Coefficients and magnitudes of variables inferred from heating on and off models.
Variables Heating On Heating Off
Coefficient Confidence Interval Magnitude Coefficient Confidence Interval Magnitude
2.50% 97.50% 2.50% 97.50%
Living
room
Intercept —0.639 —1.465 0.183 —4.854 —5.771 —3.939
Summer —0.138 —0.565 0.264 0.777 0.226 1.321
Winter 0.819 0.611 1.032 0.17 —0.041 0.385
Weekend —0.12 —0.248 0.006
Evening —0.795 —0.983 —0.604 0.516 0.257 0.784
Morning —0.627 —0.813 —0.441 0.728 0.498 0.961
Night —2.169 —2.431 —1.911 1.142 0.821 1.466
Rad —0.237 —0.273 —0.201 1.7 0.097 0.047 0.148 0.7
RF 0.473 0.026 0.864 1.6
WS 0.141 0.076 0.206 0.6 —0.165 —0.223 —0.106 0.7
PMA —0.103 —0.14 —0.066 1.7 0.081 0.032 0.129 1.3
To —0.075 -0.1 —0.05 3.6 0.039 0.016 0.063 1.4
RH, —0.018 —0.023 —0.013 1.7
T; —0.132 —0.16 —0.104 4.5 0.027 0.008 0.046 0.6
RH; 0.022 0.016 0.028 1.7
Bedroom
Intercept —0.548 -1.781 0.677 —4.298 —4.964 —3.646
Summer 1.147 0.696 1.605
Winter 0.58 0.235 0.937
Evening —0.692 —0.991 —0.387 0.618 0.195 1.066
Morning —0.118 —0.375 0.138 0.024 —0.301 0.352
Night —2.332 —2.817 —1.875 1.138 0.543 1.738
Rad —0.187 —0.239 —0.135 1.3 0.095 0.012 0.181 0.7
WS 0.125 0.028 0.223 0.5 —0.128 —0.234 —0.021 0.5
PMA —0.14 —0.207 —0.073 2.3 0.157 0.101 0.214 24
To 0.042 0.008 0.075 2 0.084 0.043 0.127 2.9
T; —0.254 —0.281 —0.227 10.5 —0.06 —0.093 —0.029 15
RH; 0.01 0.005 0.015 0.8
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3.1. A/C Cooling Behaviour—'Cooling On’

On the basis of the magnitudes of the impact of explanatory variables on the overall
model, the most influential variable on A/C cooling turning on behaviour was the outdoor
air temperature in both spaces, i.e., living rooms and bedrooms. Outdoor temperature
and PMA (prevailing mean outdoor air temperature) were positively correlated with the
probability of ‘cooling on’. Indoor air temperature and rainfall had positive and negative
effects respectively on the probability of ‘cooling on’, while they did not have a significant
influence in the bedroom. Indoor relative humidity was the only variable removed among
the explanatory variables in the living room, whereas four continuous variables, i.e., RH,,
Rad, RF and Tj, were removed in the bedroom. All the categorical variables were all
significant in both areas.

Equations can be generated using the coefficients and intercepts listed in Tables 7 and 8.
The two equations below describe the probability of ‘A /C cooling on” occurring during
summer mornings on weekdays in the living room (2) and bedroom (3):

log (125 ) = ~18.22 + 0051 log(Rad + 1) — 1071 log(RF +1)

@)
+0.135 log(WS + 1) + 0.134 PMA + 0.173 T,, + 0.009 RH,, + 0.139 T;

log (ﬁp) — —14.82 — 0.098 log(WS + 1) +0.162 PMA +0.181 T, + 0.01 RH;  (3)

where
p is the probability of turning on A/C (cooling mode) in the next 15 min,
Rad is the solar radiation in W/m?,
RF is the total amount of rainfall in last 15 min in mm,
WS is the wind speed in m/s,
PMA is the prevailing mean outdoor air temperature in °C,
T, and Tj are the outdoor and indoor air temperature in °C,
RH, and RH; are the outdoor and indoor relative humidity in %.

3.2. A/C Cooling Behaviour—'Cooling Off’

Outdoor air temperature was again found to be the most important variable associated
with ‘cooling off” behaviour in both living rooms and bedrooms. While outdoor air
temperature had a negative correlation in both spaces, indoor air temperature had a positive
correlation. All of the continuous variables had a significant effect on the probability of
‘cooling off” behaviour, except rainfall for the living room and PMA for the bedroom. Solar
radiation and indoor relative humidity had negative and positive impacts, respectively, in
the living room, and opposite effects in bedrooms. Regarding the impact of the contextual
categorical variables on ‘cooling off” behaviour, season was removed from the living room,
and day of week was removed from both the living rooms and bedrooms.

3.3. A/C Heating Behaviour—'Heating On’

All of the variables were statistically significant for determining ‘heating on’ behaviour
in the living room, whereas rainfall, outdoor relative humidity, and day of week effects
were removed from the bedroom model. Unlike ‘cooling’ behaviour models where outdoor
air temperature was most influential, it was indoor air temperature that was most important
for the ‘heating’ behaviour models. Indoor and outdoor air temperature and PMA were all
negatively correlated with the probability of turning heating on in the living room, but the
sign of the outdoor air temperature coefficient turned out to be positive in the bedroom.

3.4. A/C Heating Behaviour—'Heating Off’

Rainfall, outdoor relative humidity, indoor relative humidity, and day of week all
dropped out of the ‘heating off’ models in both bedrooms and living rooms, as did the
seasonal effect for the bedroom model. The most important drivers for ‘heating off” be-
haviour were outdoor and indoor air temperatures as well as PMA. Counterintuitively,
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indoor air temperature turned out to have a smaller influence than outdoor air temperature
on ‘heating off’ behaviour. Other continuous variables had a relatively smaller impact on
heating off behaviour.

3.5. Generalisations across All of the Heating and Cooling Behaviour Models

Different explanatory variables exerted different effects on the various A/C behaviour
models. Generally, outdoor air temperature was identified as the most significant driver
for all A/C behaviour models, with the exception being the ‘heating turning on” model
where indoor air temperature was the dominant driver. PMA was consistently influential
in all models. Solar radiation and wind speed were statistically significant for all models,
but the size of their impacts was relatively minor. Rainfall and outdoor and indoor relative
humidity were not always related to A/C behaviour, but they had significant impacts on
some behaviours. Regarding the effect of categorical variables, ‘season” and ‘time of day’
had impact in almost all models. ‘Day of week’ did not affect ‘turning off” behaviour in
bedrooms or living rooms.

4. Discussion

The results of our analysis indicate that occupants’ control actions relating to A/C in
heating and cooling modes in residential settings were driven by various combinations of
environmental and contextual variables. The impact of explanatory variables on the A/C
control behaviour varied depending on the A/C modes (cooling/heating), behaviour type
(turning on/off) and room type (living room/bedroom). It seems clear that variables other
than the conventional choices, outdoor and indoor air temperature, should be taken into
consideration when developing more realistic and nuanced occupant behaviour schedules
for application in building energy simulation.

Outdoor air temperature emerged from this analysis as the most influential driver for
the ‘cooling on/off” and ‘heating off” behaviours, except for the ‘heating on” model, where
indoor air temperature was most influential, as listed in Tables 7 and 8. In conventional
behaviour modelling in building energy simulation, the trigger to turn off the A/C is
presumed to be indoor environmental variables; once the A/C has been activated, the oc-
cupants are expected to rationally turn off the A/C once indoor environmental conditions
have met their comfort expectations [26]. However, the results of our analysis indicate that
outdoor air temperature was the overriding influence on both A/C cooling and heating
‘turning off” actions. Furthermore, the sign (positive or negative) of the indoor air tempera-
ture coefficients in the models was opposite to those found for outdoor air temperature. For
example, the coefficients of indoor air temperature in the turning A/C cooling ‘off’ models
for the living room and bedroom had positive signs, indicating that the probability of
turning off the A/C cooling increased as indoor air temperature increases. This is probably
because A/C heavy users keep their A/C on for longer at a lower temperature, whereas
A/C light users operate their A/C for a short time at a higher indoor air temperature. Thus,
clustering and modelling diverse behavioural patterns would represent the diversity of
occupants expected to be found in the community.

There was a substantial difference found between the A /C operation patterns of the
living rooms and bedrooms, as shown in Figure 1. The A/C cooling in the living room
was mostly turned on in the afternoon, whereas the A /C in the bedroom was turned on
mostly at night, presumably before sleeping. A/C heating was turned on more frequently
during the early morning and evening in the living room as compared to the bedroom. The
different usage patterns seem to be strongly related to the occupancy pattern of each room.
Behavioural models based on the occupancy state might enable more realistic predictions of
A/C operation. Nevertheless, the modelling in this study was conducted without definitive
information on the state of occupancy in a given room because accurate of occupancy
detection is still a challenge [29] and particularly difficult in the residential context.

This paper provides details of behaviour models estimating the probability of an
A/C to be turned on and off based on environmental measurement data collected in
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Australian residential buildings. We used logistic regression and selected the Akaike
information criterion (AIC) as a basis of identifying key variables in the model. The
proposed models can be implemented into BEPS tools to more accurately predict indoor
environment and energy consumption associated with A/C usage. In our analysis, we
treated the whole sample as one group, and other potential influencing factors, such
as personal characteristics, social parameters, and building design features, were not
considered. Thus, predicting the precise A/C usage behaviour of one specific home was
outside the scope of this work. Future research should investigate whether there is a
common behaviour pattern for sub-groups categorised by the above-mentioned variables.
Such an approach would facilitate the development of models for predicting specific group
or population behaviours [30,31].

Various other modelling techniques have been attempted in the literature such as
data mining [32-34] and agent-based modelling [35]. For example, Chen et al. [36] have
developed an agent-based occupancy simulator capable of performing a stochastic simula-
tion of occupant presence and movement in buildings. An agent-base is a computational
model to simulate the behaviour of each individual occupant independently and produce
respective behaviour patterns. As an agent-based model (ABM) facilitates focus at different
levels, from the group level down to the individual level, it is useful for the capture of
diverse characteristics of occupants such as psychological and social factors [37]. On the
other hand, due to occupant diversity, ABM can significantly increase the computational
cost of a large-scale simulation. It also requires special expertise and understanding in
settings regarding various occupant behaviours to set appropriate sequences of different
behaviours. It should also be noted that the real-time communication between the ABM
and BEPS tools may lead to an increase in the difficulty of its application [38].

5. Conclusions

This paper proposed the behavioural models of occupant A/C usage based on longi-
tudinal data collected in Australian homes. Multivariate logistic regression was used to
develop the stochastic model, predicting ‘turning on” and ‘turning off” actions for A/C
cooling/heating operation in the next 15 min in the living room and bedroom, based on a
range of physical environmental (outdoor and indoor) and contextual (season, day of week
and time of day) factors.

The work reported in this study found that occupant control of A/C in residential
buildings was driven by numerous environmental and contextual variables, suggesting that
variables other than just outdoor and indoor air temperature should be taken into account.
Different A /C usage patterns were observed between the living room and bedroom due
to the occupancy state. Consequently, this study has resulted in the development of A/C
usage models for both living rooms and bedrooms. The proposed models can be imple-
mented in building energy performance simulation (BEPS) tools to more accurately predict
indoor environmental conditions and energy consumption associated with A/C usage.
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