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Abstract: Truss structures are one of the major civil engineering members studied in the optimization
research area. In this area, various optimization applications such as topology, size, cost, weight,
material usage, etc., can be conducted for different truss structure types. In this scope with the
present study, various optimization processes were carried out concerning two different large-scale
space trusses to minimize the structural weight. According to this state, three structural models
provided via two different truss structures, including 25 bar and 72 bar truss models, were handled
for evaluation of six different metaheuristics together with the modification of Lèvy flight for three of
the algorithms using swarm intelligence by considering both constant and variable populations, and
different ranges for iterations, too. Additionally, the effects of the Lèvy flight function and whether
it is successful or not in terms of the target of optimization were also investigated by comparing
with some documented studies. In this regard, some statistical calculations were also realized to
evaluate the optimization method performance and detection of optimum values for any data stably
and successfully. According to the results, the Jaya algorithm can handle the optimization process
successfully, including the case, without grouping truss members. The positive effect of Lèvy flight
on swarm-based algorithms can be seen especially for the gray wolf algorithm.

Keywords: truss structures; optimization; metaheuristics; Lèvy flight; swarm intelligence; Jaya algorithm

1. Introduction

In civil engineering, the most significant issue is to provide the required safety for any
engineering structure. Of course, this state must be actualized by designers or engineers
without putting people’s lives in danger; besides, the design must be cost-effective and
also sustainable for eco-friendly structures and their members. However, to actualize this
is not so fast and easy because of the desired and expected conditions that may not be
able to be provided at the same time and with only a single step. On the other respect, the
results obtained may not suitable or enough economic for the required conditions. For this
reason, iterative processes, which benefit from both determining an optimistic design in
terms of cost, effort, etc., and prevent spending much time, gain importance. From the past
to nowadays, metaheuristic algorithms, which came as one of the optimization techniques
and have been improved in the direction of some special features sourced on nature or
science, are one of the best methods that can be selected for the mentioned state.

In this regard, several applications were performed via a wide range of metaheuristics
in civil engineering, especially for structural engineering. As an example, in 2013, a study
was carried out that is concerned with the generation of the best-tuned mass damper
(TMD) parameters for structures. In the mentioned study, analyses were operated under
different historical earthquake conditions by using harmony search (HS) algorithm to
make real of this [1]. Parcianello et al. (2017) improved the viscous damper model for the
frames depending on an optimization process conducted with genetic algorithms (GA) to
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increase of seismic performance of these structures [2]. On the other hand, Talatahari et al.
(2015) developed a hybrid optimization tool by using eagle strategy (ES) and differential
evolution (DE) algorithms to minimize the weight for different steel frame structures [3].
In addition, they evaluated the optimization success of this algorithm compared with DE.
Gholizadeh and Ebadijalal (2018) benefited from a recently developed metaheuristic algo-
rithm, which is named as center of mass optimization (CMO), to optimally arrange bracings
on steel frames under seismic loading [4]. With the other respect, weight minimization of
eccentrically braced frames was performed in the direction of seismic performance-based
analysis by Fathali et al. (2020). Four algorithms, including accelerated water evaporation
optimization (AWEO), PSO, with classical (CBO) and enhanced (ECBO) colliding bodies
optimization, were utilized to observe the performance of this method [5]. Moreover,
Kayabekir et al. (2016) presented a book where optimum designs were generated for
reinforced concrete structures containing slender columns, shear walls, and cylindrical
walls formed as post-tensioned axially symmetric, etc., through the usage of metaheuristic
algorithms [6]. Vaez and Qomi (2018) carried out a study, which is related to providing min-
imum weight for reinforced concrete shear walls by investigating the optimum placement
and diameter of steel bars together with wall properties by using PSO, FA, whale optimiza-
tion algorithm (WOA), and crow search algorithm (CSA) [7]. In the study performed by
Sheikholeslami et al. (2016), two metaheuristics, including firefly algorithm and harmony
search, were hybridized and applied to two different reinforced concrete retaining walls to
provide the best cost [8]. Optimum design for a cantilever retaining wall was also carried
out with the aim of cost minimization by Aydogdu (2017), where peak ground acceleration
was considered towards this object by combining of biogeography-based optimization
method with Lèvy flight [9]. Additionally, the design of retaining wall with the optimum
cost was realized depend on seismically performance based by handling an enhanced kind
of genetic algorithm (non-dominated sorting).

Similarly, various optimization studies were also performed for truss structures too.
One of these is a study, which was carried out to provide the minimum weight for space
truss structures by Camp (2007) through using the big bang–big crunch (BB–BC) optimiza-
tion algorithm [10]. While executing this process, deflection and stress limitations besides
material conditions were considered. In the year 2011, another study was performed
for trusses in the direction of minimization of structure mass by providing of optimum
size and shape of them [11]. To make real of this, an optimization technique, which is
one of the oldest and called particle swarm optimization (PSO), was utilized, and it was
applied for four different structure models. Moreover, Miguel and Miguel (2012) carried
out a work which is related to optimization of shape and size of trusses by using nodal
coordinates and section areas of bars, respectively, to reach minimum weight [12]. For this
aim, they used two optimization tools, including the firefly algorithm (FA) and harmony
search (HS), for analyzing four different truss models. In 2015, Bekdaş et al. (2015) applied
a metaheuristic known as flower pollination algorithm (FPA) to generate the best truss
size by minimizing structure weight, and they used three truss models containing planar
and space form to actualize this process [13]. On the other hand, Kaveh and Ghazaan
(2017) used a metaheuristic algorithm to optimize truss structures to improve the dynamic
performance of them under frequency constraints [14]. For this reason, they benefited from
a method, which is known as vibrating particles systems (VPS), and was developed by
inspiring from dynamic behavior of structures. Tejani et al. (2018) also solved the problem
related to multiobjective optimization of five different truss structure models from the
literature [15]. In this respect, they applied the symbiotic organisms search (SOS) algorithm
by combining the multiobjective adaptive control technique.

The widest application area of metaheuristic-based optimization is truss structures in
structural engineering. Furthermore, in Table 1, a comparison is carried out by generating
a summarization of optimization properties about some literature studies, which are
benefited from the validation of the present results. The current study and compared



Buildings 2021, 11, 49 3 of 26

documented methods are compared to each other in terms of the variety of the number of
the used algorithms, the number of design variables, etc.

Table 1. Comparing some literature research and the present study.

Researchers

Number of
Used

Classical
Algorithms

Number of
Hybridized/

Modified
Algorithms

Algorithm

Number of
Investi-

gated Truss
Models

Number of
Maximum

Design
Variables

Biggest
Number of
Compared

Other Methods

Citation

Camp (2007) 1 - Big bang–big crunch
(BB–BC) optimization 3 16 4 [10]

Dede et al. (2011) 1 - Genetic algorithm (GA) 4 96 13 [16]

Gandomi et al. (2013) 1 - Krill herd (KH) 1 8 10 [17]

Degertekin and
Hayalioglu (2013) 1 -

Teaching-learning
based optimization

(TLBO)
4 29 8 [18]

Kaveh et al. (2014) - 1
Hybrid particle swarm

and swallow swarm
optimization (HPSSO)

6 29 6 [19]

Kaveh et al. (2014b) - 1 Chaotic swarming of
particles (CSP) 4 59 5 [20]

Camp and
Farschin (2014) - 1

Modified
teaching-learning

based optimization
(TLBO)

3 26 7 [21]

Bureerat and Pholde
(2016) - 1

Adaptive
Differential evolution

algorithm (ADEA)
4 29 6 [22]

Degertekin et al.
(2017) 1 - Heat transfer search

(HTS) 3 29 8 [23]

Bekdaş et al. (2017) 1 - Flower pollination
algorithm (FPA) 2 72 0 [24]

Present Study 6 3 Defined in Section 2 3 25 7 -

In the current study, two different space truss structure models as 25 bar and 72 bar
that are generally used as the benchmark problems, were handled to ensure optimum
design parameters, including section areas and also objective functions such as minimum
cost or weight, etc. In this regard, three separate cases were emphasized by considering
the numbers of increment of design parameters. According to this, the first and second
one is related to combining/grouping of structure bars for truss models, besides that,
the last is the case, where grouping for the 25 bar model is not realized. Six different
metaheuristic algorithms and three improved versions of them using Lèvy flight as a
novel application were applied to the mentioned cases by generating two sub-cases of
different maximum iteration and population numbers. As given in Table 1, the present
study includes the application of 9 algorithms with three novel modifications. In addition
to that, a comparative investigation using nine applied methods and seven documented
methods was presented by choosing the same optimum design benchmark problems.

2. Materials and Methods

When the general of nature is considered, it is understood that livings have features
developed for various aims such as surviving, feeding, continuity of species. To see these
features, many examples such as that fox benefits from a magnetic area of the world while it
is hunting, chameleon changes color intending to hide from danger; cuckoo birds use other
bird’s nests for continuity of self-species and hedgehog throws the quills by stretching
itself under danger, are possible. If when all these processes are analyzed, it is seen
that livings change their defense or attack mechanisms as conveniently to the conditions
and uses a kind of species-specific heuristic optimization, which ensures that using of
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limited opportunities exist in themselves under the fittest time and form to maintain of
vital activities.

These heuristic optimization processes belonging to livings in nature have engaged the
attention of researchers working on basic sciences, and they generated various algorithms,
which express these processes mathematically as the most frequently and commonly used
in the literature from these algorithms called metaheuristics are explained in headings
taken below and employed in the study.

The employed algorithms are flower pollination algorithm (FPA), artificial bee colony
(ABC) algorithm, bat algorithm (BA), Jaya algorithm (JA), gray wolf optimization (GWO)
and harmony search (HS). These algorithms have unique features and imitations from a
process. These are detailly explained in the subsections of Section 2, but major generations
and differentiation are as follows:

- FPA, ABC, BA and GWO are nature-inspired algorithms. HS is a music-inspired one,
while JA does not use a direct imitation. Jaya word means victory in Sanskrit. Due to
that, a bond can be only generated by assuming the reaching of an optimum result as
a victory;

- FPA uses Lèvy distribution in its classical form. Since wolves, bees and bats can also
act as random flying or moving members, modified versions of these algorithms with
Lèvy distribution that characterize the random flight are investigated;

- Generally, metaheuristic algorithms have two stages of optimization using a probability
to select one of these stages (phases) in an iteration. ABC is a three-stage (phase) algo-
rithm, while JA has only a single phase. The others are classical two-phase algorithms;

- JA has no user-defined specific parameter in the formulation, while the others need
parameters in formulations and selection of a stage;

- BA uses a three-step formulation (frequency, velocity and new solution) to update
a solution.

- GWO uses three unique, different solutions with different calculations. These solutions
are named with three types of wolves.

In Appendix A, the commonly used type-specific parameters belonging to each meta-
heuristic method and some common expressions concerned with candidate solutions for
each design variable can be seen. In addition, the used functions in equations of algorithm
optimizations are indicated in Appendix A.

2.1. Flower Pollination Algorithm (FPA)

Plants, especially flowering plants, can gain attract to self of some insect species like
bees, flies, etc., because of that they have stimuli such as special color, smell and various
aromatic secretories. In addition to these features, insects also contribute to the pollination
process, which is required for ensuring the continuity of species by the run to flowers with
the help of nature-sourced effects like wind, water, etc.

The flower pollination algorithm (FPA), which was developed by inspiration from
this process by Yang [25], is one of the metaheuristic algorithms frequently used nowadays.
In FPA, four different rules, which are related to the property of pollination process, the
behavior of pollination, and flower constancy, and formalized by inspired from flowery
plants, are kept insight [13,26,27]:

• Cross-pollination is realized via the transfer of pollen between flowers of different
plants from the same species. Pollen carriers (pollinators) suit to rules Lèvy distribution
(Equation (1)) by jump with far steps or fly. This process is called global pollination;

• Self-pollination occurs due to the pollen transferring within the self of a flower or
between different flowers of the same plant. This pollination kind is local pollination;

• The case of flower constancy is the cooperation among pollen carriers with flower
types. This is a development within the process of flower pollination;

• Local and global pollination is controlled with a probability value, which is named
switch probability and has a value between 0 and 1.
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In the optimization process, which is performed via applying all these rules, two dif-
ferent ways are followed to obtain the optimum values. To make real this, the type of
search must be determined by controlling search change/switch probability (sp.), which is
one of the FPA parameters. This search type is named as:

• The global search that solutions are determined by search from more extent area, if sp
is bigger than a randomly generated number;

• The local search process that solutions are searched from a smaller area if this value sp
is smaller than the generated random number between 0 and 1 (rand).

The value of the ith design variable of the jth value of population including nf number
of flowers (Xi,j) is updated as the new solution (Xi, new ) as given below. Xi,gbest

is the best
current solution of the ith design variable.

Levy =

(
1√
2π

)
(rand)−1.5 e(−

1
2 rand ) (1)

Xi, new =

{
sp > rand, Xi,j + Levy

(
Xi,gbest

− Xi,j

)
sp < rand, Xi,j + rand (Xi,m − Xi,n)

(2)

n = ceil (rand × n f ) (3)

m = ceil (rand × n f ) (4)

2.2. Artificial Bee Colony (ABC) Algorithm

In 2005, the artificial bee colony (ABC) algorithm introduced by Karaboğa was devel-
oped through simulated the food source searching behaviors of bee colonies [28].

In bee colonies, honey bees are divided into three different categories as a worker,
onlooker, and scout. Moreover, in the algorithm, these categories represent the negative
feedback, positive feedback, and random motions, respectively. Initial food sources are
produced randomly in the search space of the problem. Half of the honeybees that have the
aim to provide the increase of the substantiality of nectar in the hive are worker bees. The
other half contains onlooker bees, and flocking behavior around the food source starts with
worker bees. Worker bees record each food source to the memories, and information is
shared with onlooker bees waiting in the hive. According to shared information, onlooker
bees collect the food sources within the near-environment of the hive; scout bees collect
the ones in long-distance from the hive. Onlooker and scout bees share the food source
information with worker bees by a return to the hive. If the information on the new
food source is better than the information on the initial food source’s position, this is
updated [29–31].

In this way, the ABC algorithm can deliver a solution to various optimization problems
thanks to the simulation with the natural process, which is the maximization of nectar
amount by determining the position of food sources optimally by honey bees.

Some assumptions are applied in this algorithm, too [32]. These are given below:

• It is accepted that number of worker and onlooker bees are equal to each other in the
total bee population;

• The food sources express candidate solutions and are assumed that each bee com-
pletely consumes this source by going to a single food source. Hence, the food source
number is half of the total bee number;

• Later, worker bees transform into scout bees to search for the new ones substituted for
finished foods.

There are four separate stages for expressing this process via the ABC algorithm.
These are determining of initial food sources, the worker bee stage that found of the new
sources by worker bees, onlooker bee stage that evaluated nectar qualities of new sources,
and finally, scout bee stages that found the new ones, in the case that exist finished food.
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About improving initial food sources, first, the worker bee stage is performed. For this;
one food source is selected as randomly (n), and the position of the old source is updated
with a probability value (φi,j) between the range of [−1, 1] for a design variable/parameter
determined randomly (p) for a problem with vn design variables/parameters, and source
nectars are calculated again. From sources that their positions were updated, all of the
food sources that are better than the initial ones are updated by changed with the old food
source. This process for modification of the design variable of the jth population (Xp,j) is
carried out via equations expressed below:

Xp,new = Xp,j +φi,j
(
Xp,j − Xp,n

)
(5)

n = ceil (rand × eb) (6)

p = ceil (1 + (vn− 1) rand) (7)

The second stage is the onlooker bee stage. In this stage, onlooker bees are kept
informed by worker bees with regards to food sources’ nectar amount. The food qual-
ity/rate/possibility according to the nectar amount of each source is calculated and evalu-
ated by onlooker bees. This operation is related to the selection of ones, which have a high
ratio of nectar from renewed food sources, and in this way, the sources, which are rich in
nectar, are ensured the improvement of them as continuously by determined. In addition,
this process is performed via Equation (8) in case that food possibility (Equation (9)) is
bigger than a number randomly generating. nectarj (Equation (10)) is quality value for
jth food sources (candidate solution) calculated depending to the objective function and
considering of problem type; Fj is objective function value belonging jth solution and
f ood possibilityj is nectar rate existing in each source (rate of nectar quality):

if rand < f ood possibilityj, Xp, new = Xp,j +φi,j
(
Xp,j − Xp,n

)
(8)

f ood possibilityj =
nectarj

∑
f sn
j=1 nectarj

(9)

nectarj =
1

1 + Fj
(10)

The process of searching for new sources by abandoning sources that cannot be
optimized (namely nectar of them) is named as scout bee stage. Improving parameter (ip)
belonging to each source is controlled according to a constant value of source improvement
limit (SIL), which is defined at the start of the optimization process to use in this stage. By
scout bees, determination of new ones for each source that has ip values exceeding the
value of SIL is realized utilizing Equation (11) as below for the defined maximum (Xi,max)
and minimum (Xi,min) values. For modification with Lèvy distribution, the rand function
is replaced with Equation (1).

if ipJ > SIL, Xi,new = Xi,min + rand (Xi,max − Xi,min) (11)

2.3. Bat Algorithm (BA)

Small bats known as micro bat perform echolocation behavior acting as a kind of radar
to locate their prey, protect from obstacles, and can detect the place of hollows/clefts where
they lived at night. These bats listen to echoes returning from objects by transmitting a very
noisy sound. In addition, the frequency of transmitted sound shows alteration according
to features of bats. Bat algorithm (BA), which is a metaheuristic method, is developed
by Yang through be idealized of echolocation behavior and these features belonging to
bats [33]. Furthermore, bats fly with variable frequency values, loudness, and velocity,
which can be used in designing update equations of algorithms [27,34].
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On the other hand, some assumptions are required to be able to use the BA algorithm
in the optimization process, as in the other algorithm types [33,35]. These assumptions are
as below:

• All bats use audio echo to sense distance;
• Bats move randomly at any Xi location via Vi velocity by using a sound, which has a

constant frequency, variable λ wavelength, and loudness with A0 value, to search for
the prey. They can adjust the wavelength of emitted pulses or frequency automatically,
and the pulse emission rate (r) depending on closeness to its target (r ∈ [0, 1]);

• Although loudness value can change in different ways, this value changes between an
extremely high (positive) initial value (A0), and a constant minimum value (Amin).
A0 is 1 due to that bat search its prey with a very loud sound in the beginning; also,
when it is considered that bat just found the prey, and abandons to giving out a sound
as temporarily, Amin can be taken as 0.

In the direction of these assumptions, it is required that each bat have different
loudness and pulse emission value; besides, some different properties must observe for
determining new values (locations) belonging to candidate solutions in the optimization
process performing via the BA algorithm. These are frequency ( fj for the jth member with
the minimum; fmin and the maximum; fmax) and velocity vectors, and the process is carried
out with equations as below, respectively:

fj = fmin + ( fmax − fmin)rand (12)

Vi,new = Vi,j +
(

Xi,j − Xi,gbest

)
fj (13)

Xi,new = Xi,j + Vi,new (14)

An iterative replacement (update) is in question for new locations designated for bats
(solution value of design variables). This replacement is a process called local search, and
calculation is made with the help of Equation (15):

if rand > r j, Xi,new = Xi,gbest
+ (−1 + 2rand) Amean (15)

On the other hand, the values of loudness and pulse emission rate should be updated
as long as iterations progressed. The reason for it is that distances of bats to foods or their
prey change per the updated locations of bats. About this subject, generally, pulse emission
rate increases according to a decrease of loudness when bat found the prey, according to
the expression of Yang [33]. In this direction, parameters are updated along with iterations
via Equations (16) and (17):

A j,new = α (Amin + (A0 − Amin)rand) (16)

r j,new = r0
j
(
1− e−γt) (17)

In Appendix A, the calculated and utilized expressions for the optimization process
were given except the commonly used expressions. In the Lèvy improved BA, the Amean
value in Equation (15) is replaced with Equation (1).

2.4. Jaya Algorithm (JA)

Jaya algorithm, which is recently developed by Rao (2016), and has a working principle
similar to the teaching-learning based optimization (TLBO), is one of the metaheuristic
methods [36]. This algorithm always tries to be closer to the approach of being optimal.
In this regard, the main targets of the algorithm are both reaching the best solution and
moving away from the worst solution (Xi,gworst

). On the other hand, the algorithm takes
the name from Jaya, which is a Sanskrit word, meaning victory. It is harmonious with this
operation, and it is aimed to achieve optimization of the solution.
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When the Jaya algorithm is compared with the other algorithms, generally, it eval-
uates fewer functions to obtain the best same result. For this reason, it is required fewer
operations than others in the process of convergence to the ideal solution. However, the
application of the algorithm is simple and also not including special parameters, which
are considered superiorities [36]. However, the possibility that the algorithm locks to local
optimum increases due to the algorithm searches the best and worst results around a
smaller area compared to the other methods, and this case may cause to be not able to
evaluate better results.

In each iteration, a single-stage is enough for all variables to obtain a new optimum
solution. Equation (18) utilizing for this is as below:

Xi, new = Xi,j + rand
(

Xi,gbest
−
∣∣Xi,j

∣∣)− rand
(

Xi,gworst
−
∣∣Xi,j

∣∣) (18)

2.5. Gray Wolf Optimization (GWO)

Mirjalili et al. (2014) developed an algorithm, which is called gray wolf optimization
(GWO), and it is a kind of metaheuristic optimization method by considering the hierarchy
of leadership of gray wolves, which usually live in groups, and have hunting mechanism
in real nature [37].

In nature, gray wolves, which underlie this algorithm, create groups containing
5–12 members on average. Wolves categorize into four different as alpha, beta, delta,
and omega wolves due to the existence of hierarchy between themselves. Group leader
named as the alpha wolf, has responsibilities such as hunting, determining of sleep place
with waking time by managing the other wolves in the group, too. In this respect, it is
required that the alpha wolf, which is in the leading position, is the best member in terms
of managing the pack, not the strongest member. In addition, this shows that the case of
organized and discipline keeping in the pack is more significant than power. Wolf at the
second level of the hierarchy, is the beta wolf and participates in the group as the alpha
wolf’s assistant in many respects. Moreover, when the case that alpha wolf dies or is at a
very advanced age, the beta wolf is considered as the most possible member as a candidate,
which will be able to replace. In the group, the main task of this wolf is both providing
to keep informed of delta (δ) and omega (ω) wolves by transferring the instructions
transmitted to the leader and giving their instructions to these wolves situated in lower
level than itself by applying the directions taken from alpha. In the third and fourth steps
of hierarchy, delta and omega, which are less strong wolves, respectively, and the delta
wolf can gain an advantage over only omega wolves. For this reason, it can be said that
the weakest member in the group is the omega wolf in terms of leadership/dominance.
The representative demonstration of social hierarchy among gray wolves takes place in
Figure 1 [38,39].
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On the other hand, group hunting is a social behavior that gray wolves performed in
real nature, and also, this natural behavior was benefited for algorithm design-oriented
at optimization process. In this respect, first, the strongest three wolves need to be deter-
mined among wolves in the group. Here, the best three solutions set is determined from
among each member in the initial wolf ensemble; in other words, candidate solutions, and
alpha (α) as the leader-member (the best convenient member in terms of the objective
function), the second strong member beta (β) and third one delta (δ) solutions are defined.
All solutions except three candidate solutions are represented by the other wolves that
remained in the pack, and these members are considered omega (ω) solutions. Hence,
hunting behavior reflecting the optimization process is directed by α, β, and δ wolves.
In addition, there is a certain order followed by wolves during hunting, and according

to this order, first, the prey is followed, then encircled by wolves. In the meantime,
→
D,

which expresses the distance between prey and any wolf surrounding it, is calculated with
Equation (19). Moreover, wolves can update their locations around the prey randomly,
depending on prey (Equation (20)) [37,40]. In addition, for Lèvy modification of GWO,

rand function existing in
→
A vector formulation (Equation (22)) is changed via Equation (1):

→
D =

∣∣∣∣→C Xi,pr − Xi,j

∣∣∣∣ (19)

Xi,new = Xi,pr −
→
A
→
D (20)

→
C = 2 rand (21)

→
A = 2

→
a rand−→a (22)

→
a = 2− 2

t
stopping criteria

(23)

As mentioned before, the hunting process is directed by α, β, and δ wolves. Figure 2,
which shows this case more clearly, takes in below. In this stage, hunting is performed by
wolves attacking the surrounded prey. However, as seen in the figure, first, it is required
that hunting be directed healthfully and determining of locations (according to the prey) of
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α, β and δ wolves that are assumed to have information well about the potential position
of the prey. For this, the following equations are applied (Equations (24)–(29)), respectively:

→
Dα =

∣∣∣∣→C1 Xi,α − Xi,j

∣∣∣∣ (24)

→
Dβ =

∣∣∣∣→C2 Xi,β − Xi,j

∣∣∣∣ (25)

→
Dδ =

∣∣∣∣→C3 Xi,δ − Xi,j

∣∣∣∣ (26)
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Figure 2. Determining the new position of any omega wolf concerning prey according to wolves α,
β, and δ [40].

In these equations,
→

Dα,
→

Dβ and
→

Dδ are the distance between any gray wolf and alpha,
beta and delta wolves, respectively:

Xi,αnew = Xi,α −
→
A1

→
Dα (27)

Xi,βnew = Xi,β −
→
A2

→
Dβ (28)

Xi,δnew = Xi,δ −
→
A3

→
Dδ (29)

In the above equations, respectively,
→
A and

→
C vectors are expressed individually

for alpha, beta and delta wolves, and the approximate distance between any omega
(ω) wolf, namely the current solution, and α, β and δ wolves can be determined via
Equations (27)–(29). The latest updated position of the current solution is calculated as in
Equation (30):

Xi,new =
Xi,αnew + Xi,βnew+Xi,δnew

3
(30)

The wolf, which updates its position, is ready to attack prey. However, also, there
are some rules about mathematically expressing the case that wolf can realize the attack.
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Accordingly, in this algorithm, the
→
a value was reduced for the wolf that can approach

(decreasing of the distance between them) to prey. In addition,
→
A vector, which determines

the case of attacking to prey by a wolf, utilizing this decreasing and take values between
−→a and

→
a . Hence, the environment, which is taken place in the hunting process, can be

expressed as in Figure 3. On the other hand, a new position of hunter wolf can take values
between the position of prey and own current position. As a summary, the case that wolf
can attack prey actualizes to the condition in Equation (31) [14,41]:

if
→
|A| < 1, Xi, new = Xi,pr (31)
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2.6. Harmony Search (HS)

One of the aims of musicians while offering a musical performance to listeners is to
transfer work euphoniously. For this reason, the process of creation of an effective and
good music work through a combination of notes, which are the best reflecting the works
and most harmonious each other, continues to gain the appreciation of listeners.

Geem et al. (2001) [42], who was inspired by this process, developed an algorithm
in 2001, which is known as the harmony search (HS) method, and based on natural
(impromptu) music performance. The aim is to search for the liked harmony [43]. The
functioning of this developed algorithm is not only offering of a music work by melodizing
via the best notes, at the same time, but it also takes shape according to natural performance
of a musician and idea that to optimally implement while performing of this, too.

When analyzed this process, three possible activities, which can be performed during
the natural performance of a musician, and equivalents of these in terms of actions realized
by harmony search is [44]:

• To play any popular musical piece completely from own memory: usage of har-
mony memory;

• To play something like to a known work: pitch (tone) adjusting;
• To compose/melodize new or random notes: randomization

Usage of memory is an important notion due to resembles case that of obtaining
the best harmonies, which will transfer to new harmony memory, like selecting the most
convenient persons in the genetic algorithms (GA). Here, a case that harmony memory
consideration rate, which has a value between 0 and 1, is very high, causes to not finding
out well of almost whole harmonies in old harmony memory [45].
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Furthermore, on optimization of a problem, natural music performance can be consid-
ered as a process expressing that determining of optimum values for design variables. The
most compatible notes/harmonies express the optimum values of design variables; the
best, in other words, “most euphonic” music work, which occurs with the combination
of these notes, expresses the case that performing of the objective function belonging to
design problem.

The followed route by algorithm on optimization of design values changes according
to the different cases. In each iteration, obtaining the optimized new values of variables is
depending on the usage of harmony search memory. This case is determined via harmony
memory consideration rate (HMCR) according to Equation (32).

• If the HMCR value is bigger than a randomly generated number, memory usage is
not possible. In this case, randomly new notes should be generated;

• In the other case, notes recorded in harmony memory can be played from a specific
pitch by remembering:

Xi, new =

{
HMCR > rand, Xi, min + rand (Xi,max − Xi,min)

HMCR < rand, Xi,n + rand
(
−1
2 , 1

2

)
PAR (Xi,max − Xi,min)

(32)

2.7. The Benchmark Truss Structure Problems

In this study, two large-scale truss models were handled for optimum sizing of bar
sections in the direction of weight minimization. These are represented in Figures 4 and 5
as the geometry of 25 and 72 bar truss structures together with node and bar numbers in
the space coordinate system, respectively.
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In the optimization process, three cases were conducted to provide the minimum
weight for these structures by the grouping of bars both 25 and 72 bar truss, and without
grouping of 25 bar truss intended for evaluation of designing based on increment on the
number of design variables. In this regard, design variables and constraints, which were
determined by collecting in the same section area according to axis similarity and symmetry
of bars for grouping cases, were given in Table 2. The material of the structures is aluminum.
The same methodology can be applied for different materials, and design regulation rules
can also be integrated as design constraints. Especially, the slenderness limits of the
members under compressive forces are needed to be checked. In addition, the multiple
loading conditions are in Tables 3 and 4; design limitations as displacement and stress
constraints with bar groups are in Tables 5 and 6, for 25 and 72 bar trusses, respectively.
The optimum results for all cases were ensured without permitted the violation of any
constraint through penalizing the solutions, which exceed the limitations.

Table 2. Information for optimization process corresponding for 25 and 72 bar truss structures.

Definition Symbol Limit/Value Unit Truss Model

Design
Variables Cross-section of truss bars Abar

0.01–3.4
0.1–3.0 inch2 25-Bar

72-Bar

Design
Constants

Elasticity modulus Es 107 psi
Both

Weight per unit of volume of bars ρs 0.1 lb/inch3

Bar number - 25
72 - 25-Bar

72-Bar

Node number - 10
20 - 25-Bar

72-Bar

Bar group number - 8
16 - 25-Bar

72-Bar
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Table 3. Loading conditions on nodes for a 25 bar truss model.

Case Node
Number

Load
Unit

Px Py Pz

1

1 1000 10,000 −5000

lb/inch2

2 0 10,000 −5000

3 500 0 0

6 500 0 0

2
1 0 20,000 −5000

2 0 −20,000 −5000

Table 4. Loading conditions on nodes for a 72 bar truss model.

Case Node
Number

Load
Unit

Px Py Pz

1 17 5000 5000 −5000

lb/inch2

2

17 0 0 −5000

18 0 0 −5000

19 0 0 −5000

20 0 0 −5000

Table 5. The design constraints for a 25 bar truss structure.

Structural Member
Description

Constraints
Unit

Nodes Displacement

All Limitation of Displacements
Occurred on Nodes δ<|∓0.35| inch

Group
Number

Design
Variables

Compression
Stress

Tension
Stress

1 A1

Limitation required for
stresses occurred on bars

σc > −35, 092

σt < +40, 000 psi

2 A2–5 σc > −11, 590

3 A6–9 σc > −17, 305

4 A10–11 σc > −35, 092

5 A12–13 σc > −35, 092

6 A14–17 σc > −6759

7 A18–21 σc > −6959

8 A22–25 σc > −11, 080
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Table 6. The design constraints for a 72 bar truss structure.

Structural Member
Description

Constraints
Unit

Nodes Displacement

All Limitation of Displacements
Occurred on Nodes δ<|∓0.25| inch

Group
Number

Design
Variables

Compression
Stress

Tension
Stress

1 A1–4

Limitation required for
stresses occurred on bars

σc > −25, 000 σt < +25, 000 psi

2 A5–12

3 A13–16

4 A17–18

5 A19–22

6 A23–30

7 A31–34

8 A35–36

9 A37–40

10 A41–48

11 A49–52

12 A53–54

13 A55–58

14 A59–66

15 A67–70

16 A71–72

On the other hand, when performing optimization, six different metaheuristics con-
taining HS, ABC, BA, FPA, GWO, and JA, besides ABCL, BAL and GWOL, were applied by
modifying the structure of three algorithms with Lévy distribution. Additionally, optimiza-
tion results, including the best weight together optimal section areas, were determined to a
specific population number as 30 and different iteration numbers. Following, for grouping
cases (Sections 3.1 and 3.2), the values of optimization parameters were handled in the
range of 10–30 with 5 intervals and 1000–20,000 by increasing 500; and in not grouping
case for 25 bar truss (Section 3.3), the same ranges, and 5000–120,000 by increasing 5000 for
population and iteration numbers, respectively, to detect the most effective parameters in
the sense of saving time and effort during that minimum weight was determined.

3. Numerical Examples
3.1. 25-Bar Truss Optimization with Bar Grouping

The first case is an application performed for 25 bar truss sizing optimization by
the grouping of whole bars. To realize this, bars were assigned to specific section areas
by collecting similar ones symmetrically according to axes in the spaceplane. While
performing the optimization process, the aforementioned stages were applied as the usage
of a constant population number as 30 together with different iteration numbers that can be
seen in Figure 6. Moreover, several populations and iteration numbers were interworked.
The minimum weight is obtained as 545.0413 lb through JA in 20,000 iterations.
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Figure 6. Variation of the values for minimum weight corresponding to different iteration numbers
with a constant (30) population.

In addition to this, optimization results of some literature studies were given in Table 7
to evaluate and compare the results found by used algorithms currently. In addition, in
Table 8, the results, including minimum weight and statistical calculations, and optimum
design variables, can be seen for each metaheuristic. As it is understood from these tables,
the most successful algorithm is JA due to be able to determine the minimum weight with
a very small standard deviation. Moreover, JA and FPA with the usage of Lèvy distribution
by nature outperform the compared literature results in the best optimum value. It is seen
that the Lèvy distribution has a positive effect on the best and mean optimum values.

Table 7. Optimum results ensured from previous studies for 25 bar truss with grouping.

Group
Number

Design
Variables

Previous Studies

KH [17] TLBO [18] HPSSO [19] CSP [20] TLBO [21] ADEA [22] HTS [23]

1 A1 0.01025 0.0100 0.0100 0.010 0.0100 0.0100 0.010000

2 A2–5 2.02437 2.0712 1.9907 1.910 1.9878 5.6406 2.070200

3 A6–9 3.04154 2.9570 2.9881 2.798 2.9914 8.5941 2.970031

4 A10–11 0.01029 0.0100 0.0100 0.010 0.0102 0.0100 0.010000

5 A12–13 0.01081 0.0100 0.0100 0.010 0.0100 0.0100 0.010000

6 A14–17 0.68950 0.6891 0.6824 0.708 0.6828 1.9368 0.670790

7 A18–21 1.62002 1.6209 1.6764 1.836 1.6775 4.7857 1.617120

8 A22–25 2.65501 2.6768 2.6656 2.645 2.6640 7.5921 2.698100

Best weight 545.175 545.09 545.164 545.09 545.175 545.1657 545.13

Mean weight 545.483 545.41 545.556 545.20 545.483 545.2200 545.47

Standard deviation 0.306 0.42 0.432 0.487 0.306 0.0730 0.476

Population number - 30 - 50 - - -

Iteration number - - - 350 - - -

Total analysis number 12,199 15,318 13,326 17,500 12,199 10,000 7653

HTS: heat transfer search, ADEA: adaptive differential evolution algorithm, HPSSO: hybrid particle swallow swarm optimization, CSP:
chaotic swarming of particles, TLBO: teaching-learning based optimization, KH: krill herd.
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Table 8. Optimization results and the best parameters for 25 bar truss with bar grouping.

Group
Number

Design
Variables

Current Study

HS ABC ABCL BA BAL FPA GWO GWOL JA

1 A1 0.0100 0.0115 0.0100 0.0100 0.0100 0.0100 0.0229 0.0108 0.0100

2 A2–5 2.1375 1.9193 2.1071 1.9694 1.9774 2.0491 1.9229 2.0044 2.0420

3 A6–9 2.8910 3.1549 2.9346 3.1356 3.0507 3.0341 3.0712 3.0422 3.0045

4 A10–11 0.0100 0.0100 0.0100 0.0100 0.0100 0.0101 0.0100 0.0104 0.0100

5 A12–13 0.0100 0.0102 0.0103 0.0100 0.0102 0.0100 0.2285 0.0142 0.0100

6 A14–17 0.6887 0.6749 0.6415 0.6808 0.6923 0.6770 0.6142 0.6817 0.6816

7 A18–21 1.5994 1.6627 1.6051 1.6258 1.6566 1.6035 1.7070 1.6375 1.6229

8 A22–25 2.6991 2.6352 2.7508 2.6432 2.6412 2.6764 2.7241 2.6607 2.6737

Best weight 545.3419 545.4145 545.3736 545.3712 545.1191 545.0738 548.9530 545.1282 545.0378

Mean weight 548.3861 545.5653 545.4441 549.9517 546.4605 545.0738 548.9533 545.1287 545.0440

Standard deviation 1.160 0.104 0.108 1.940 5.560 2.10 × 10−13 6.36 × 10−5 1.88 × 10−4 3.03 × 10−3

Best population
number 30 25 30 25 20 25 20 20 20

Best iteration number 18,000 13,000 5000 12,500 10,000 2500 11,000 11,500 15,000

3.2. 72-Bar Truss Optimization with Bar Grouping

The second case is the grouping of bars belonging 72 bar truss to provide optimal
design variables and the best weight solution. In Figure 7, optimization results as minimum
weight (379.6172 lb via JA in 15,000 iterations) are presented that they were obtained
according to the constant population and various iteration numbers.
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In Table 9, all current optimization results were represented with some parameter
evaluations. Literature studies are also given in Table 10. For this case, the best meta-
heuristic is again JA owing to reach the minimum weight, which is a far smaller value than
the other algorithms. Furthermore, according to this algorithm, the standard deviation
for the objective function is very little and so that it can be recognized that JA has the
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best performance in every respect when the other current methods and the used previous
algorithms are compared.

3.3. 25-Bar Truss Optimization without Bar Grouping

The third case is concerned with the determination of optimal section areas for each bar
individually. In this regard, the best weight as a minimum (545.1083 lb) was achieved with
JA by considering the only constant population in 100,000 iterations, as seen in Figure 8. In
addition, it was understood that the objective function might be provided by usage of the
best parameter combinations as 15 and 115,000 for population and iteration numbers with
JA, respectively, according to the results of Table 11. For this case, the only documented
optimization was proposed by Bekdaş et al. [24].

Table 9. Current optimum results with the best parameters for 72 bar truss (grouping).

Group
Number

Design
Variables

Current Study

HS ABC ABCL BA BAL FPA GWO GWOL JA

1 A1–4 2.2301 2.0781 1.7910 1.7682 2.0679 1.9057 1.7845 2.0458 1.8899

2 A5–12 0.4946 0.5187 0.5195 0.5720 0.4854 0.4916 0.5249 0.4864 0.5119

3 A13–16 0.1000 0.1026 0.1000 0.1000 0.1000 0.1000 0.1000 0.1137 0.1000

4 A17–18 0.1212 0.1000 0.1000 0.1384 0.1000 0.1003 0.1000 0.1003 0.1000

5 A19–22 1.1985 1.2594 1.3484 1.3535 1.3457 1.3372 1.0110 1.1140 1.2702

6 A23–30 0.5009 0.4559 0.4860 0.5347 0.5319 0.4907 0.6469 0.5504 0.5120

7 A31–34 0.1000 0.1001 0.1000 0.1000 0.1181 0.1000 0.1000 0.1161 0.1000

8 A35–36 0.1000 0.1000 0.1023 0.1000 0.1003 0.1000 0.1000 0.1063 0.1000

9 A37–40 0.5477 0.6239 0.5061 0.6166 0.4839 0.5590 0.6409 0.5198 0.5234

10 A41–48 0.5334 0.4710 0.5002 0.4921 0.5194 0.5088 0.5318 0.4672 0.5165

11 A49–52 0.1032 0.1000 0.1000 0.1000 0.1005 0.1000 0.1000 0.1683 0.1000

12 A53–54 0.1000 0.1000 0.1000 0.1567 0.1420 0.1000 0.3552 0.1000 0.1000

13 A55–58 0.1626 0.1570 0.1558 0.1644 0.1562 0.1560 0.1502 0.1516 0.1565

14 A59–66 0.5040 0.6202 0.5634 0.5031 0.5214 0.5373 0.4666 0.5651 0.5457

15 A67–70 0.3831 0.3898 0.5024 0.3699 0.3972 0.4890 0.2846 0.3832 0.4104

16 A71–72 0.7333 0.5725 0.5738 0.6129 0.5235 0.5802 0.9665 0.7247 0.5678

Best weight 386.2662 383.4078 381.5569 385.6475 381.9249 380.4598 398.7166 386.5409 379.6156

Mean weight 405.3741 402.1776 395.4222 417.7893 382.0331 380.4598 398.7167 386.5411 379.6172

Standard deviation 5.820 16.100 8.710 48.700 0.220 2.79 × 10−13 5.77 × 10−5 3.65 × 10−5 7.49 × 10−4

Best Population number 25 30 30 15 10 25 15 30 30

Best iteration number 13,000 14,500 19,000 20,000 17,500 18,000 8500 19,500 17,500
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Table 10. Some literature studies concerning 72 bar truss (grouping).

Group
Number

Design
Variables

Previous Studies

BB-BC [10] GA [16] TLBO [18] CSP [20] TLBO [21] ADEA [22] HTS [23]

1 A1–4 1.8577 1.702 1.90640 1.94459 1.8807 1.8861 1.9001

2 A5–12 0.5059 0.496 0.50612 0.50260 0.5142 0.5231 0.5131

3 A13–16 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000

4 A17–18 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000

5 A19–22 1.2476 1.288 1.26170 1.26757 1.2711 1.2576 1.2456

6 A23–30 0.5269 0.469 0.51110 0.50990 0.5151 0.5043 0.5080

7 A31–34 0.1000 0.100 0.10000 0.10000 0.1000 0.1000 0.1000

8 A35–36 0.1012 0.100 0.10000 0.10000 0.1000 0.1000 0.1000

9 A37–40 0.5209 0.505 0.53170 0.50674 0.5317 0.5200 0.5550

10 A41–48 0.5172 0.550 0.51591 0.51651 0.5134 0.5235 0.5227

11 A49–52 0.1004 0.109 0.10000 0.10752 0.1000 0.1000 0.1000

12 A53–54 0.1005 0.118 0.10000 0.10000 0.1000 0.1000 0.1000

13 A55–58 0.1565 0.154 0.15620 0.15618 0.1565 0.1568 0.1566

14 A59–66 0.5507 0.604 0.54927 0.54022 0.5429 0.5394 0.5407

15 A67–70 0.3922 0.442 0.40966 0.42229 0.4081 0.4083 0.4084

16 A71–72 0.5922 0.604 0.56976 0.57941 0.5733 0.5734 0.5669

Best weight 379.85 379.63 379.63 379.97 379.632 379.6943 379.73

Mean weight 382.08 - - 381.56 379.759 379.8961 382.26

Standard deviation 1.912 - - 1.803 0.149 0.0791 1.940

Population number - - - - - - -

Iteration number - - - - - - -

Total analysis number 6942 19,709 19,709 10,500 21,542 15,600 13,166

HTS: heat transfer search, ADEA: adaptive differential evolution algorithm, CSP: chaotic swarming of particles, GA: genetic algorithm,
TLBO: teaching-learning based optimization, BB-BC: big-bang big crunch.
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Table 11. Optimum results provided with the best parameters for 25 bar truss without grouping.

Design
Variables

Documented
Study [24] Current Study

FPA HS ABC ABCL BA BAL FPA GWO GWOL JA

A1 0.0100 0.4458 0.1298 0.0104 0.1184 0.0100 0.0965 0.7796 0.0103 0.0100

A2 2.3903 3.1494 2.2184 3.4000 2.0174 2.6515 1.4802 1.2254 1.9548 1.9019

A3 1.8524 2.0411 1.9449 1.4015 2.2780 1.6965 2.9122 2.2786 1.2900 2.4622

A4 2.0935 2.1586 2.0351 3.3351 1.8349 2.5179 1.2167 2.8893 2.5339 1.6803

A5 1.9749 2.1175 1.9137 0.7374 2.4292 1.5376 2.9552 1.6550 2.5293 2.4353

A6 2.9549 2.7672 2.4382 3.4000 2.8319 3.3445 2.3174 2.5574 2.8853 2.7733

A7 2.9379 2.7920 2.7738 2.9510 3.0574 3.2573 2.6665 2.7372 2.6204 2.7611

A8 3.0085 2.8634 3.0920 2.4397 3.1506 2.8895 3.2496 3.0388 2.7839 3.4000

A9 2.4974 2.8615 1.9781 2.3134 2.9135 2.1074 3.2680 2.9789 2.0761 2.8591

A10 0.0100 0.1332 0.1210 0.2810 0.1278 0.1041 0.0100 0.6568 0.0159 0.0100

A11 0.0104 1.6132 0.3037 0.0100 0.0860 0.0294 0.0100 0.4757 0.0756 0.0100

A12 0.0100 0.4209 0.0157 0.0196 0.0100 0.0107 0.1100 0.8414 0.0115 0.0100

A13 0.0100 0.3124 0.3610 0.0100 0.0100 0.0132 0.0100 0.3416 0.0154 0.0100

A14 0.7058 1.2763 1.3285 0.5596 0.7848 0.5993 0.8670 0.9344 0.9142 0.8295

A15 0.5950 0.4679 0.3222 0.6389 0.7687 0.6265 0.7245 0.8662 0.4807 0.6832

A16 0.8043 1.5477 1.1122 0.8279 0.6498 0.7242 0.6477 1.6382 1.3634 0.6205

A17 0.6149 0.1954 0.6027 0.5991 0.6166 0.7340 0.4533 0.4981 0.5772 0.5581

A18 1.7011 1.7648 1.8217 2.6633 1.6228 1.7418 1.2780 2.1802 2.4427 1.4748

A19 1.7259 1.0280 2.0910 1.2955 1.8506 1.7004 1.8226 2.2122 2.2463 1.8439

A20 1.8375 2.1691 2.1350 2.4677 1.4679 1.7927 1.4716 2.0611 2.0330 1.5456

A21 1.3793 1.5454 1.7626 0.8297 1.4096 1.3135 2.0145 2.0826 2.2709 1.4880

A22 2.3446 2.0615 3.0436 2.2567 2.3569 2.1048 3.1522 3.0129 1.7381 2.9342

A23 2.5744 2.0553 3.0927 2.1876 3.0532 2.6214 3.2085 3.0249 2.6066 3.0578

A24 3.1464 3.3649 3.0028 3.4000 3.0771 3.2652 2.5699 1.7545 3.0829 2.6271

A25 2.5920 2.9254 2.0149 3.4000 2.1005 2.7427 1.8336 1.9041 2.7111 2.0332

Best weight 543.20 585.9394 573.9692 565.9572 549.4372 545.2959 548.1256 604.4136 578.7288 542.9822

Mean weight - 603.0324 599.9786 566.0596 551.1452 552.0253 548.1256 604.4137 578.7288 543.0017

Standard
deviation - 16.400 17.400 0.165 1.180 34.400 1.18 × 10−13 9.04 × 10−6 1.79 × 10−6 8.22 × 10−3

Best population
number 20 15 30 15 25 30 25 10 30 15

Best iteration
number 100,000 95,000 115,000 35,000 30,000 110,000 55,000 120,000 90,000 115,000

4. Results
4.1. 25-Bar Truss Optimization with Bar Grouping

As it was mentioned previously, first, an optimization operation was applied by
utilizing a constant population and different iterations (Figure 6). Generally, it can be
recognized from this figure, all of the ones can be considered as successful except GWO,
ABCL, and BA in terms of nearing the minimum weight. However, in this meaning, the best
algorithm is JA, thanks to the finding of weight as 545.041 lb at minimum. Nevertheless,
Lèvy flight is effective for both BA and especially GWO.

On the other respect, according to the results in Tables 6 and 7, from the used algo-
rithms in the current applications, JA is the method that can find the minimum weight as
545.0378 lb, which is a smaller value than the best one from literature studies, and it was
provided with an extremely small deviation. Additionally, except for JA, it appeared that
FPA could also be accepted as accomplish for minimization of the weight according to the
given literature results. Thus, this algorithm employing Lèvy distribution in its initial form
can be minded as effective and useful due to that it can achieve this objective by making
little standard error. If we evaluate the other methods, it can be said that GWOL and BAL
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almost approximate to the minimum weight for grouping case of the 25 bar truss. Here,
the significant point is that Lèvy flight is noteworthily effective in terms of minimizing of
weight by all of the swarm intelligence-based algorithms, especially for GWO, besides that
the required iteration numbers were decreased with this function for BA and especially
ABC, too.

4.2. 72-Bar Truss Optimization with Bar Grouping

According to Figure 7, with the usage of a constant population with various iterations,
it can be said that the most effective methods are FPA and JA cause that the other ones
could not make convergence exactly to the minimum structural weight of the 72 bar truss
structure. However, the best one is JA by reaching the minimum weight of 379.617 lb. In
addition, in this case, Lèvy flight is notably efficient for only GWO.

On the other respect, via Tables 9 and 10, it is seen that the best algorithm is JA
in finding the minimum weight as 379.6156 lb by deviating from this value with a so
small rate. Although the provided result by JA is close to the best ones among literature
studies in general scope, this can be considered as a more effective method thanks to the
small deviation.

Moreover, the other algorithms are not successful in an exact way in terms of reaching
the minimum weight value besides that FPA has a comparatively efficient performance.
However, positive effects (such as decreasing of standard deviation, etc.) and performance
of Lèvy flight on the benefited algorithms are drawn attention in the direction of the
realization of the optimization target. In this case, the Lèvy flight function improved,
especially GWO, by decreasing weight by nearly 13 lb amount.

4.3. 25-Bar Truss Optimization without Bar Grouping

It can be understood from Figure 8; the best method is only JA through the achieve-
ment of the minimized truss weight as 545.108 lb for 25 bar without grouping of bars. HS,
FPA, and BAL also can be accepted as usable relatively to the other ones. Furthermore,
Lèvy flight affected all handled algorithms positively in the sense of convergence to more
the minimized weight.

According to Table 11, JA is the top-ranking between the expressed all techniques
(literature and current studies) by far thanks to minimizing of truss weight as 542.9822 lb;
even this result was got via the pretty minor rate for deviation as 8.22 × 10−3. On the
other side, Lèvy flight influenced all population-based algorithms utilizing reduction of
minimum weight with comparison to the classical structure of the mentioned methods.
Additionally, this function provides to decrease of the best necessary iteration numbers for
ABC with GWO, too.

5. Conclusions

As a result, it can be said that the JA algorithm is the best option to be benefitted
from the minimization of the structural weight regarded the handled truss models. This
algorithm could succeed in this operation by providing to occur of very small standard
deviations, too. On the other side, when the Lèvy flight was evaluated, the constant
population taken as 30 is always not good to prefer in terms of improving minimization
performance for swarm intelligence-based algorithms according to both cases compared
to each other. Because it can be understood from the results, algorithms combined with
Lèvy flight are more powerful and efficient about finding the optimum value of the weight
when the population number shows a change by adjusting the required iteration numbers.

Except for these, Lèvy flight is chiefly useful for developing of GWO algorithm’s mini-
mization performance compared with the other ones. For this respect, in the other optimiza-
tion studies, hybridization of GWO with this function can be benefited for many objectives.
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Appendix A

Table A1. Some expressions used as special by BA.

Abbreviation Explanation

Vi,new New velocity value for ith design variable

Vi,j Current velocity value of ith design variable within jth candidate solution (bat)

fj Frequency of jth candidate solution

Amean Mean of sound loudness values belonging all bats

Aj,new New value, which will be assigned for loudness for ith bat

rj,new New value, which will be determined for sound vibration emission rate of bats

Table A2. Indication of basic and special algorithm parameters.

Notation Property Algorithm

Population Number

HMS Total harmony number or harmony memory size HS

eb/ob/ f sn Number of employee bee/onlooker bee/food source number ABC

f n Number of total fireflies FA

bn Number of bats BA

n f Total flower number FPA

wn Gray wolf number in the pack GWO

pn Population number JA
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Table A2. Cont.

Notation Property Algorithm

Characteristic Parameters

PAR Parameter providing of generating random number depended
on music tone, between limits of variable/pitch adjusting rate HS

HMCR Harmony memory consideration rate

ip Parameter, which takes value according to the case that food
sources can be optimized ABC

SIL
Limit condition, which is considered for which sources must be
renewed by scout bees and is assigned at the beginning of the
optimization

β0 Minimum (rjk = 0) attractiveness value (β0 ∈ [0, 1])
FA

γ Light absorption coefficient (γ ∈ [0, 1])

αt Randomization parameter

fmin Minimum value of frequency

BA

fmax Maximum value of frequency

A0 Loudness of bats during the initial state

Amin Minimum value of sound loudness

r0
j Sound vibration emission rate of bats in the initial state

β Random number, which is determined in the range [−1,1]

α Constant coefficient that effective for transmission of loudness

γ
Constant coefficient that determines of sound vibration
emission rate

sp Switch probability/search change FPA
→
C Coefficient vector

GWO→
A Vector determining the case that wolf attacks to prey
→
a Vector affecting the distance between prey with wolf

Table A3. Definition of expressions used in algorithms as general and commonly.

Expression Explanation Algorithm

Some Solution Values for
Design Variables

Xi,new New value of ith design variable All

Xi,min Low limit of ith design variable (minimum value) HS
ABCXi,max Upper limit of ith design variable (maximum value)

Xi,j
Initial matrix value of jth candidate solution belonging to
ith design variable All out of HS

Xi,gbest

ith design variable value belongs to the solution with the
best value in terms of the objective function

All out of HS, ABC,
and FA

Xi,gworst

ith design variable value belongs to the solution with the
worst value in terms of the objective function JA

Xi,n Value of nth solution for ith design variable FPA
HS
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Table A3. Cont.

Expression Explanation Algorithm

Xi,m Value of mth solution for ith design variable FPA

Xi,k Value of a specific kth firefly for ith design variable FA

Xi,pr
Initial matrix value of ith design variable corresponding to
pth solution (prey) GWO

Xp, new New value of pth design variable
ABC

Xp,j
Value (in initial solution matrix) of jth solution for pth
design variable

Xp,n nth solution value of pth design variable

Optimization Elements

n nth candidate vector selected randomly from the
initial matrix

All out of BA, FA, and
JA

M mth candidate vector selected randomly from the
initial matrix FPA

P Randomly selected parameter as from whole
design variables ABC

vn Number of total design variable, which will be optimized FA, ABC

T Stage of the current iteration FA, BA, GWO

stopping
criteria Total iteration number GWO

Table A4. Functions utilized in algorithms.

Name Task Algorithm

Functions

rand Generation random number between 0 and 1 All

ceil ( ) Round the number in parentheses to equal/bigger natural number than it FPA, ABC, HS

min ( ) Determine the smallest one among value in a certain amount All out of HS and ABC

max ( ) Determine the biggest one among value in a certain amount JA

mean ( ) Calculate the average of element values in an array BA

abs ( ) Absolute of number within the parentheses JA, GWO

sort ( ) Queue the members in any array from small to big GWO

exp ( ) Give the power of e to the degree of number within parentheses FPA

sqrt ( ) Take the square root of a number FA

sum ( ) Give the total of element values in any number array ABC
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39. Doğan, L. Robot yol Planlaması için gri kurt Optimizasyon Algoritması. Master’s Thesis, Bilecik Şeyh Edebali University, Bilecik,
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