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Abstract: Truss structures are one of the major civil engineering members studied in the optimiza-
tion research area. In this area, various optimization applications such as topology, size, cost, 
weight, material usage, etc., can be conducted for different truss structure types. In this scope with 
the present study, various optimization processes were carried out concerning two different large-
scale space trusses to minimize the structural weight. According to this state, three structural models 
provided via two different truss structures, including 25 bar and 72 bar truss models, were handled 
for evaluation of six different metaheuristics together with the modification of Lèvy flight for three 
of the algorithms using swarm intelligence by considering both constant and variable populations, 
and different ranges for iterations, too. Additionally, the effects of the Lèvy flight function and 
whether it is successful or not in terms of the target of optimization were also investigated by com-
paring with some documented studies. In this regard, some statistical calculations were also realized 
to evaluate the optimization method performance and detection of optimum values for any data 
stably and successfully. According to the results, the Jaya algorithm can handle the optimization 
process successfully, including the case, without grouping truss members. The positive effect of 
Lèvy flight on swarm-based algorithms can be seen especially for the gray wolf algorithm. 

Keywords: truss structures; optimization; metaheuristics; Lèvy flight; swarm intelligence; Jaya al-
gorithm 
 

1. Introduction 
In civil engineering, the most significant issue is to provide the required safety for 

any engineering structure. Of course, this state must be actualized by designers or engi-
neers without putting people’s lives in danger; besides, the design must be cost-effective 
and also sustainable for eco-friendly structures and their members. However, to actualize 
this is not so fast and easy because of the desired and expected conditions that may not 
be able to be provided at the same time and with only a single step. On the other respect, 
the results obtained may not suitable or enough economic for the required conditions. For 
this reason, iterative processes, which benefit from both determining an optimistic design 
in terms of cost, effort, etc., and prevent spending much time, gain importance. From the 
past to nowadays, metaheuristic algorithms, which came as one of the optimization tech-
niques and have been improved in the direction of some special features sourced on na-
ture or science, are one of the best methods that can be selected for the mentioned state. 

In this regard, several applications were performed via a wide range of metaheuris-
tics in civil engineering, especially for structural engineering. As an example, in 2013, a 
study was carried out that is concerned with the generation of the best-tuned mass 
damper (TMD) parameters for structures. In the mentioned study, analyses were operated 
under different historical earthquake conditions by using harmony search (HS) algorithm 
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to make real of this [1]. Parcianello et al. (2017) improved the viscous damper model for 
the frames depending on an optimization process conducted with genetic algorithms 
(GA) to increase of seismic performance of these structures [2]. On the other hand, 
Talatahari et al. (2015) developed a hybrid optimization tool by using eagle strategy (ES) 
and differential evolution (DE) algorithms to minimize the weight for different steel frame 
structures [3]. In addition, they evaluated the optimization success of this algorithm com-
pared with DE. Gholizadeh and Ebadijalal (2018) benefited from a recently developed me-
taheuristic algorithm, which is named as center of mass optimization (CMO), to optimally 
arrange bracings on steel frames under seismic loading [4]. With the other respect, weight 
minimization of eccentrically braced frames was performed in the direction of seismic 
performance-based analysis by Fathali et al. (2020). Four algorithms, including accelerated 
water evaporation optimization (AWEO), PSO, with classical (CBO) and enhanced 
(ECBO) colliding bodies optimization, were utilized to observe the performance of this 
method [5]. Moreover, Kayabekir et al. (2016) presented a book where optimum designs 
were generated for reinforced concrete structures containing slender columns, shear 
walls, and cylindrical walls formed as post-tensioned axially symmetric, etc., through the 
usage of metaheuristic algorithms [6]. Vaez and Qomi (2018) carried out a study, which is 
related to providing minimum weight for reinforced concrete shear walls by investigating 
the optimum placement and diameter of steel bars together with wall properties by using 
PSO, FA, whale optimization algorithm (WOA), and crow search algorithm (CSA) [7]. In 
the study performed by Sheikholeslami et al. (2016), two metaheuristics, including firefly 
algorithm and harmony search, were hybridized and applied to two different reinforced 
concrete retaining walls to provide the best cost [8]. Optimum design for a cantilever re-
taining wall was also carried out with the aim of cost minimization by Aydogdu (2017), 
where peak ground acceleration was considered towards this object by combining of bio-
geography-based optimization method with Lèvy flight [9]. Additionally, the design of 
retaining wall with the optimum cost was realized depend on seismically performance 
based by handling an enhanced kind of genetic algorithm (non-dominated sorting). 

Similarly, various optimization studies were also performed for truss structures too. 
One of these is a study, which was carried out to provide the minimum weight for space 
truss structures by Camp (2007) through using the big bang–big crunch (BB–BC) optimi-
zation algorithm [10]. While executing this process, deflection and stress limitations be-
sides material conditions were considered. In the year 2011, another study was performed 
for trusses in the direction of minimization of structure mass by providing of optimum 
size and shape of them [11]. To make real of this, an optimization technique, which is one 
of the oldest and called particle swarm optimization (PSO), was utilized, and it was ap-
plied for four different structure models. Moreover, Miguel and Miguel (2012) carried out 
a work which is related to optimization of shape and size of trusses by using nodal coor-
dinates and section areas of bars, respectively, to reach minimum weight [12]. For this 
aim, they used two optimization tools, including the firefly algorithm (FA) and harmony 
search (HS), for analyzing four different truss models. In 2015, Bekdaş et al. (2015) applied 
a metaheuristic known as flower pollination algorithm (FPA) to generate the best truss 
size by minimizing structure weight, and they used three truss models containing planar 
and space form to actualize this process [13]. On the other hand, Kaveh and Ghazaan 
(2017) used a metaheuristic algorithm to optimize truss structures to improve the dynamic 
performance of them under frequency constraints [14]. For this reason, they benefited 
from a method, which is known as vibrating particles systems (VPS), and was developed 
by inspiring from dynamic behavior of structures. Tejani et al. (2018) also solved the prob-
lem related to multiobjective optimization of five different truss structure models from 
the literature [15]. In this respect, they applied the symbiotic organisms search (SOS) al-
gorithm by combining the multiobjective adaptive control technique. 

The widest application area of metaheuristic-based optimization is truss structures 
in structural engineering. Furthermore, in Table 1, a comparison is carried out by gener-
ating a summarization of optimization properties about some literature studies, which are 
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benefited from the validation of the present results. The current study and compared doc-
umented methods are compared to each other in terms of the variety of the number of the 
used algorithms, the number of design variables, etc. 

Table 1. Comparing some literature research and the present study. 

Researchers 

Number of 
Used Classi-

cal Algo-
rithms 

Number of 
Hybridized/ 

Modified 
Algorithms 

Algorithm 
Number of 

Investigated 
Truss Models 

Number of 
Maximum 

Design Var-
iables 

Biggest Num-
ber of Com-
pared Other 

Methods 

Citation 

Camp (2007) 1 - 
Big bang–big crunch 

(BB–BC) optimization 3 16 4 [10] 

Dede et al. 
(2011) 1 - Genetic algorithm (GA) 4 96 13 [16] 

Gandomi et al. 
(2013) 1 - Krill herd (KH) 1 8 10 [17] 

Degertekin 
and 

Hayalioglu 
(2013) 

1 - 
Teaching-learning based 

optimization (TLBO) 4 29 8 [18] 

Kaveh et al. 
(2014) - 1 

Hybrid particle swarm 
and swallow swarm op-

timization (HPSSO) 
6 29 6 [19] 

Kaveh et al. 
(2014b) 

- 1 Chaotic swarming of 
particles (CSP) 

4 59 5 [20] 

Camp and 
Farschin 

(2014) 
- 1 

Modified teaching-
learning based optimiza-

tion (TLBO) 
3 26 7 [21] 

Bureerat and 
Pholde (2016) - 1 

Adaptive 
Differential evolution al-

gorithm (ADEA)  
4 29 6 [22] 

Degertekin et 
al. (2017) 

1 - Heat transfer search 
(HTS) 

3 29 8 [23] 

Bekdaş et al. 
(2017) 

1 - Flower pollination algo-
rithm (FPA) 

2 72 0 [24] 

Present Study 6 3 Defined in Section 2 3 25 7 - 

In the current study, two different space truss structure models as 25 bar and 72 bar 
that are generally used as the benchmark problems, were handled to ensure optimum 
design parameters, including section areas and also objective functions such as minimum 
cost or weight, etc. In this regard, three separate cases were emphasized by considering 
the numbers of increment of design parameters. According to this, the first and second 
one is related to combining/grouping of structure bars for truss models, besides that, the 
last is the case, where grouping for the 25 bar model is not realized. Six different metaheu-
ristic algorithms and three improved versions of them using Lèvy flight as a novel appli-
cation were applied to the mentioned cases by generating two sub-cases of different max-
imum iteration and population numbers. As given in Table 1, the present study includes 
the application of 9 algorithms with three novel modifications. In addition to that, a com-
parative investigation using nine applied methods and seven documented methods was 
presented by choosing the same optimum design benchmark problems. 

2. Materials and Methods 
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When the general of nature is considered, it is understood that livings have features 
developed for various aims such as surviving, feeding, continuity of species. To see these 
features, many examples such as that fox benefits from a magnetic area of the world while 
it is hunting, chameleon changes color intending to hide from danger; cuckoo birds use 
other bird’s nests for continuity of self-species and hedgehog throws the quills by stretch-
ing itself under danger, are possible. If when all these processes are analyzed, it is seen 
that livings change their defense or attack mechanisms as conveniently to the conditions 
and uses a kind of species-specific heuristic optimization, which ensures that using of lim-
ited opportunities exist in themselves under the fittest time and form to maintain of vital 
activities. 

These heuristic optimization processes belonging to livings in nature have engaged 
the attention of researchers working on basic sciences, and they generated various algo-
rithms, which express these processes mathematically as the most frequently and com-
monly used in the literature from these algorithms called metaheuristics are explained in 
headings taken below and employed in the study. 

The employed algorithms are flower pollination algorithm (FPA), artificial bee col-
ony (ABC) algorithm, bat algorithm (BA), Jaya algorithm (JA), gray wolf optimization 
(GWO) and harmony search (HS). These algorithms have unique features and imitations 
from a process. These are detailly explained in the subsections of Section 2, but major 
generations and differentiation are as follows: 
- FPA, ABC, BA and GWO are nature-inspired algorithms. HS is a music-inspired one, 

while JA does not use a direct imitation. Jaya word means victory in Sanskrit. Due to 
that, a bond can be only generated by assuming the reaching of an optimum result 
as a victory; 

- FPA uses Lèvy distribution in its classical form. Since wolves, bees and bats can also 
act as random flying or moving members, modified versions of these algorithms with 
Lèvy distribution that characterize the random flight are investigated; 

- Generally, metaheuristic algorithms have two stages of optimization using a proba-
bility to select one of these stages (phases) in an iteration. ABC is a three-stage (phase) 
algorithm, while JA has only a single phase. The others are classical two-phase algo-
rithms; 

- JA has no user-defined specific parameter in the formulation, while the others need 
parameters in formulations and selection of a stage; 

- BA uses a three-step formulation (frequency, velocity and new solution) to update a 
solution. 

- GWO uses three unique, different solutions with different calculations. These solu-
tions are named with three types of wolves. 
In Appendix, the commonly used type-specific parameters belonging to each me-

taheuristic method and some common expressions concerned with candidate solutions 
for each design variable can be seen. In addition, the used functions in equations of algo-
rithm optimizations are indicated in Appendix. 

2.1. Flower Pollination Algorithm (FPA) 
Plants, especially flowering plants, can gain attract to self of some insect species like 

bees, flies, etc., because of that they have stimuli such as special color, smell and various 
aromatic secretories. In addition to these features, insects also contribute to the pollination 
process, which is required for ensuring the continuity of species by the run to flowers with 
the help of nature-sourced effects like wind, water, etc. 

The flower pollination algorithm (FPA), which was developed by inspiration from 
this process by Yang [25], is one of the metaheuristic algorithms frequently used nowa-
days. In FPA, four different rules, which are related to the property of pollination process, 
the behavior of pollination, and flower constancy, and formalized by inspired from flow-
ery plants, are kept insight [13,26,27]: 
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• Cross-pollination is realized via the transfer of pollen between flowers of different 
plants from the same species. Pollen carriers (pollinators) suit to rules Lèvy distribu-
tion (Equation (1)) by jump with far steps or fly. This process is called global pollina-
tion; 

• Self-pollination occurs due to the pollen transferring within the self of a flower or 
between different flowers of the same plant. This pollination kind is local pollination; 

• The case of flower constancy is the cooperation among pollen carriers with flower 
types. This is a development within the process of flower pollination; 

• Local and global pollination is controlled with a probability value, which is named 
switch probability and has a value between 0 and 1. 

In the optimization process, which is performed via applying all these rules, two different 
ways are followed to obtain the optimum values. To make real this, the type of search 
must be determined by controlling search change/switch probability (sp.), which is one of 
the FPA parameters. This search type is named as: 
• The global search that solutions are determined by search from more extent area, if sp is bigger than a randomly generated number; 
• The local search process that solutions are searched from a smaller area if this value 

sp is smaller than the generated random number between 0 and 1 (rand). 
The value of the ith design variable of the jth value of population including nf number 

of flowers (X , ) is updated as the new solution (X ,  ) as given below. X ,  is the best 
current solution of the ith design variable. 𝐿é𝑣𝑦 = 1√2𝜋 (rand) .  𝑒     (1) 

X ,  =   sp > rand, X , + 𝐿é𝑣𝑦 X , − X ,sp < rand,    X , + rand X , − X ,  (2) 

n = ceil (rand ∗ 𝑛𝑓) (3) m = ceil (rand ∗ 𝑛𝑓) (4) 

2.2. Artificial Bee Colony (ABC) Algorithm 
In 2005, the artificial bee colony (ABC) algorithm introduced by Karaboğa was de-

veloped through simulated the food source searching behaviors of bee colonies [28]. 
In bee colonies, honey bees are divided into three different categories as a worker, 

onlooker, and scout. Moreover, in the algorithm, these categories represent the negative 
feedback, positive feedback, and random motions, respectively. Initial food sources are 
produced randomly in the search space of the problem. Half of the honeybees that have 
the aim to provide the increase of the substantiality of nectar in the hive are worker bees. 
The other half contains onlooker bees, and flocking behavior around the food source starts 
with worker bees. Worker bees record each food source to the memories, and information 
is shared with onlooker bees waiting in the hive. According to shared information, on-
looker bees collect the food sources within the near-environment of the hive; scout bees 
collect the ones in long-distance from the hive. Onlooker and scout bees share the food 
source information with worker bees by a return to the hive. If the information on the new 
food source is better than the information on the initial food source’s position, this is up-
dated [29–31]. 

In this way, the ABC algorithm can deliver a solution to various optimization prob-
lems thanks to the simulation with the natural process, which is the maximization of nec-
tar amount by determining the position of food sources optimally by honey bees. 

Some assumptions are applied in this algorithm, too [32]. These are given below: 
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• It is accepted that number of worker and onlooker bees are equal to each other in the 
total bee population; 

• The food sources express candidate solutions and are assumed that each bee com-
pletely consumes this source by going to a single food source. Hence, the food source 
number is half of the total bee number; 

• Later, worker bees transform into scout bees to search for the new ones substituted 
for finished foods. 
There are four separate stages for expressing this process via the ABC algorithm. 

These are determining of initial food sources, the worker bee stage that found of the new 
sources by worker bees, onlooker bee stage that evaluated nectar qualities of new sources, 
and finally, scout bee stages that found the new ones, in the case that exist finished food. 
About improving initial food sources, first, the worker bee stage is performed. For this; 
one food source is selected as randomly (n), and the position of the old source is updated 
with a probability value (ϕ , ) between the range of [–1,1] for a design variable/parameter 
determined randomly (p) for a problem with vn design variables/parameters, and source 
nectars are calculated again. From sources that their positions were updated, all of the 
food sources that are better than the initial ones are updated by changed with the old food 
source. This process for modification of the design variable of the jth population (X , ) is 
carried out via equations expressed below: X , = X , + ϕ ,  X , − X ,  (5) n = ceil (rand ∗ 𝑒𝑏) (6) p = ceil (1 + (𝑣𝑛 − 1) rand) (7) 

The second stage is the onlooker bee stage. In this stage, onlooker bees are kept in-
formed by worker bees with regards to food sources’ nectar amount. The food qual-
ity/rate/possibility according to the nectar amount of each source is calculated and evalu-
ated by onlooker bees. This operation is related to the selection of ones, which have a high 
ratio of nectar from renewed food sources, and in this way, the sources, which are rich in 
nectar, are ensured the improvement of them as continuously by determined. In addition, 
this process is performed via Equation (8) in case that food possibility (Equation (9)) is 
bigger than a number randomly generating. 𝑛𝑒𝑐𝑡𝑎𝑟  (Equation (10)) is quality value for 
jth food sources (candidate solution) calculated depending to the objective function and 
considering of problem type; 𝐹  is objective function value belonging jth solution and 𝑓𝑜𝑜𝑑 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  is nectar rate existing in each source (rate of nectar quality): if  rand < 𝑓𝑜𝑜𝑑 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ,   X , = X , + ϕ ,  X , − X ,  (8) 

𝑓𝑜𝑜𝑑 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  = 𝑛𝑒𝑐𝑡𝑎𝑟∑ 𝑛𝑒𝑐𝑡𝑎𝑟  (9) 

𝑛𝑒𝑐𝑡𝑎𝑟 = 11 + 𝐹  (10) 

The process of searching for new sources by abandoning sources that cannot be op-
timized (namely nectar of them) is named as scout bee stage. Improving parameter (ip) 
belonging to each source is controlled according to a constant value of source improve-
ment limit (SIL), which is defined at the start of the optimization process to use in this 
stage. By scout bees, determination of new ones for each source that has ip values exceed-
ing the value of SIL is realized utilizing Equation (11) as below for the defined maximum 
(X , ) and minimum (X , ) values. For modification with Lèvy distribution, the rand 
function is replaced with Equation (1). 
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if   ip > SIL, X , = X , + rand X , − X ,  (11) 

2.3. Bat Algorithm (BA) 
Small bats known as micro bat perform echolocation behavior acting as a kind of 

radar to locate their prey, protect from obstacles, and can detect the place of hollows/clefts 
where they lived at night. These bats listen to echoes returning from objects by transmit-
ting a very noisy sound. In addition, the frequency of transmitted sound shows alteration 
according to features of bats. Bat algorithm (BA), which is a metaheuristic method, is de-
veloped by Yang through be idealized of echolocation behavior and these features belong-
ing to bats [33]. Furthermore, bats fly with variable frequency values, loudness, and ve-
locity, which can be used in designing update equations of algorithms [27,34]. 

On the other hand, some assumptions are required to be able to use the BA algorithm 
in the optimization process, as in the other algorithm types [33,35]. These assumptions are 
as below: 
• All bats use audio echo to sense distance; 
• Bats move randomly at any X  location via V  velocity by using a sound, which has a 

constant frequency, variable λ wavelength, and loudness with 𝐴  value, to search 
for the prey. They can adjust the wavelength of emitted pulses or frequency automat-
ically, and the pulse emission rate (r) depending on closeness to its target (r ∈ [0,1]); 

• Although loudness value can change in different ways, this value changes between 
an extremely high (positive) initial value (𝐴 ) , and a constant minimum value (𝐴 ). 𝐴  is 1 due to that bat search its prey with a very loud sound in the begin-
ning; also, when it is considered that bat just found the prey, and abandons to giving 
out a sound as temporarily, 𝐴  can be taken as 0. 
In the direction of these assumptions, it is required that each bat have different loud-

ness and pulse emission value; besides, some different properties must observe for deter-
mining new values (locations) belonging to candidate solutions in the optimization pro-
cess performing via the BA algorithm. These are frequency (𝑓  for the jth member with the 
minimum; 𝑓  and the maximum; 𝑓 ) and velocity vectors, and the process is carried 
out with equations as below, respectively: 𝑓 = 𝑓 + (𝑓 − 𝑓 )rand (12) V , = V , + X , − X ,  𝑓  (13) X , = X , + V ,  (14) 

An iterative replacement (update) is in question for new locations designated for bats 
(solution value of design variables). This replacement is a process called local search, and 
calculation is made with the help of Equation (15): if  rand > 𝑟 , X , =  X , + (−1 + 2rand) 𝐴  (15) 

On the other hand, the values of loudness and pulse emission rate should be updated 
as long as iterations progressed. The reason for it is that distances of bats to foods or their 
prey change per the updated locations of bats. About this subject, generally, pulse emis-
sion rate increases according to a decrease of loudness when bat found the prey, according 
to the expression of Yang [33]. In this direction, parameters are updated along with itera-
tions via Equations (16) and (17): 𝐴 , = α (𝐴 + (𝐴 − 𝐴 )rand) (16) 𝑟 , = 𝑟  (1 − e ) (17) 



Buildings 2021, 11, 49 8 of 25 
 

In Appendix, the calculated and utilized expressions for the optimization process 
were given except the commonly used expressions. In the Lèvy improved BA, the 𝐴  value in Equation (15) is replaced with Equation (1). 

2.4. Jaya Algorithm (JA) 
Jaya algorithm, which is recently developed by Rao (2016), and has a working prin-

ciple similar to the teaching-learning based optimization (TLBO), is one of the metaheu-
ristic methods [36]. This algorithm always tries to be closer to the approach of being opti-
mal. In this regard, the main targets of the algorithm are both reaching the best solution 
and moving away from the worst solution (X , ). On the other hand, the algorithm 
takes the name from Jaya, which is a Sanskrit word, meaning victory. It is harmonious 
with this operation, and it is aimed to achieve optimization of the solution. 

When the Jaya algorithm is compared with the other algorithms, generally, it evalu-
ates fewer functions to obtain the best same result. For this reason, it is required fewer 
operations than others in the process of convergence to the ideal solution. However, the 
application of the algorithm is simple and also not including special parameters, which 
are considered superiorities [36]. However, the possibility that the algorithm locks to local 
optimum increases due to the algorithm searches the best and worst results around a 
smaller area compared to the other methods, and this case may cause to be not able to 
evaluate better results. 

In each iteration, a single-stage is enough for all variables to obtain a new optimum 
solution. Equation (18) utilizing for this is as below: X ,  =  X , + rand X , − X , − rand X , − X ,  (18) 

2.5. Gray Wolf Optimization (GWO) 
Mirjalili et al. (2014) developed an algorithm, which is called gray wolf optimization 

(GWO), and it is a kind of metaheuristic optimization method by considering the hierar-
chy of leadership of gray wolves, which usually live in groups, and have hunting mecha-
nism in real nature [37]. 

In nature, gray wolves, which underlie this algorithm, create groups containing 5–12 
members on average. Wolves categorize into four different as alpha, beta, delta, and 
omega wolves due to the existence of hierarchy between themselves. Group leader named 
as the alpha wolf, has responsibilities such as hunting, determining of sleep place with 
waking time by managing the other wolves in the group, too. In this respect, it is required 
that the alpha wolf, which is in the leading position, is the best member in terms of man-
aging the pack, not the strongest member. In addition, this shows that the case of orga-
nized and discipline keeping in the pack is more significant than power. Wolf at the sec-
ond level of the hierarchy, is the beta wolf and participates in the group as the alpha wolf’s 
assistant in many respects. Moreover, when the case that alpha wolf dies or is at a very 
advanced age, the beta wolf is considered as the most possible member as a candidate, 
which will be able to replace. In the group, the main task of this wolf is both providing to 
keep informed of delta (δ) and omega (ω) wolves by transferring the instructions trans-
mitted to the leader and giving their instructions to these wolves situated in lower level 
than itself by applying the directions taken from alpha. In the third and fourth steps of 
hierarchy, delta and omega, which are less strong wolves, respectively, and the delta wolf 
can gain an advantage over only omega wolves. For this reason, it can be said that the 
weakest member in the group is the omega wolf in terms of leadership/dominance. The 
representative demonstration of social hierarchy among gray wolves takes place in Figure 
1[38,39]. 
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Figure 1. Social hierarchy pyramid among gray wolves [39]. 

On the other hand, group hunting is a social behavior that gray wolves performed in 
real nature, and also, this natural behavior was benefited for algorithm design-oriented at 
optimization process. In this respect, first, the strongest three wolves need to be deter-
mined among wolves in the group. Here, the best three solutions set is determined from 
among each member in the initial wolf ensemble; in other words, candidate solutions, and 
alpha (α) as the leader-member (the best convenient member in terms of the objective 
function), the second strong member beta (β) and third one delta (δ) solutions are de-
fined. All solutions except three candidate solutions are represented by the other wolves 
that remained in the pack, and these members are considered omega (ω)  solutions. 
Hence, hunting behavior reflecting the optimization process is directed by α, β, and δ 
wolves. In addition, there is a certain order followed by wolves during hunting, and ac-
cording to this order, first, the prey is followed, then encircled by wolves. In the meantime, D⃗, which expresses the distance between prey and any wolf surrounding it, is calculated 
with Equation (19). Moreover, wolves can update their locations around the prey ran-
domly, depending on prey (Equation (20)) [37,40]. In addition, for Lèvy modification of 
GWO, rand  function existing in A⃗ vector formulation (Equation (22)) is changed via 
Equation (1): D⃗ = C⃗ X , − X ,  (19) X , = X , − A⃗ D⃗   (20) C⃗ = 2 rand (21) A⃗ = 2a⃗ rand − a⃗ (22) 

a ⃗ = 2 − 2 tstopping criteria (23) 

As mentioned before, the hunting process is directed by α, β, and δ wolves. Figure 2, 
which shows this case more clearly, takes in below. In this stage, hunting is performed by 
wolves attacking the surrounded prey. However, as seen in the figure, first, it is required 
that hunting be directed healthfully and determining of locations (according to the prey) 
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of α, β and δ wolves that are assumed to have information well about the potential po-
sition of the prey. For this, the following equations are applied (Equations (24)–(29)), re-
spectively: D ⃗ = C⃗ X , − X ,   (24) D ⃗ = C⃗ X , − X ,   (25) D⃗ = C⃗ X , − X ,   (26) 

In these equations, D ⃗, D ⃗ and D⃗ are the distance between any gray wolf and al-
pha, beta and delta wolves, respectively: X , = X , − A⃗ D ⃗   (27) X , = X , − A⃗ D ⃗  (28) X , = X , − A⃗ D⃗  (29) 

In the above equations, respectively, A⃗ and C⃗ vectors are expressed individually for 
alpha, beta and delta wolves, and the approximate distance between any omega (ω) 
wolf, namely the current solution, and α, β and δ wolves can be determined via Equa-
tions (27)–(29). The latest updated position of the current solution is calculated as in Equa-
tion (30): X , = X , + X , X ,3   (30) 

 
Figure 2. Determining the new position of any omega wolf concerning prey according to wolves 
α, β, and δ [40]. 

The wolf, which updates its position, is ready to attack prey. However, also, there are 
some rules about mathematically expressing the case that wolf can realize the attack. Ac-
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cordingly, in this algorithm, the a ⃗ value was reduced for the wolf that can approach (de-
creasing of the distance between them) to prey. In addition, A ⃗ vector, which determines 
the case of attacking to prey by a wolf, utilizing this decreasing and take values between 
-a ⃗ and a ⃗. Hence, the environment, which is taken place in the hunting process, can be 
expressed as in Figure 3. On the other hand, a new position of hunter wolf can take values 
between the position of prey and own current position. As a summary, the case that wolf 
can attack prey actualizes to the condition in Equation (31) [14,41]: if  |A|⃗ < 1,    X , = X ,  (31) 

 
Figure 3. Condition of attack to prey by omega (ω) wolf, and the possible cases of its new position 
determined according to prey [41]. 

2.6. Harmony Search (HS) 
One of the aims of musicians while offering a musical performance to listeners is to 

transfer work euphoniously. For this reason, the process of creation of an effective and 
good music work through a combination of notes, which are the best reflecting the works 
and most harmonious each other, continues to gain the appreciation of listeners. 

Geem et al. (2001) [42], who was inspired by this process, developed an algorithm in 
2001, which is known as the harmony search (HS) method, and based on natural (im-
promptu) music performance. The aim is to search for the liked harmony [43]. The func-
tioning of this developed algorithm is not only offering of a music work by melodizing 
via the best notes, at the same time, but it also takes shape according to natural perfor-
mance of a musician and idea that to optimally implement while performing of this, too. 

When analyzed this process, three possible activities, which can be performed during 
the natural performance of a musician, and equivalents of these in terms of actions real-
ized by harmony search is [44]: 
• To play any popular musical piece completely from own memory: usage of harmony 

memory; 
• To play something like to a known work: pitch (tone) adjusting; 
• To compose/melodize new or random notes: randomization 

Usage of memory is an important notion due to resembles case that of obtaining the 
best harmonies, which will transfer to new harmony memory, like selecting the most con-
venient persons in the genetic algorithms (GA). Here, a case that harmony memory con-
sideration rate, which has a value between 0 and 1, is very high, causes to not finding out 
well of almost whole harmonies in old harmony memory [45]. 

Furthermore, on optimization of a problem, natural music performance can be con-
sidered as a process expressing that determining of optimum values for design variables. 
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The most compatible notes/harmonies express the optimum values of design variables; 
the best, in other words, “most euphonic” music work, which occurs with the combination 
of these notes, expresses the case that performing of the objective function belonging to 
design problem. 

The followed route by algorithm on optimization of design values changes according 
to the different cases. In each iteration, obtaining the optimized new values of variables is 
depending on the usage of harmony search memory. This case is determined via harmony 
memory consideration rate (HMCR) according to Equation (32). 
• If the HMCR value is bigger than a randomly generated number, memory usage is 

not possible. In this case, randomly new notes should be generated; 
• In the other case, notes recorded in harmony memory can be played from a specific 

pitch by remembering: 

X ,  =  HMCR > rand,   X , + rand X , − X , HMCR < rand,   X , + rand −12 , 12 PAR X , − X ,   (32) 

2.7. The Benchmark Truss Structure Problems 
In this study, two large-scale truss models were handled for optimum sizing of bar 

sections in the direction of weight minimization. These are represented in Figures 4 and 5 
as the geometry of 25 and 72 bar truss structures together with node and bar numbers in 
the space coordinate system, respectively. 

In the optimization process, three cases were conducted to provide the minimum 
weight for these structures by the grouping of bars both 25 and 72 bar truss, and without 
grouping of 25 bar truss intended for evaluation of designing based on increment on the 
number of design variables. In this regard, design variables and constraints, which were 
determined by collecting in the same section area according to axis similarity and sym-
metry of bars for grouping cases, were given in Table 2. The material of the structures is 
aluminum. The same methodology can be applied for different materials, and design reg-
ulation rules can also be integrated as design constraints. Especially, the slenderness limits 
of the members under compressive forces are needed to be checked. In addition, the mul-
tiple loading conditions are in Tables 3 and 4; design limitations as displacement and 
stress constraints with bar groups are in Tables 5 and 6, for 25 and 72 bar trusses, respec-
tively. The optimum results for all cases were ensured without permitted the violation of 
any constraint through penalizing the solutions, which exceed the limitations. 
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Figure 4. Design model and variables of a 25 bar truss structure [13]. 

 
Figure 5. Design model and variables of a 72 bar truss structure [13]. 

On the other hand, when performing optimization, six different metaheuristics con-
taining HS, ABC, BA, FPA, GWO, and JA, besides ABCL, BAL and GWOL, were applied 
by modifying the structure of three algorithms with Lévy distribution. Additionally, op-
timization results, including the best weight together optimal section areas, were deter-
mined to a specific population number as 30 and different iteration numbers. Following, 
for grouping cases (Section 3.1 and 3.2), the values of optimization parameters were han-
dled in the range of 10–30 with 5 intervals and 1000–20,000 by increasing 500; and in not 
grouping case for 25 bar truss (Section 3.3), the same ranges, and 5000–120,000 by increas-
ing 5000 for population and iteration numbers, respectively, to detect the most effective 
parameters in the sense of saving time and effort during that minimum weight was deter-
mined. 
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Table 2. Information for optimization process corresponding for 25 and 72 bar truss structures. 

 Definition Symbol Limit/Value Unit Truss Model 
Design 

Variables 
Cross-section of truss bars Abar 

0.01–3.4 
0.1–3.0 

inch2 25-Bar 
72-Bar 

Design 
Constants 

Elasticity modulus Es 107 psi 
Both 

Weight per unit of volume of bars ρs 0.1 lb/inch3 

Bar number - 25 
72 - 25-Bar 

72-Bar 

Node number - 10 
20 - 25-Bar 

72-Bar 

Bar group number - 8 
16 - 25-Bar 

72-Bar 

Table 3. Loading conditions on nodes for a 25 bar truss model. 

Case Node 
Number 

Load 
Unit 

Px Py Pz 

1 

1 1000 10,000 −5000 

lb/inch2 

2 0 10,000 −5000 
3 500 0 0 
6 500 0 0 

2 
1 0 20,000 −5000 
2 0 −20,000 −5000 

Table 4. Loading conditions on nodes for a 72 bar truss model. 

Case Node 
Number 

Load 
Unit 

Px Py Pz 
1 17 5000 5000 −5000 

lb/inch2 
2 

17 0 0 −5000 
18 0 0 −5000 
19 0 0 −5000 
20 0 0 −5000 

Table 5. The design constraints for a 25 bar truss structure. 

Structural Member 
Description 

Constraints 
Unit 

Nodes Displacement 

All Limitation of displacements oc-
curred on nodes 

δ < |∓0.35| inch 

Group 
Number 

Design 
Variables 

 
Compression 

Stress 
Tension 
Stress 

 

1 A1 

Limitation required for stresses 
occurred on bars 

𝜎 > −35,092 

𝜎 < +40,000 psi 
 

2 A2–5 𝜎 > −11,590 
3 A6–9 𝜎 > −17,305 
4 A10–11 𝜎 > −35,092 
5 A12–13 𝜎 > −35,092 
6 A14–17 𝜎 > −6759 
7 A18–21 𝜎 > −6959 
8 A22–25 𝜎 > −11,080 
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Table 6. The design constraints for a 72 bar truss structure. 

Structural Member 
Description 

Constraints 
Unit 

Nodes Displacement 

All 
Limitation of displacements oc-

curred on nodes 
𝛿 < |∓0.25| inch 

Group 
Number 

Design 
Variables 

 
Compression 

Stress 
Tension 
Stress 

 

1 A1–4 

Limitation required for stresses 
occurred on bars 

𝜎 > −25,000 𝜎 < +25,000 psi 

2 A5–12 
3 A13–16 
4 A17–18 
5 A19–22 
6 A23–30 
7 A31–34 
8 A35–36 
9 A37–40 

10 A41–48 
11 A49–52 
12 A53–54 
13 A55–58 
14 A59–66 
15 A67–70 
16 A71–72 

3. Numerical Examples 
3.1. 25-Bar Truss Optimization with Bar Grouping 

The first case is an application performed for 25 bar truss sizing optimization by the 
grouping of whole bars. To realize this, bars were assigned to specific section areas by 
collecting similar ones symmetrically according to axes in the spaceplane. While perform-
ing the optimization process, the aforementioned stages were applied as the usage of a 
constant population number as 30 together with different iteration numbers that can be 
seen in Figure 6. Moreover, several populations and iteration numbers were interworked. 
The minimum weight is obtained as 545.0413 lb through JA in 20,000 iterations 

In addition to this, optimization results of some literature studies were given in Table 
7 to evaluate and compare the results found by used algorithms currently. In addition, in 
Table 8, the results, including minimum weight and statistical calculations, and optimum 
design variables, can be seen for each metaheuristic. As it is understood from these tables, 
the most successful algorithm is JA due to be able to determine the minimum weight with 
a very small standard deviation. Moreover, JA and FPA with the usage of Lèvy distribu-
tion by nature outperform the compared literature results in the best optimum value. It is 
seen that the Lèvy distribution has a positive effect on the best and mean optimum values. 
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Figure 6. Variation of the values for minimum weight corresponding to different iteration num-
bers with a constant (30) population. 

Table 7. Optimum results ensured from previous studies for 25 bar truss with grouping. 

Group 
Number 

Design Var-
iables 

Previous Studies 
KH [17] TLBO [18] HPSSO [19] CSP [20] TLBO [21] ADEA [22] HTS [23] 

1 A1 0.01025 0.0100 0.0100 0.010 0.0100 0.0100 0.010000 
2 A2–5 2.02437 2.0712 1.9907 1.910 1.9878 5.6406 2.070200 
3 A6–9 3.04154 2.9570 2.9881 2.798 2.9914 8.5941 2.970031 
4 A10–11 0.01029 0.0100 0.0100 0.010 0.0102 0.0100 0.010000 
5 A12–13 0.01081 0.0100 0.0100 0.010 0.0100 0.0100 0.010000 
6 A14–17 0.68950 0.6891 0.6824 0.708 0.6828 1.9368 0.670790 
7 A18–21 1.62002 1.6209 1.6764 1.836 1.6775 4.7857 1.617120 
8 A22–25 2.65501 2.6768 2.6656 2.645 2.6640 7.5921 2.698100 
Best weight 545.175 545.09 545.164 545.09 545.175 545.1657 545.13 

Mean weight 545.483 545.41 545.556 545.20 545.483 545.2200 545.47 
Standard deviation 0.306 0.42 0.432 0.487 0.306 0.0730 0.476 
Population number - 30 - 50 - - - 

Iteration number - - - 350 - - - 
Total analysis number 12,199 15,318 13,326 17,500 12,199 10,000 7653 

HTS: heat transfer search, ADEA: adaptive differential evolution algorithm, HPSSO: hybrid particle swallow swarm op-
timization, CSP: chaotic swarming of particles, TLBO: teaching-learning based optimization, KH: krill herd. 

Table 8. Optimization results and the best parameters for 25 bar truss with bar grouping. 

Group 
Number 

Design 
Variables 

Current Study 
HS ABC ABCL BA BAL FPA GWO GWOL JA 

1 A1 0.0100 0.0115 0.0100 0.0100 0.0100 0.0100 0.0229 0.0108 0.0100 
2 A2–5 2.1375 1.9193 2.1071 1.9694 1.9774 2.0491 1.9229 2.0044 2.0420 
3 A6–9 2.8910 3.1549 2.9346 3.1356 3.0507 3.0341 3.0712 3.0422 3.0045 
4 A10–11 0.0100 0.0100 0.0100 0.0100 0.0100 0.0101 0.0100 0.0104 0.0100 
5 A12–13 0.0100 0.0102 0.0103 0.0100 0.0102 0.0100 0.2285 0.0142 0.0100 
6 A14–17 0.6887 0.6749 0.6415 0.6808 0.6923 0.6770 0.6142 0.6817 0.6816 
7 A18–21 1.5994 1.6627 1.6051 1.6258 1.6566 1.6035 1.7070 1.6375 1.6229 
8 A22–25 2.6991 2.6352 2.7508 2.6432 2.6412 2.6764 2.7241 2.6607 2.6737 
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Best weight 545.3419 545.4145 545.3736 545.3712 545.1191 545.0738 548.9530 545.1282 545.0378 
Mean weight 548.3861 545.5653 545.4441 549.9517 546.4605 545.0738 548.9533 545.1287 545.0440 

Standard deviation 1.160 0.104 0.108 1.940 5.560 2.10 × 10−13 6.36 × 10−5 1.88 × 10−4 3.03 × 10−3 
Best population 

number 
30 25 30 25 20 25 20 20 20 

Best iteration 
number 

18,000 13,000 5000 12,500 10,000 2500 11,000 11,500 15,000 

3.2. 72-Bar Truss Optimization with Bar Grouping 
The second case is the grouping of bars belonging 72 bar truss to provide optimal 

design variables and the best weight solution. In Figure 7, optimization results as mini-
mum weight (379.6172 lb via JA in 15,000 iterations) are presented that they were obtained 
according to the constant population and various iteration numbers. 

In Table 9, all current optimization results were represented with some parameter 
evaluations. Literature studies are also given in Table 10. For this case, the best metaheu-
ristic is again JA owing to reach the minimum weight, which is a far smaller value than 
the other algorithms. Furthermore, according to this algorithm, the standard deviation for 
the objective function is very little and so that it can be recognized that JA has the best 
performance in every respect when the other current methods and the used previous al-
gorithms are compared. 

 
Figure 7. Minimum weight changing ensured according to multiple iteration numbers and a con-
stant (30) population. 

Table 9. Current optimum results with the best parameters for 72 bar truss (grouping). 

Group 
Number 

Design 
Variables 

Current Study 
HS ABC ABCL BA BAL FPA GWO GWOL JA 

1 A1–4 2.2301 2.0781 1.7910 1.7682 2.0679 1.9057 1.7845 2.0458 1.8899 
2 A5–12 0.4946 0.5187 0.5195 0.5720 0.4854 0.4916 0.5249 0.4864 0.5119 
3 A13–16 0.1000 0.1026 0.1000 0.1000 0.1000 0.1000 0.1000 0.1137 0.1000 
4 A17–18 0.1212 0.1000 0.1000 0.1384 0.1000 0.1003 0.1000 0.1003 0.1000 
5 A19–22 1.1985 1.2594 1.3484 1.3535 1.3457 1.3372 1.0110 1.1140 1.2702 
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6 A23–30 0.5009 0.4559 0.4860 0.5347 0.5319 0.4907 0.6469 0.5504 0.5120 
7 A31–34 0.1000 0.1001 0.1000 0.1000 0.1181 0.1000 0.1000 0.1161 0.1000 
8 A35–36 0.1000 0.1000 0.1023 0.1000 0.1003 0.1000 0.1000 0.1063 0.1000 
9 A37–40 0.5477 0.6239 0.5061 0.6166 0.4839 0.5590 0.6409 0.5198 0.5234 

10 A41–48 0.5334 0.4710 0.5002 0.4921 0.5194 0.5088 0.5318 0.4672 0.5165 
11 A49–52 0.1032 0.1000 0.1000 0.1000 0.1005 0.1000 0.1000 0.1683 0.1000 
12 A53–54 0.1000 0.1000 0.1000 0.1567 0.1420 0.1000 0.3552 0.1000 0.1000 
13 A55–58 0.1626 0.1570 0.1558 0.1644 0.1562 0.1560 0.1502 0.1516 0.1565 
14 A59–66 0.5040 0.6202 0.5634 0.5031 0.5214 0.5373 0.4666 0.5651 0.5457 
15 A67–70 0.3831 0.3898 0.5024 0.3699 0.3972 0.4890 0.2846 0.3832 0.4104 
16 A71–72 0.7333 0.5725 0.5738 0.6129 0.5235 0.5802 0.9665 0.7247 0.5678 

Best weight 386.2662 383.4078 381.5569 385.6475 381.9249 380.4598 398.7166 386.5409 379.6156 
Mean weight 405.3741 402.1776 395.4222 417.7893 382.0331 380.4598 398.7167 386.5411 379.6172 

Standard deviation 5.820 16.100 8.710 48.700 0.220 2.79 × 10−13 5.77 × 10−5 3.65 × 10−5 7.49 × 10−4 
Best Population 

number 
25 30 30 15 10 25 15 30 30 

Best iteration number 13,000 14,500 19,000 20,000 17,500 18,000 8500 19,500 17,500 

Table 10. Some literature studies concerning 72 bar truss (grouping). 

Group 
Number 

Design 
Variables 

Previous Studies 
BB-BC [10] GA [16] TLBO [18] CSP [20] TLBO [21] ADEA [22] HTS [23] 

1 A1–4 1.8577 1.702 1.90640 1.94459 1.8807 1.8861 1.9001 
2 A5–12 0.5059 0.496 0.50612 0.50260 0.5142 0.5231 0.5131 
3 A13–16 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000 
4 A17–18 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000 
5 A19–22 1.2476 1.288 1.26170 1.26757 1.2711 1.2576 1.2456 
6 A23–30 0.5269 0.469 0.51110 0.50990 0.5151 0.5043 0.5080 
7 A31–34 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000 
8 A35–36 0.1012 0.100 0.10000 0.10000 0.1000 0.1000 0.1000 
9 A37–40 0.5209 0.505 0.53170 0.50674 0.5317 0.5200 0.5550 

10 A41–48 0.5172 0.550 0.51591 0.51651 0.5134 0.5235 0.5227 
11 A49–52 0.1004 0.109 0.10000 0.10752 0.1000 0.1000 0.1000 
12 A53–54 0.1005 0.118 0.10000 0.10000 0.1000 0.1000 0.1000 
13 A55–58 0.1565 0.154 0.15620 0.15618 0.1565 0.1568 0.1566 
14 A59–66 0.5507 0.604 0.54927 0.54022 0.5429 0.5394 0.5407 
15 A67–70 0.3922 0.442 0.40966 0.42229 0.4081 0.4083 0.4084 
16 A71–72 0.5922 0.604 0.56976 0.57941 0.5733 0.5734 0.5669 

Best weight 379.85 379.63 379.63 379.97 379.632 379.6943 379.73 
Mean weight 382.08 - - 381.56 379.759 379.8961 382.26 

Standard deviation 1.912 - - 1.803 0.149 0.0791 1.940 
Population number - - - - - - - 

Iteration number - - - - - - - 
Total analysis 

number 
6942 19,709 19,709 10,500 21,542 15,600 13,166 

HTS: heat transfer search, ADEA: adaptive differential evolution algorithm, CSP: chaotic swarming of particles, GA: ge-
netic algorithm, TLBO: teaching-learning based optimization, BB-BC: big-bang big crunch. 

3.3. 25-Bar Truss Optimization without Bar Grouping 
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The third case is concerned with the determination of optimal section areas for each 
bar individually. In this regard, the best weight as a minimum (545.1083 lb) was achieved 
with JA by considering the only constant population in 100,000 iterations, as seen in Figure 
8. In addition, it was understood that the objective function might be provided by usage 
of the best parameter combinations as 15 and 115,000 for population and iteration num-
bers with JA, respectively, according to the results of Table 11. For this case, the only doc-
umented optimization was proposed by Bekdaş et al. [24]. 

 
Figure 8. Changing for minimum weight values concerning different iteration numbers via a con-
stant (30) population. 

Table 11. Optimum results provided with the best parameters for 25 bar truss without grouping. 

Design 
Variables 

Documented 
Study [24] 

Current Study 

FPA HS ABC ABCL BA BAL FPA GWO GWOL JA 
A1 0.0100 0.4458 0.1298 0.0104 0.1184 0.0100 0.0965 0.7796 0.0103 0.0100 
A2 2.3903 3.1494 2.2184 3.4000 2.0174 2.6515 1.4802 1.2254 1.9548 1.9019 
A3 1.8524 2.0411 1.9449 1.4015 2.2780 1.6965 2.9122 2.2786 1.2900 2.4622 
A4 2.0935 2.1586 2.0351 3.3351 1.8349 2.5179 1.2167 2.8893 2.5339 1.6803 
A5 1.9749 2.1175 1.9137 0.7374 2.4292 1.5376 2.9552 1.6550 2.5293 2.4353 
A6 2.9549 2.7672 2.4382 3.4000 2.8319 3.3445 2.3174 2.5574 2.8853 2.7733 
A7 2.9379 2.7920 2.7738 2.9510 3.0574 3.2573 2.6665 2.7372 2.6204 2.7611 
A8 3.0085 2.8634 3.0920 2.4397 3.1506 2.8895 3.2496 3.0388 2.7839 3.4000 
A9 2.4974 2.8615 1.9781 2.3134 2.9135 2.1074 3.2680 2.9789 2.0761 2.8591 
A10 0.0100 0.1332 0.1210 0.2810 0.1278 0.1041 0.0100 0.6568 0.0159 0.0100 
A11 0.0104 1.6132 0.3037 0.0100 0.0860 0.0294 0.0100 0.4757 0.0756 0.0100 
A12 0.0100 0.4209 0.0157 0.0196 0.0100 0.0107 0.1100 0.8414 0.0115 0.0100 
A13 0.0100 0.3124 0.3610 0.0100 0.0100 0.0132 0.0100 0.3416 0.0154 0.0100 
A14 0.7058 1.2763 1.3285 0.5596 0.7848 0.5993 0.8670 0.9344 0.9142 0.8295 
A15 0.5950 0.4679 0.3222 0.6389 0.7687 0.6265 0.7245 0.8662 0.4807 0.6832 
A16 0.8043 1.5477 1.1122 0.8279 0.6498 0.7242 0.6477 1.6382 1.3634 0.6205 
A17 0.6149 0.1954 0.6027 0.5991 0.6166 0.7340 0.4533 0.4981 0.5772 0.5581 
A18 1.7011 1.7648 1.8217 2.6633 1.6228 1.7418 1.2780 2.1802 2.4427 1.4748 
A19 1.7259 1.0280 2.0910 1.2955 1.8506 1.7004 1.8226 2.2122 2.2463 1.8439 
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A20 1.8375 2.1691 2.1350 2.4677 1.4679 1.7927 1.4716 2.0611 2.0330 1.5456 
A21 1.3793 1.5454 1.7626 0.8297 1.4096 1.3135 2.0145 2.0826 2.2709 1.4880 
A22 2.3446 2.0615 3.0436 2.2567 2.3569 2.1048 3.1522 3.0129 1.7381 2.9342 
A23 2.5744 2.0553 3.0927 2.1876 3.0532 2.6214 3.2085 3.0249 2.6066 3.0578 
A24 3.1464 3.3649 3.0028 3.4000 3.0771 3.2652 2.5699 1.7545 3.0829 2.6271 
A25 2.5920 2.9254 2.0149 3.4000 2.1005 2.7427 1.8336 1.9041 2.7111 2.0332 

Best weight 543.20 585.9394 573.9692 565.9572 549.4372 545.2959 548.1256 604.4136 578.7288 542.9822 
Mean weight - 603.0324 599.9786 566.0596 551.1452 552.0253 548.1256 604.4137 578.7288 543.0017 

Standard 
deviation 

- 16.400 17.400 0.165 1.180 34.400 
1.18 × 
10−13 

9.04 × 
10−6 

1.79  × 
10−6 

8.22 × 
10−3 

Best 
population 

number 
20 15 30 15 25 30 25 10 30 15 

Best iteration 
number 

100,000 95,000 115,000 35,000 30,000 110,000 55,000 120,000 90,000 115,000 

4. Results 
4.1. 25-Bar Truss Optimization with Bar Grouping 

As it was mentioned previously, first, an optimization operation was applied by uti-
lizing a constant population and different iterations (Figure 6). Generally, it can be recog-
nized from this figure, all of the ones can be considered as successful except GWO, ABCL, 
and BA in terms of nearing the minimum weight. However, in this meaning, the best al-
gorithm is JA, thanks to the finding of weight as 545.041 lb at minimum. Nevertheless, 
Lèvy flight is effective for both BA and especially GWO. 

On the other respect, according to the results in Table 6 and 7, from the used algo-
rithms in the current applications, JA is the method that can find the minimum weight as 
545.0378 lb, which is a smaller value than the best one from literature studies, and it was 
provided with an extremely small deviation. Additionally, except for JA, it appeared that 
FPA could also be accepted as accomplish for minimization of the weight according to the 
given literature results. Thus, this algorithm employing Lèvy distribution in its initial 
form can be minded as effective and useful due to that it can achieve this objective by 
making little standard error. If we evaluate the other methods, it can be said that GWOL 
and BAL almost approximate to the minimum weight for grouping case of the 25 bar truss. 
Here, the significant point is that Lèvy flight is noteworthily effective in terms of minimiz-
ing of weight by all of the swarm intelligence-based algorithms, especially for GWO, be-
sides that the required iteration numbers were decreased with this function for BA and 
especially ABC, too. 
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4.2. 72-Bar Truss Optimization with Bar Grouping 
According to Figure 7, with the usage of a constant population with various itera-

tions, it can be said that the most effective methods are FPA and JA cause that the other 
ones could not make convergence exactly to the minimum structural weight of the 72 bar 
truss structure. However, the best one is JA by reaching the minimum weight of 379.617 
lb. In addition, in this case, Lèvy flight is notably efficient for only GWO. 

On the other respect, via Table 9 and 10, it is seen that the best algorithm is JA in 
finding the minimum weight as 379.6156 lb by deviating from this value with a so small 
rate. Although the provided result by JA is close to the best ones among literature studies 
in general scope, this can be considered as a more effective method thanks to the small 
deviation. 

Moreover, the other algorithms are not successful in an exact way in terms of reach-
ing the minimum weight value besides that FPA has a comparatively efficient perfor-
mance. However, positive effects (such as decreasing of standard deviation, etc.) and per-
formance of Lèvy flight on the benefited algorithms are drawn attention in the direction 
of the realization of the optimization target. In this case, the Lèvy flight function im-
proved, especially GWO, by decreasing weight by nearly 13 lb amount. 

4.3. 25-Bar Truss Optimization without Bar Grouping 
It can be understood from Figure 8; the best method is only JA through the achieve-

ment of the minimized truss weight as 545.108 lb for 25 bar without grouping of bars. HS, 
FPA, and BAL also can be accepted as usable relatively to the other ones. Furthermore, 
Lèvy flight affected all handled algorithms positively in the sense of convergence to more 
the minimized weight. 

According to Table 11, JA is the top-ranking between the expressed all techniques 
(literature and current studies) by far thanks to minimizing of truss weight as 542.9822 lb; 
even this result was got via the pretty minor rate for deviation as 8.22E-03. On the other 
side, Lèvy flight influenced all population-based algorithms utilizing reduction of mini-
mum weight with comparison to the classical structure of the mentioned methods. Addi-
tionally, this function provides to decrease of the best necessary iteration numbers for 
ABC with GWO, too. 

5. Conclusions 
As a result, it can be said that the JA algorithm is the best option to be benefitted from 

the minimization of the structural weight regarded the handled truss models. This algo-
rithm could succeed in this operation by providing to occur of very small standard devi-
ations, too. On the other side, when the Lèvy flight was evaluated, the constant population 
taken as 30 is always not good to prefer in terms of improving minimization performance 
for swarm intelligence-based algorithms according to both cases compared to each other. 
Because it can be understood from the results, algorithms combined with Lèvy flight are 
more powerful and efficient about finding the optimum value of the weight when the 
population number shows a change by adjusting the required iteration numbers. 

Except for these, Lèvy flight is chiefly useful for developing of GWO algorithm’s 
minimization performance compared with the other ones. For this respect, in the other 
optimization studies, hybridization of GWO with this function can be benefited for many 
objectives. 
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Appendix A 

Table A1. Some expressions used as special by BA. 

Abbreviation Explanation 𝐕𝐢,𝐧𝐞𝐰 New velocity value for ith design variable 𝐕𝐢,𝐣 Current velocity value of ith design variable within jth candidate so-
lution (bat) 𝒇𝐣 Frequency of jth candidate solution 𝑨𝐦𝐞𝐚𝐧 Mean of sound loudness values belonging all bats 𝑨𝐣,𝐧𝐞𝐰 New value, which will be assigned for loudness for ith bat 𝒓𝐣,𝐧𝐞𝐰 New value, which will be determined for sound vibration emission 
rate of bats 

Table A2. Indication of basic and special algorithm parameters. 

 Notation Property Algorithm 

Population 
Number 

HMS Total harmony number or harmony memory size HS 𝑒𝑏/𝑜𝑏/𝑓𝑠𝑛 Number of employee bee/onlooker bee/food source number ABC 𝑓𝑛 Number of total fireflies FA 𝑏𝑛 Number of bats BA 𝑛𝑓 Total flower number FPA 𝑤𝑛 Gray wolf number in the pack GWO 𝑝𝑛 Population number JA 

Characteristic 
Parameters 

PAR 
Parameter providing of generating random number depended on music tone, 
between limits of variable/pitch adjusting rate HS 

HMCR Harmony memory consideration rate ip Parameter, which takes value according to the case that food sources can be 
optimized ABC 

SIL Limit condition, which is considered for which sources must be renewed by 
scout bees and is assigned at the beginning of the optimization β  Minimum (r = 0) attractiveness value (β ∈ [0,1]) 

FA γ Light absorption coefficient (γ ∈ [0,1]) α  Randomization parameter 𝑓  Minimum value of frequency 

BA 

𝑓  Maximum value of frequency 𝐴  Loudness of bats during the initial state 𝐴  Minimum value of sound loudness 𝑟  Sound vibration emission rate of bats in the initial state 
β Random number, which is determined in the range [−1,1] 
α Constant coefficient that effective for transmission of loudness 
γ Constant coefficient that determines of sound vibration emission rate sp Switch probability/search change FPA C⃗  Coefficient vector 

GWO A⃗ Vector determining the case that wolf attacks to prey a⃗ Vector affecting the distance between prey with wolf 
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Table A3. Definition of expressions used in algorithms as general and commonly. 

 Expression Explanation Algorithm 

Some Solution 
Values 
for 
Design 
Variables 

X ,  New value of ith design variable All X ,  Low limit of ith design variable (minimum value) HS 
ABC X ,  Upper limit of ith design variable (maximum value) X ,  Initial matrix value of jth candidate solution belonging to ith 

design variable 
All out of HS X ,  ith design variable value belongs to the solution with the 

best value in terms of the objective function 
All out of HS, ABC, and FA X ,  ith design variable value belongs to the solution with the 

worst value in terms of the objective function 
JA X ,  Value of nth solution for ith design variable 

FPA 
HS X ,  Value of mth solution for ith design variable FPA X ,  Value of a specific kth firefly for ith design variable FA X ,  Initial matrix value of ith design variable corresponding to 

pth solution (prey) 
GWO X ,  New value of pth design variable 

ABC X ,  Value (in initial solution matrix) of jth solution for pth design 
variable X ,  nth solution value of pth design variable 

Optimization 
Elements 

n nth candidate vector selected randomly from the initial ma-
trix 

All out of BA, FA, and JA M mth candidate vector selected randomly from the initial ma-
trix 

FPA P Randomly selected parameter as from whole design varia-
bles 

ABC 

vn Number of total design variable, which will be optimized FA, ABC 
T Stage of the current iteration FA, BA, GWO 
stopping cri-
teria Total iteration number GWO 

Table A4. Functions utilized in algorithms. 

 Name Task Algorithm 

Functions 

rand Generation random number between 0 and 1 All 

ceil ( ) Round the number in parentheses to equal/bigger natural number 
than it 

FPA, ABC, HS 

min ( ) Determine the smallest one among value in a certain amount All out of HS and ABC 
max ( ) Determine the biggest one among value in a certain amount JA 
mean ( ) Calculate the average of element values in an array BA 
abs ( ) Absolute of number within the parentheses JA, GWO 
sort ( ) Queue the members in any array from small to big GWO 
exp ( ) Give the power of e to the degree of number within parentheses FPA 

FA sqrt ( ) Take the square root of a number 
sum ( ) Give the total of element values in any number array ABC 
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