
buildings

Article

Augmented Reality to Enable Users to Identify Deviations for
Model Reconciliation

Jad Chalhoub, Steven K. Ayer and Kieren H. McCord *

����������
�������

Citation: Chalhoub, J.; Ayer, S.K.;

McCord, K.H. Augmented Reality to

Enable Users to Identify Deviations

for Model Reconciliation. Buildings

2021, 11, 77. https://doi.org/

10.3390/buildings11020077

Academic Editor: Svetlana J. Olbina

Received: 31 January 2021

Accepted: 20 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA;
jadmchalhoub@outlook.com (J.C.); steven.ayer@asu.edu (S.K.A.)
* Correspondence: kieren.mccord@asu.edu

Abstract: Effective use of Building Information Modeling (BIM) during operation typically requires
modeled content to accurately match the built spaces, which necessitates effective field verification
techniques to ensure that BIM content matches the actual built conditions. Some contractors leverage
laser scanning and other reality-capture technologies to verify modeled content prior to turnover, but
these approaches can be time- and resource-intensive. Augmented reality (AR) enables users to view
BIM content overlaid on their field of view of the built space. Research suggests potential for using
AR for tasks related to field verification, but a study that systematically explores the specific types of
deviations that can be detected with this technology is missing from the current literature. This paper
tasks participants with using immersive AR to identify deviations from BIM in a ceiling plenum
space that includes installed Mechanical, Electrical and Plumbing (MEP) components, which would
typically be included in a coordinated BIM. The results suggest that AR can enable users to effectively
identify large deviations and missing building elements. However, the results do not indicate that
AR effectively enables users to identify small deviations and can potentially lead to identifying false
positive observations, where accurately constructed elements are perceived as deviating from BIM.
These results suggest that immersive AR can effectively be used to check whether recently built
elements conform to the intended BIM in instances where speed of verification is more important
than adhering to strict tolerances. For instances where accuracy (less than two inches) is critical,
the results of this work suggest that AR can be used to help determine where in the building more
accurate, but more resource-intensive, reality-capture technologies should be used.

Keywords: augmented reality; deviation detection; quality control; laser scanning

1. Introduction

Project models and documents are key deliverables to facility managers (FMs) at the
end of a construction project and are particularly important for the long-term success of
any project. Research suggests that issues with closeout documents can lead to long-term
problems for building operators and FMs [1]. Facility owners spend a significant amount
of time and money on field verification and associated issue identification. For example, in
U.S. capital facility projects alone, an estimated 4.8 billion dollars are spent yearly to ensure
that available information matches what was actually built [2]. These trends highlight
the need to find better ways of turning over information to owners to ensure that the
information accurately represents what was constructed.

During the design and construction phases, Building Information Modeling (BIM)
is increasingly being used by architects and constructors [3,4]. While its use is still less
common during the operation and facility management phases of a building project, and
still presents significant challenges, interest in the subject is growing rapidly [5–7]. Some
researchers suggest that effective BIM use during operation could provide benefits related
to process, workflow, and safety of operations and maintenance [8]. Others developed
a tool to enable facility managers to better understand the value of BIM to their work,
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and proposed using it as a learning mechanism to continuously question the value BIM is
providing [9]. Researchers are recognizing the opportunity for effective BIM to coordinate
with the internet of things (IoT) to create the opportunity for smart facility management [10].
Currently, several commercial software suites target the use of BIM for FMs [11]. While
not all of the information available in a typical BIM is essential to facility managers,
accurate geometrical representation is of particular importance [12]. Currently, most field
verification processes collect a point cloud of the building using photogrammetry [13]
or laser scanning [14], and compare this content to the model, but these methods can be
time-consuming and labor-intensive [15].

Augmented reality (AR) is a technology that allows the viewing of both real and
virtual content in the same field of view [16]. AR use has been theorized and applied in
the construction industry, including during construction [17], pre-construction [18] and
project monitoring [19]. A prior review of AR applications revealed interest from the
different project stakeholders for non-immersive visualization technologies to enhance
progress monitoring and defect detection processes [20], and a more recent review indicated
widespread interest in using AR for quality control and defect detection [21]. For example,
a study outlined the process of using AR to analyze segment displacement in a constructed
tunnel [22]. However, this and other studies outline feasibility of processes but do not
dive into the precision limitations of AR. Past researchers have outlined the limitations of
using AR for inspection to include site-specific issues [23], mobility issues and accuracy
and precision issues [24]. While the mobility component has largely been solved, accuracy
and precision, while constantly improving, remain a limiting factor.

Although it is still a developing technology, AR can enable users to visually compare
the model to the built environment and determine potential deviations, which may be
able to save time for scanning and data processing compared to current photogrammetry
and laser scanning practices. Additionally, it has long been recognized that traditional
two-dimensional (2D) drawings, which are still commonly used on construction sites
today, present difficulties with both accuracy and mental visualization when compared to
three-dimensional (3D) alternatives [25,26].

These limitations call for a more intuitive mode of design communication to support
field verification tasks, warranting an exploration of augmented reality in contributing a
part of the solution.

Furthermore, prior research has shown that novices and experts tend to perform
and behave similarly when completing certain construction tasks using AR [27], creating
an opportunity to leverage individuals with varied levels of experience in supporting
model-verification checks.

This research investigates the performance advantages and disadvantages of using
AR to verify deviations between the model and the built environment among Mechan-
ical, Electrical and Plumbing (MEP) systems installed in a ceiling plenum when used
by graduate students with varying levels of industry experience. Specifically, the paper
answers the following questions: What are the types of deviations that can be detected
by users of AR? And what is the frequency of false positive observations when using AR
for this type of deviation detection? The findings will enable practitioners to integrate AR
technology into field verification processes in ways that directly leverage performance
evidence. Furthermore, the findings highlight opportunities for future researchers to target
specific performance improvements to AR devices to support field verification (and related)
use-cases.

2. Background
2.1. Building Information Modeling

Building Information Modeling (BIM) is the digital representation of the physical and
functional properties of a building [28]. BIM provides the modeled content that enables
the use of AR, so a background on BIM in the industry is presented here to illustrate
its prevalence. BIM is being increasingly used during the different construction phases,
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enabling contractors to reduce errors and omissions, collaborate with design firms, reduce
rework, and reduce overall cost and duration of a project [3]. When a model is turned over
at the end of the construction phase, it can enable owners to effectively access design and
construction information [6], and also to document changes to the building throughout its
lifecycle [29].

For building operation, BIM can help locate and manage building components [30]
and facilitate space management [31]. Using Radio Frequency Identification (RFID) in
conjunction with BIM enhances accessibility to accumulated lifecycle information [32].
Recognizing its many benefits, owners and facility managers are increasingly asking
for accurate models of the project after the construction phase [33]. While these potential
benefits to using BIM for FM are becoming increasingly well documented, they are generally
dependent on having accurate information turned over to owner teams by construction
teams at the conclusion of projects. This process of turning over accurate information can
pose practical challenges.

Contractors have been increasingly leveraging BIM during construction for applica-
tions such as creating accurate geometric representations of building parts in an information-
rich environment [34], managing scheduling concerns [35], managing cost control pro-
cesses [36] and monitoring environmental data [34]. Currently, most applications are
focused on deriving value from BIM during the construction phase of the project. Devel-
oping accurate as-built BIM content requires contractors to thoroughly check what was
built compared to what was supposed to be built, which traditionally is very resource-
intensive. The next section details the different deviation detection and model rectification
mechanisms used.

2.2. Field Verification and Deviation

The aim of field verification is to reconcile the model and the built environment.
Ideally, these environments should match exactly, but deviations made during construction
may introduce discrepancies between the BIM and physical spaces. Typically, one of the
various reality-capture technologies is used to record the state of the built environment in
order to identify the location of deviations between the BIM and physical building elements.
This process involves the generation of a point cloud of the built environment, often using
laser scanners [14], photogrammetry [37], videogrammetry [38], or a combination of these
technologies [39]. Once point clouds or models that represent the actual built conditions
of a project are created, they are compared with the original BIM for construction. This
comparison can be supported through the use of technology [40], but the determination
of how to reconcile differences between BIM and actual conditions is typically done by a
human decision-maker. Depending on the type of deviation and phase of construction,
either the model is adjusted, or the built element is reworked. In response to the need
for effective field verification technologies to support decision-makers, researchers have
explored various strategies to improve the technologies and processes related to this task,
which are detailed in the subsequent paragraphs.

Photogrammetry is a technology that compares two overlapping still images to create
a stereo-model by calculating light rays [37], enabling a portable sensing of the current
surroundings [41]. Essentially, the photos are used to create low-density 3D point clouds of
areas of interest. Researchers have used site pictures to recreate 3D models and compare
them to the planned models for construction progress monitoring [42]. Others have used
images taken from Unmanned Arial Vehicles (UAV) to recreate low-cost 3D as-built models
of electrical stations [43]. Furthermore, researchers have used single-frame photos of 3D
objects to identify building defects [44]. Videogrammetry is a similar technology that uses
a video feed instead of overlapping pictures to recreate 3D models [38]. However, research
suggests that photography on-site may not always lead to sufficiently accurate 3D point
cloud models [45], and current photogrammetry technology still displays inconsistencies
based on software choice and placement of control points [46].
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Depth sensing cameras have also been used to evaluate deviation between planned
and constructed elements. Researchers have used a two-step depth sensing algorithm to
recreate a 3D model from the associated imagery, compare that content with BIM, and do
a discrepancy check to identify deviations [47]. This technique has also been used with a
moving camera setup with both 2D and depth sensing cameras [48]. In an industrial setting,
depth sensing cameras are used to detect and quantify differences between assembled
products and a reference 3D model for one model in a fixed area [49].

Another technology used to acquire point clouds is laser scanning, otherwise known
as Light Detection and Ranging (LiDAR). Laser scanners are capable of registering millions
of points in a short period of time [14] that can be imported into Computer-Aided Drawing
(CAD) environments [50]. Numerous software suites have been developed to automatically
detect relevant geometries, such as cylinders and beams from point clouds [51,52], but more
work is required to optimize the software for the different uses [53]. Laser scanners are
usually very accurate [54], subject to environmental parameters and the properties of the
materials of the objects being scanned [55]. The main limitations of current laser scanning
technologies are the high upfront cost and the time involved with data collection [56].
Furthermore, laser-scanned point clouds can require more time to analyze compared
to photogrammetry [57]. Hybrid photogrammetry and laser scanning-based systems
have been suggested, but could still require significant time and effort for accurate data
capturing [58].

In general, reality-capture technologies rely on digitizing the built environment and
comparing the digital representation with the designed BIM. Because of the capital and time
resources required for capturing field conditions, one of the significant challenges related
to field verification practices is determining which areas are required to be scanned and
compared [59]. Since the scanning and data processing can be time-consuming, reducing
the areas required for scanning could reduce overall time and cost, especially when one task
is being delayed while analyzing the reality-capture models. Augmented reality provides
a theoretical benefit by enabling individuals to view as-planned BIM content over their
view of as-built physical spaces. In premise, this technology could enable individuals to
either verify the accuracy of field conditions without a separate reality-capture model, or it
could at least help to define potential discrepancies that warrant subsequent reality-capture
approaches for accurate viewing and comparison. This opportunity for more streamlined
field verification through augmented reality motivates this work.

2.3. Augmented Reality

Augmented reality (AR) is a technology that allows the viewing of both virtual and
real content as if they coexisted in the same field of view [60]. Review articles regarding
augmented reality in the construction domain suggest research directions for the technology,
including for site monitoring and inspection [61–63]. Another review article outlines
features of AR that help determine its suitability of use for certain applications, such
as the ability of AR to superimpose virtual elements on a real-world scene [64]. Recent
research has explored the use of AR for construction planning [65,66] and operation
and maintainability by providing relevant information intuitively throughout a project
lifecycle [67]. The use of AR for quality control and assurance, and specifically deviation
detection, has also been researched, as detailed in the following paragraphs.

In non-construction industries, AR has been utilized to identify discrepancies between
as-planned and as-built pipe placement in ship construction [68] and to compare 3D
mockups to CAD 3D models in the automotive industry [69]. Several researchers attempted
to use AR for defect identification in the built environment. Kwon et al. developed a
handheld mobile device-based application that overlays the BIM on top of a reinforced
concrete formwork to check for missing steel reinforcement [70]. Dunston used a camera-
based AR solution to replace a Total-Station to check the deviation and angle of steel
columns [71]. Zhou used AR on-site to rapidly check segment displacement during
tunneling construction and noted that it is generally faster to use AR than traditional
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inspection methods [22]. Abbas et al. studied rebar inspection using mobile augmented
reality and its impact on spatial awareness and cognitive load [72]. In these studies, AR
was used to detect specific deviations in specialty construction elements, not deviations
of overall constructed systems compared to designed models. Others have attempted to
use images to recreate a 3D model and compare the as-built to the CAD model in an AR
environment [73,74]. Research has also highlighted the need for technical advancement in
both tracking and viewing technologies to better enable on-site AR-based inspection [24].
In response to this, new registration mechanisms that do not require markers or a Global
Positioning System (GPS) were developed [75]. In addition to registration developments,
commercial tools are being developed to streamline and automate the process of importing
BIM models into a viewable augmented reality context [76,77].

Prior research suggests that AR can be used to identify some deviations between
planned and built elements in experimental, controlled settings, or to identify specific
deviations in specialized elements. In this paper, the authors use AR to enable users to
identify numerous types of deviations in a common field verification use-case related to
the comparison of built MEP systems in a ceiling plenum space and the intended BIM. The
experiment utilizes current generation AR devices to display the BIM content in the field.
The new knowledge provided by this paper relates to identifying the types of deviations
that users can identify with current generation AR for performing field verification use-
cases in an actual built environment.

3. Materials and Methods

This research aims to understand the types of deviations that can be detected by an
AR user when comparing a BIM to the built MEP systems for field verification. To explore
this topic, a fully constructed MEP system was modeled, and several deviations were
intentionally introduced to the model to simulate the types of differences that may exist
between model and field in practice. The researchers strategically chose a built environment
with exposed MEP systems to allow users to see it with the unaided eye, similar to how
construction professionals might check MEP systems in a plenum space prior to covering
them with finish materials. Using AR, the modified model was then overlaid on the
constructed system, and participants were instructed to find the deviations. In order to
avoid challenges that can be present with an indoor location, the authors used a printed
physical marker placed in a known location to register the modeled content. The types of
errors, observations and false positives captured by the practitioners were recorded and
analyzed. The following sections detail each step of the experiment methodology.

3.1. Partner Company and Model Development

The researchers partnered with a large electrical subcontractor in the southwest region
of the United States for developing the materials required for this experiment. The partner
company regularly provides as-built BIM content as part of their close-out deliverables. To
support this process, the company often uses laser scanning to collect accurate point clouds
of as-built conditions to compare to planned BIM content. This partner company provided
BIM development and field capture services for this research to create an accurate point
cloud, which was used to generate an accurate as-built model for the targeted space for
field verification, as shown in Figure 1.

The targeted area for field verification (Figure 1) was located in a finished building on
the authors’ institution’s campus. The hallway was strategically chosen because it does
not have a ceiling that blocks the view of the various building systems installed. This
effectively simulates the type of view that construction professionals would have when
field-verifying the locations of systems prior to covering them with typical finish materials.
The selected hallway included electrical conduits, telecommunications cable trays, lighting,
heating, ventilation and air conditioning (HVAC) ducts, water pipes and fire sprinkler lines.
This type of scenario involving similar components could directly benefit from effective
field verification.
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The authors worked with the partner company to generate an accurate, as-built, BIM
according to their typical field verification processes. First, a technician from the partner
company used a laser scanner to generate an accurate point cloud of the space, with an
accuracy of less than 1/8th of an inch. The point cloud was then imported into a modeling
software and used to recreate a model that exactly replicates the built environment. After
the accurate as-built model was created, several types of deviations were strategically
incorporated into the model for subsequent tasks aimed at determining the extent to which
users of AR could identify those types of deviations.

The authors introduced deviations into the model to simulate the types of deviations
that may occur in practice. Through discussions with the industry partner, three types of
commonly occurring deviations were selected for introduction in the model: (1) small devi-
ations, (2) large deviations and (3) missing elements. In this paper, small deviations were
defined as those smaller than two inches, and large deviations were defined as those larger
than two inches. Missing elements were defined as elements that were present in the BIM,
but not present in the built environment. There were four total deviations in the modified
model: two large deviations, one small deviation and one missing element. Figure 2 shows
the four deviations compared to the constructed environment. Table 1 summarizes the
deviations added to the model.

After defining the deviations in the model, the components in the BIM were color-
coded, based on the different types of systems, as shown in Figure 3. The HVAC system
was colored green, the electrical conduits were colored blue, the cable tray was colored pink
and lights were colored in light green. The coloring allowed the users to easily distinguish
between the built systems. It also enabled the research participants to easily stipulate
which system they were considering when performing the field verification tasks by simply
referring to their color. This was done to reduce the chances of misinterpretation of
participants’ statements by researchers during data collection and analysis. Other than the
deliberate changes made to the model to enable the research, no additional modifications
were made to the model in order to replicate the type of modeled content that would
typically be delivered in practical settings.

3.2. AR Deployment

The Microsoft HoloLens 1 was chosen as the AR device for this experiment. The
HoloLens overlays virtual content directly on top of the user’s unobstructed view instead
of relying on a video-pass-through display. This enables a safer and more comfortable
alternative to video-pass-through-based AR systems because of the lack of video latency.
Furthermore, the HoloLens is a self-contained, untethered Head-Mounted Display (HMD),
which allows the users to freely walk around the space to check for model discrepancies
and to maintain the use of their hands to perform inspection tasks. There are merits to both
immersive and video-based AR, but in this case, the hands-free unobstructed view enabled
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users to use a measuring tape or other physical device if desired for field-verification. If
there is no need for having hands-free navigation, it is possible that non-immersive AR
may be an equally good fit in future applications.

All AR development was done in Unity Game Engine. First, the Revit models were
extracted to FBX files, a universal 3D file type. The FBX models were then imported
into the Unity Game Engine and linked to a printed fiducial marker to enable accurate
placement of the model in space. A single marker was developed by the authors and was
used to register the modeled content. When a user says the word “model”, the entire
model would disappear, and when the user says it again, the model would reappear. This
modification leveraged the AR device’s built-in voice command capability and enabled
users to have completely unobstructed views of the space if they chose during their field
verification task.
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Table 1. The model deviations and descriptions.

Deviation Name Description

Large Deviation 1 Variable Air Valve (VAV) box shifted by eighteen
inches, overlapping with built box.

Large Deviation 2 Electrical conduit shifted by a foot to the South,
not overlapping with built conduit.

Missing Element Electrical conduit added to the model, not built.

Small Deviation Electrical conduit has been shifted to the East by
two inches.
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3.3. Identifying Participants for Experiment

The researchers were primarily interested in determining the types of deviations
that an AR user could identify between field and BIM. To provide a large sample of
participants, students from a graduate level construction class were recruited for this
experiment. Graduate students typically have a strong foundational understanding of their
discipline from the completion of their undergraduate degree. The students represent a
group with varying backgrounds and levels of experience, but are not necessarily trained
to complete field verification tasks. Using student participants provides an opportunity for
tasking comparatively large numbers of participants with field-verifying the same space,
which would not realistically be possible to replicate on an active job site. Furthermore,
the participants did not have prior experience with the space or prior experience with the
specialty contractors involved with its construction. Prior knowledge of the space and
working experience with specific subcontractors could create bias for or against specific
disciplines, increasing or decreasing the likelihood of detecting errors. While this type of
bias would likely be present in practical implementations of AR, introducing the bias in a
study on AR could obfuscate results and suggest findings based on information outside of
what was presented through AR. The students received a small class credit for participating
in the experiment, regardless of their performance.

3.4. Experimental Protocol

Before starting the experiment, the participants were informed that the session would
be video and audio recorded, and they signed an informed consent form to allow the
researchers to use the data collected for analysis. Each participant then received a pre-
session questionnaire. The questionnaire included general background questions, such
as age, experience in construction, experience completing Quality Assessment/Quality
Control (QA/QC) tasks and experience with AR technology.

After completing the pre-session questionnaire, the participants were briefed on the
think-aloud protocol that they would be asked to follow during the experiment. A think-
aloud protocol asks participants to verbally describe their thoughts during a given task [73].
For this work, this involved participants stating the deviations that they identified as
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they navigated the targeted space. They were also informed that the researcher might ask
follow-up questions when necessary. During the activity, the researcher only intervened
for follow-up information when participants voiced unclear statements. For example, if a
participant stated “the tube is shifted to the front” the researcher would ask “what color
is the tube? Would you point to the direction it is shifted to?” to clarify the statements
made. When a deviation was detected, the researcher asked the participant to estimate the
deviation distance and direction. This data collection process enabled the researchers to
understand what the participants were thinking during the activity, without influencing
them to state a specific type of comment [78].

After participants understood the task required of them in this experiment, they were
introduced to the specific AR device involved in this work. Since most of the participants
did not have previous experience with AR, they were provided with a brief technical
introduction to the headset used. The researcher assisted each participant in wearing the
headset and made sure that the participant could view the model. After the participant
verbally verified that he or she could see the modeled content and understood the task
assigned, the experiment began.

Participants were not told how many deviations they should find in the space to
simulate the uncertainty about deviations that could be present during actual field veri-
fication processes in practice. Instead, they were told to explore the modeled portion of
the hallway and identify all discrepancies that they believed existed between the model
and physical space. After participants reached a point where they believed they had
found all discrepancies, they simply told the researcher that they were finished with their
review of the space. At that point, the experiment stopped, even if the participants had
included incorrect statements or missed deviations that they should have theoretically
caught through their verification process.

Upon completion of the AR review activity, participants were asked to complete a
NASA-TLX (National Aeronautics and Space Administration-Task Load Index) form and
a post-session questionnaire. The NASA-TLX is a questionnaire that enables researchers
to measure perceived cognitive workload [79], and the questionnaire included questions
related to the experiment, including several Likert scale-based questions about the ease of
finding deviations and the participant’s confidence in his or her results, and open-ended
questions about the ease of using the device itself, comfort during the experiment and
future potential uses of this technology in his or her experience and opinion.

3.5. Analysis

The raw data collected included the participants’ completed questionnaires, the videos
recorded for each experiment and notes taken by the researcher during the experiment.
The questionnaires and the NASA-TLX responses were anonymized and digitized. The
questions based on a Likert scale were digitized in a spreadsheet format, while open-ended
questions were saved in plain text documents. Descriptive and paired statistics were
calculated, where appropriate, to extract relevant findings.

The researchers referenced the video recordings and the notes to assess the perfor-
mance of the participants during the experiment. In the same spreadsheet, the researchers
recorded which deviations were detected, the stated classifications of the deviations (miss-
ing items, large deviation, small deviations) and any false positive observations. This
data was analyzed using various statistical tests, and the findings are elaborated in the
results section.

4. Results and Discussion

Twenty-seven graduate construction management students participated in this experi-
ment. The age of the participants ranged between 22 and 57 years old, and all had at least a
bachelor degree in a construction-related field. Table 2 summarizes the years of experience
and prior experience completing quality control and assurance tasks among participants.
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In general, most participants had between 1 and 5 years of experience and 60% of them
had some completed some QA/QC-related tasks.

Table 2. Cross-tabulation of participants’ years of construction experience and quality control experience.

Years of Construction Has QA/QC
Experience

Has No QA/QC
Experience Total

No Experience 15% (n = 4) 0% 15% (n = 4)
Less than 1 year 0% 4% (n = 1) 4% (n = 1)

Between 1 and 5 years 41% (n = 11) 22% (n = 6) 63% (n = 17)
Between 5 and 10 years 0% 7% (n = 2) 7% (n = 2)

More than 10 years 4% (n = 1) 7% (n = 2) 11% (n = 3)
Total 60% (n = 16) 40% (n = 11) 100% (n = 27)

4.1. Deviation Detection

The participants took between two and three minutes to finish the task. In this
paper, deviation identification refers to when a participant verbally states that a building
element has deviated from the original model. Deviation classification refers to when a
participant indicates how or why the building element is different from the original model.
For example, if the participant states that there is a difference between the model and
built environment related to the Variable Air Volume (VAV) box, it is considered a correct
deviation identification because this was one of the deviations intentionally introduced
into the model. If the participant states that the VAV box is not constructed, this is still
considered to be a correct identification, but it is considered to be an incorrect classification
of the deviation because the box is indeed constructed, but its placement is shifted from
the BIM.

Table 3 summarizes the correct deviation detection and deviation identification rates
of the different building components by the participants: 96% of all participants were able
to detect the shift in the VAV box and correctly identified it as shifted, typically estimating
the shift between 18 inches and 3 feet, 96% of participants detected the large conduit
deviation, 88% of which correctly identified this deviation to be between eight inches and
one foot, while the remaining 12% considered the conduit to be missing or not installed. Of
the participants, 74% detected the missing conduit, 80% of which correctly identified it as
missing while the remaining 20% considered it to be installed elsewhere but shifted by two
to four feet. Finally, only 41% of participants detected the small conduit deviation, all of
whom correctly identified it as a small, one to two inch deviation.

Table 3. Detection and identification rates of deviations.

Deviation % Correct Identification % Correct Classification

Small Deviation 41% 41%
Large Deviation 1 96% 96%
Large Deviation 2 96% 84%
Missing Element 74% 59%

In general, AR seems to enable high levels of identification of large deviations and
missing items, but it is less likely to enable the identification of small deviations. Although
all aspects of the AR experience have advanced over the past several years, AR still suffers
from significant tracking and parallax effects. AR tracking refers to the placement of the
model relative to the real world. Parallax is defined as the effect whereby the position of
a virtual objects changes when viewed from different angles. Microsoft HoloLens 1 AR
can place virtual models almost perfectly when stationary, but as the user moves around
the space, the experience suffers from reduced tracking performance and subsequently the
parallax effect. Challenges associated with model drift were not addressed because the
authors were interested in seeing the extent to which current technology with all its benefits



Buildings 2021, 11, 77 11 of 18

and drawbacks would impact performance. Some participants understood the visual cues
of the parallax effect as overall shifting of the model (incorrect tracking), leading them to
miss the small deviation. A smaller percentage of participants correctly understood the
difference between slight shifting when moving and “real” deviations and could identify
the small deviation.

One counter-intuitive observation regarding the results obtained was the fact that
fewer participants detected the missing conduit compared to those who identified large
deviations. Prior research theorized that AR can enable practitioners to immediately
find missing building elements in a space when comparing the virtual model in an AR
environment [70]. However, 26% of participants failed to notice that an extra electrical
conduit should have been constructed. One possible explanation is that some participants
may not have realized that the parallax effect exists, leading them to think that the virtual
conduit was simply perfectly overlaid on a real conduit, and did not think to further check
if there was actually an installed model. This further illustrates the importance of testing
this technology in a complex building environment, where the user might not be able
to focus on and compare single elements. One possible remedy could be to lower the
brightness of the virtual model view, which may enable the user to identify mismatches
more easily. Additionally, encouraging users to switch the model on and off frequently
could enable this kind of identification.

Finally, it is important to understand the difference in the rates of correct identifications
between the building components. Although all participants who correctly identified the
VAV box as a deviation correctly classified the deviation as a large deviation, 12% of
the participants who identified the electrical conduit as deviating considered it missing,
when in reality it was a large deviation. The reason for the discrepancy in the correct
classification rates may be due to the nature of the element itself. In this specific experiment,
two of the three participants that incorrectly classified the largely deviated conduit as
missing attempted to count the number of present conduits out loud, miscounted, and
then classified the conduit as missing. By contrast, there are comparatively fewer VAV
boxes within the space than there are conduits, which may make it easier to quickly define
the type of deviation related to the VAV box. This suggests that, in high-density areas
where numerous building elements are repetitively used, the usability of AR may be
hindered, and the use of a hybrid checking method, where the results presented through
AR inspection are subsequently rechecked, may be required.

4.2. False Positives

In this paper, false positives refer to instances where a participant identified an area
as being different from the AR model, even though the model was not modified from the
original laser scan of the built space. For example, the cable tray modeled is in its correct
place, according to the laser scan. If a user identifies it as deviating from the model, this
would count as a false positive. Table 4 summarizes the number of false positives identified
by the different participants.

Table 4. Frequency of false positive identifications.

Number of False Positive(s) Identified Percentage of Participants

0 60% (n = 16)
1 33% (n = 9)
2 7% (n = 2)

Sixteen participants did not identify any false positives, nine found one false positive
and two found two false positives, and no participant found any more than two false
positives. Nine false positive observations alleged that all electrical conduits have shifted
by an inch or less to the right, three considered the HVAC duct to be slightly shifted to a
side and one alleged the lights were slightly shifted forward. All false positive observations
were described as smaller than two inches, or small deviations. These may also be attributed
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to the aforementioned parallax effect. In these cases, the participants did not acknowledge
the existence of the parallax effect, and identified every small shift as a deviation. While
this does illustrate a limitation observed through the technology, the recognition of this
effect by participants may be something that could be mitigated through more exposure or
training for practical applications.

It is important to remember that AR is used to help human decision-makers not only
to determine whether a deviation exists, but also to determine what to do next. In many
cases, when small deviations are identified, rectifying the model to perfectly match the
built space or reworking the physical space to perfectly match the model are unnecessary,
and tracking and rectifying such small deviations may not be critical for FM purposes. In
these cases, the decision-maker will likely decide to ignore the small deviation, regardless
of whether or not it is a false positive observation or a real deviation. In the cases where
high levels of accuracy are required, the decision-maker can spend the time and resources
necessary to check the specific areas with more accurate capturing technologies, such as
laser scanning.

4.3. Perceptions and Cognitive Workload

Table 5 summarizes the results of the post-session questionnaire. While all participants
agree or strongly agree that it is easy to identify large deviations between the model and
the built environment using AR, 7% of participants disagree that missing elements are
easy to identify using AR, and 33% of participants disagree that small deviations are easy
to identify using AR, signifying that the participants were aware of the limitations of the
device upon first use. Furthermore, the results reflect the confidence of the participants
in their findings. These results further support the observations presented in the prior
sections, where all participants detected at least one large deviation, whereas smaller
numbers of participants detected the missing elements and smaller deviations.

Table 5. Participant perceptions of ease of deviation identification by deviation type.

Question Strongly
Disagree Disagree Agree Strongly

Agree Total

Small Deviations (less
than 3 inches) are easy

to identify using
augmented reality.

7% (n = 2) 26% (n = 7) 33% (n = 9) 33% (n = 9) 27

Large Deviations (larger
than 3 inches) are easy

to identify using
augmented reality.

0% (n = 0) 0% (n = 0) 22% (n = 6) 78% (n = 21) 27

Missing elements are
easy to identify using

augmented reality.
0% (n = 0) 7% (n = 2) 33% (n = 9) 59% (n = 16) 27

To measure the cognitive workload required to complete the deviation detection using
AR, the researchers employed a NASA-TLX questionnaire. The NASA-TLX ranks the
mental demand, physical demand, temporal demand, performance, effort and frustration
associated with a task on a −10 to 10 scale. For this task, all categories average between −5
and −8, indicating that the participants found the task to be relatively easy to complete
and reported that it does not require high cognitive workload. This further confirms that
the participants were fully capable of completing this task with relative ease.

4.4. Potential Implications

Based on the strengths and weaknesses of AR when applied for field verification,
the findings of this work suggest two ways for using AR in the QA/QC process: (1)
for quick checks throughout the construction process and (2) as a complement to using
laser scanners.
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4.4.1. AR for Quick Field Checks

In the first scenario, AR can be used as a tool to check that all construction is complete
before moving on to another construction task. AR enables individuals to effectively
identify missing items and items with large deviations, which makes it well-suited for
conducting quick checks throughout construction, especially to check that all systems are
installed or that building elements are within previously negotiated spatial constraints.
This further leverages the comparatively faster process of checking the built environment
to the virtual model through AR, rather than relying on typically slower Scan-to-BIM
technologies. For example, a foreman using AR can check that all electrical conduits are
correctly placed below grade level before pouring concrete for the slab on grade. When
deviations are observed, the foreman will be able to make a judgement as to whether the
model needs to be changed using appropriate methods, or the area needs rework to more
closely match the model.

4.4.2. AR to Guide Laser Scanning

The second scenario suggested by the results of this paper is using AR as a tool to
determine where it may be worthwhile to use laser scanning for deviation detection in the
built facility. Instead of laser scanning the entire building to detect deviations, which can
be data- and time-intensive [80], the construction team may be able to use AR to quickly
identify locations in the building where some deviations may be present by comparing
the model to the built environment using AR. As observed in the results of this paper,
accurate descriptions of why or how the space deviates from BIM can be prone to errors.
Fortunately, in this suggested approach to using AR, accurate descriptions of deviations are
inconsequential. Instead, what matters is the fact that users can quickly identify whether
something appears to be different in the built space. In this type of instance, subsequent
laser scanning can help to resolve the reasons for the discrepancies. This type of use may
offer value by reducing the number of spaces that teams elect to laser scan, which may
reduce scanning and processing times required for the project. It is worth noting that,
depending on the size of the project and the amount of checking that is to be conducted
at a given time, this approach could potentially require users to wear the AR device for
extended periods of time. It is possible that this could lead to fatigue, but it is also possible
that users would simply remove the head-mounted display when discussing areas after
assessing them for deviations, which may mitigate this discomfort. Furthermore, if this
mode of field verification is adopted by future practitioners, it is very likely that future
generations of commercially available AR devices will continue to get lighter and more
ergonomic, which may further reduce discomforts from their extended use.

4.5. Limitations

In this paper, the researchers set out to understand the performance and behaviors
associated with the use of AR for deviation detection. The findings presented in this paper
have several limitations, related to the study sample and technology maturity.

First of all, the participants in this study are graduate construction management
students representing a wide range of relevant experience. In this study, no correlation
between experience and performance was found, corroborating the findings of other re-
search suggesting that performance using AR is not dependent on industry experience [27].
However, it is plausible that experienced professionals dedicated to QA/QC tasks may
perform better when completing the same task. While this does offer a limitation in the
extent to which the observed results may match those with practitioner participants, it
is likely that the results observed in this work are actually conservative because of the
comparatively lower experience possessed by the students.

Next, the approach requires an existing digital model with a level of detail com-
mensurate with the desired level of inspection. Fortunately, content created through 3D
coordination will support the workflow the authors used, and this is becoming a common
application for BIM [81]. Therefore, as industry BIM efforts continue to expand, this limita-
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tion will become less of a hindrance to companies employing the strategies explored in
this work.

The AR technology used also suffers from tracking and parallax problems, which
have at times significantly increased setup time. For example, depending on the lighting
conditions, the paper marker needed to be moved for the model to be accurately overlaid
on top of the built environment. In larger sites, multiple markers, or automatic registration,
may be needed if a marker-based system were to be used [23]. The authors aimed to
determine what types of deviations could be detected through AR rather than the exact
productivity of identifying these deviations, so this setup time was not considered in
this analysis. However, the authors recognize that setup time could impact overall value
provided by the technology if it were to be used on an active construction site with
stringent time constraints. Fortunately, some commercially available software suites have
been developed that claim to streamline the process of getting models onto AR headsets
using plugins to popular BIM software applications (i.e., HoloLive, Fusor), but these were
not tested through this work, so the authors do not make any performance claims about
them. Additionally, automatic model registration in the augmented reality environment
is a developing capability of AR and could potentially streamline the process [82]. For
companies that are already beginning to use AR for inspections, the process of transferring
model content from BIM environments to AR is likely a workflow that they are already
performing, which may further reduce the added time required for setting up the devices
for inspection.

5. Conclusions

This research studied the performance and behaviors of graduate student participants
when using AR for deviation detection during QA/QC tasks. An open-ceiling hallway
with complex MEP systems was modeled, and four deviations were introduced: two large
deviations (greater than two inches), one small deviation (less than two inches) and one
missing building element. Using an AR headset, each participant compared the modified
model to the real environment and attempted to identify the deviations.

In general, when using AR, participants were able to identify all three types of de-
viations, however, they were significantly more likely to identify larger deviations than
smaller ones. In most cases, the participants were also able to correctly identify the cause
of the deviation, although some identified the missing component as a large deviation. The
participants also identified several false positive observations, in which the participant
incorrectly assumed there was a deviation, but in fact, there was not.

To capitalize on the strengths of the AR technology, the findings of this work led the
researchers to propose two high-potential use-cases: (1) using AR as a quick construction
monitoring and progression tool, to check that all building components are installed before
continuing to other activities (i.e., checking that all electrical sleeves are installed before
pouring concrete), and (2) using AR as a tool to guide what areas should be laser-scanned,
thus reducing the total scanning and data processing times required for the project. The
advantage of using head-mounted AR in these situations is in the provision of a clear
visual reference that is hands-free and does not require an inspector to juggle paper plans
or desktop or handheld technologies when comparing as-built conditions with a model.
The findings of this paper contribute to the body of knowledge by providing evidence of
how current generation AR may enable (or fail to enable) effective detection of deviations
between BIM and as-built conditions. Furthermore, the suggested AR inspection use-cases
identified will allow future researchers and practitioners to define inspection strategies
based on empirical evidence in order to conduct field verification tasks more effectively.
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