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Abstract: For a practical structural health monitoring (SHM) system, the traditional single objective
methods for optimal sensor placement (OSP) cannot always obtain the optimal result of sensor
deployment without sacrificing other targets, which creates obstacles to the efficient use of the
sensors. This study mainly focuses on establishing a bi-objective optimization method to select the
sensor placement positions. The practical significance of several single-objective criteria for OSP is
firstly discussed, based on which a novel bi-objective optimization method is proposed based on the
Pareto optimization process, and the corresponding objective functions are established. Furthermore,
the non-dominated sorting genetic algorithm is introduced to obtain a series of the Pareto optimal
solutions, from which the final solution can be determined based on a new defined membership
degree index. Finally, a numerical example of a plane truss is applied to illustrate the proposed
method. The Pareto optimization-based bi-objective OSP framework presented in this study could
be well suited for solving the problem of multi-objective OSP, which can effectively improve the
efficiency of the limited sensors in SHM system.

Keywords: structural health monitoring; optimal sensor placement; bi-objective optimization; Pareto
optimization; non-dominated sorting genetic algorithm

1. Introduction

In recent decades, more and more long-span bridges and other large civil infrastruc-
tures have been constructed all over the world. To guarantee the normal operation and
safety of the civil structures during their service life, structural health monitoring (SHM)
system are widely applied, especially for long-span bridges and skyscrapers, which can
obtain information with respect to the structural behavior and environmental actions [1-4].
A complete SHM system consists of three subsystems, namely a sensor subsystem, data
acquisition and transmission subsystem and data management subsystem. The sensor
subsystem is usually composed of various accelerometers, which are placed on the different
positions to directly acquire the structural vibration and modal parameters. The rationality
of sensor placement is crucial for the SHM system to identify the structural behavior and
evaluate the structural performance [5-8]. Although increasing the number of the deployed
sensors will obtain more data related to the structural behaviors and environmental actions,
it will sacrifice the economy of SHM systems and also cause difficulty for the data analysis.
Therefore, it is necessary to carry out research on the optimal sensor placement (OSP) to
obtain enough information about structural responses with a finite number of sensors yet
without compromising the reliability and precision of the monitoring-based structural
analysis [9-12].

The research on OSP for SHM can be categorized into two groups: the first group
concentrates on single-objective optimization, which considers only one criterion and
the corresponding objective function; the second group is focused on multi-objective
criteria for OSP. Since the 1970s, many researchers have realized the necessity of OSP for
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structural monitoring. Shah and Udwadia carried out research on the sensor locations
for identification of dynamic systems [13]. After more than 10 years of development in
this research field, researchers have established explicit objectives for sensor placement.
For the purpose of structural modal observability, several criteria have been proposed by
researchers [14,15]. Kammer proposed the effective independence (EI) method, which can
maximize the determinant of the Fisher information matrix to minimize the structural
parameter estimation error [16]. Papadopoulos and Garcia researched the structural modal
kinetic energy method, which can considerably increase the signal-to-noise ratio for the
recorded data obtained by the sensors [17]. To guarantee the modal independence, the
modal assurance criterion was proposed to maximize the angle between different modal
vectors [18]. Li et al. revealed the relationship between two sensor placement methods, i.e.,
modal kinetic energy and EI [19]. Yi et al. carried out quantitative research on the optimal
algorithm for OSP, which considerably improved the effectiveness of the optimization
process [20,21]. In recent years, an increasing number of researchers have focused on OSP
for novel monitoring techniques. Thiene et al. proposed an OSP algorithm for attaining
the maximum area coverage within a sensor network, taking into account the physical
properties of Lamb wave propagation [22]. A transducer placement scheme based on wave
propagation was also proposed by Salmanpour et al. [23].

The criteria for OSP mentioned above can usually satisfy only a single requirement.
To simultaneously fulfill the various requirements of sensor placement for SHM, it is
essential to establish a multi-objective criterion and corresponding optimization method
for OSP, which is a research focus that ia already attracting the attention of researchers
worldwide. Casciati et al. studied the power management criterion of wireless sensors for
SHM systems [24]. Sankary and Ostfeld proposed a multi-objective optimal criterion for
wireless sensor placement, which could considerably improve the quality of the modal
information obtained by the sensors and reduce the energy consumption of the sensor
network as much as possible [25]. Soman et al. proposed a multi-objective optimal strategy
for sensor placement considering the structural modal identification and mode shape
expansion, which has been implemented to deploy various types of sensors on a long-
span bridge [26]. Azarbayejani et al. studied the required sensor quantity for an SHM
system based on the information entropy and the cost of the sensor equipment [27]. Cha
et al. conducted research on the optimal placement positions of the active control devices
and sensors of a framework structure, in which a multi-objective genetic algorithm was
applied to realize the objectives of reducing the cost and enhancing the effectiveness of the
active control strategy [28]. Soman et al. further presented a multi-objective optimization
strategy for a multi-type sensor placement for SHMs of long span bridges, which also
verified the effectiveness of the genetic algorithm in solving the joint optimization [26].
Ostachowicz et al. systematically reviewed the traditional sensor placement metrics for
three commonly used monitoring techniques. In addition, they discussed the different
optimization algorithms and multi-objective optimization for OSP [29].

Once the criteria of OSP are selected, the objective function can be determined, and
the OSP problem can be transformed into a mathematical optimization problem [30,31]. To
obtain the final sensor placement positions, the optimal problem needs to be solved through
various optimization algorithms. The intelligent optimization algorithms are usually used
to solve OSP problems. The genetic algorithm is one of the most popular methods and has
been applied by several researchers to solve OSP problems in the fields of SHM [32,33].
Beygzadeh et al. proposed an improved genetic algorithm for OSP to detect the structural
damage [34]. In addition, many other bioinspired algorithms, physics-inspired algorithms
and geography-based techniques have been studied, including the monkey algorithm,
simulated annealing, firefly algorithm, and particle swarm, which have also been applied
by many researchers to solve OSP problems [20,35]. For the single-objective optimization of
sensor placement, the objective function is usually established based on a single criterion,
which usually cannot satisfy multiple requirements simultaneously. Although the optimiza-
tion results can satisfy one criterion well, they may not be suitable for another optimization
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criterion. The traditional multi-objective optimization method of sensor placement usu-
ally transforms multi-objective problems into single-objective problems through simple
mathematical operations such as addition and multiplication. The transformation process
introduces weight coefficients, which will subjectively affect the optimization results of
sensor placement.

Pareto optimization is an effective method for solving multi-objective problems and
has been effectively applied by researchers to solve the optimal problem of camera place-
ment for automated visual inspection under a multi-objective framework. Considering that
most of the previous studies on the multi-objective optimization of sensor placement simply
transform the multi-objective functions to a single-objective function through a mathemati-
cal operation, this paper presents a study on the Pareto optimization-based multi-objective
sensor placement method for SHM. The paper is organized as follows: (i) the traditional
OSP single-objective criteria and the corresponding objective functions are studied; (ii) the
basic mechanism of Pareto optimization is researched, and the bi-objective functions are
established based on single-objective criteria for the Pareto optimization; (iii) the update of
non-dominated sorting genetic algorithm (NSGA-II) is introduced to solve the Pareto opti-
mization for sensor placement, and the iterative process is proposed; (iv) a comprehensive
evaluation index is introduced to access the Pareto final solutions for multi-objective OSP,
and the evaluation criteria are studied for multiple alternative sensor placement schemes;
and (v) the proposed bi-objective optimization method for sensor placement is validated
through a numerical example of a plane truss.

2. Single-Objective Criteria for Sensor Placement
2.1. Criterion of Minimum Estimation Error of Modal Coordination (EI Criterion)

According to the structural dynamic theory, the dynamic responses of linear elas-
tic structures can be represented as the superposition of different modes, as shown in
Equation (1).

m
y=oq9=) q® Q)
i=1
where @ is the matrix of structural modes; g is the vector of modal coordinates; @; is the ith
vector in the matrix @; g; is the ith elements in the vector g; and m is the structural model
order under consideration.

Assuming y in Equation (1) is the dynamic behavior measured by the sensors deployed
at the corresponding positions on the structures, the least squares estimation of g can be
calculated according to Equation (2).

7= [e7e] o'y @

A
where g is the estimation of g according to the sensor measurement y. If the measurement
noise is further considered for the sensor placement, the real structural responses can be
represented as Equation (3).

m
y=Pqtw=) 4i®+w 3)

i=1
where w is the stationary Gaussian white noise with the variance ¢?. Assuming the
measurement noises are independent between different sensors, the covariance matrix of

the estimation error can be represented as Equation (4).
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where E is the expected value and Q is the Fisher information matrix. Maximizing Q will
lead to minimization of the covariance matrix, which will result in the best estimation of q.
Kammer (1991) proposed the largest determinant of the Fisher information matrix as the
criterion to determine the selected sensor positions, which is defined as the EI method.

2.2. Criterion of Maximum Structural Modal Kinetic Energy (MSMKE Criterion)

For the purpose of modal identification, accelerometers are usually deployed at the
positions where the structure has the strongest vibration responses, which can increase
the signal to noise ratio, resulting in the accurate identification of the structural modal
parameters. Therefore, the modal kinetic energy can be represented as Equation (5).

n
Y. MKE; --- 0
i=1
MKE = ®"M® = : : ©)

n
0 .+ Y. MKEj,
i=1

where @ is the matrix of structural modes; M is the matrix of structural mass; and the matrix
n
diagonal element ). MKE;; is the sum of the modal kinetic energies of all the freedoms
i=1
with respect to the jth structural mode. The off-diagonal elements of the matrix MKE are
all zero, which means that one structural mode cannot induce modal kinetic energy on
another mode. MKE;; is the contribution of the ith freedom to the modal kinetic energy on
the jth structural mode, which can be represented as Equation (6).

n
MKE;; = ®;; ) My ®y; (6)
k=1

where @;; is the ith element of the jth structural mode; My is the element of the structural
mass matrix; and 7 is the structural freedom. According to the contributions of the
different structural freedoms to the modal kinetic energy with respect to the target structural
modals, the sensor placement positions can be determined to obtain the strongest modal
kinetic energy.

2.3. Criterion of Structural Modal Independence (SMI Criterion)

For the purpose of the modal test, the theoretical structural mode vectors obtained at
the selected sensor positions should be independent of each other, which can guarantee
differentiability of the identified structural modes. Carne and Dohrmann proposed the
MAC matrix as a criterion to access the differences quantitatively between the structural
modes [18]. The element in the MAC matrix is presented as Equation (7).

|2/ |

J (@0 (2] )

where MAC;; is the elements in the ith line and the jth column of the MAC matrix and ®;
and @; are the ith and jth structural mode vectors, respectively.

The values of elements in the MAC matrix are all between 0 and 1, where 0 represents
no correlation between the two structural modes. When the elements in MAC approach 1,
there is a strong correlation between the two structural modes, which means that the two
modes cannot be easily distinguished. Therefore, the selected sensor placement positions
should minimize the maximum off-diagonal element in the MAC matrix, which is defined
as the SMI criterion.

MAC;; = @)
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3. Pareto Based Bi-Objective OSP
3.1. Theory of Pareto-Based Bi-Objective Optimization

The bi-objective optimization is obviously different from the single-objective opti-
mization. For the optimization problem with a single-objective function, any different
solutions can be compared with each other so that there is always an optimal solution to
the problem. However, for the multi-objective problem, the results obtained according
to the different objective functions will conflict with each other. Therefore, an optimal
solution for all the objective functions cannot usually be achieved. In this case, a series of
solutions exist that are equally good for the multi-objective optimization problem, which
means that any of the solutions cannot be improved on any one of the objective functions
without sacrificing the others. These solutions are called Pareto optimal solutions, which
constitute the Pareto front. For a bi-objective optimization problem, the Pareto front P(z%)
can be described as Equation (8). It is assumed that Z is a set of feasible solutions for the
bi-objective optimization problem. If a point z’ € Z is preferred to another point z° € Z, 2’

dominates z°, which can be written as z’ > z°.

P(ZO):{ZOEZ:{z’eZ:z’>zO,z’7ézO}:®} 8)

where & is the empty set.

The Pareto front can provide a series of optimal solutions in which the non-dominated
solutions are equally good for the multi-objective optimization problems when no prefer-
ence is prescribed for any of the objective demands, namely, any one of the objectives cannot
be improved without sacrificing the others. Therefore, Pareto optimization is superior to
the current method in terms of whether single or multiple demands exist for OSP. This
paper concentrates on the following two aspects: (i) constructing the Pareto optimization
objective function according to the multiple demands in OSP and (ii) efficiently solving the
multi-objective optimization problems of OSP.

3.2. Bi-Objective Optimization Functions for Sensor Placement

The three single-objective functions above are constructed to decrease the identification
errors of the modal parameters, increase the signal-to-noise ratio, and distinguish the
different mode shapes. When more than one demand is prescribed for OSP, the multi-
objective function can be constructed based on Pareto optimization. By combining the three
single-objective functions, the bi-objective functions of Pareto optimization are constructed
as follows:

(1) Objective function for EI and MSMKE criteria

For the purpose of structural modal identification, the sensors need to be deployed
at positions with strong vibration responses to increase the signal-to-noise ratio. In addi-
tion, the estimation error of the structural modal coordinates is an important criterion to
assess the sensor placement. Therefore, a bi-objective function related to the two criteria
mentioned above can be illustrated as Equation (9).

_ 1
N = Tore]

fa=amke = 1o w 9
%EUEMKEU )

min{ f (x), f2(x)}

where f; is positively proportional to the estimation error of the structural modal coor-
dinates; f; is inversely proportional to the modal kinetic energy; AMKE is the average
structural modal kinetic energy; and min{ f1, f» } is the Pareto bi-objective function for f;
and f,. When both the Fisher information matrix and MSMKE criterion are considered,
the results of Pareto optimization can result in a series of solutions, by which it can be
ensured that favorable modal kinetic energy of the monitoring points and the accurate
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identification of modal parameters can be achieved simultaneously. The optimal solution
for the objective function of f; can be obtained through the EI method. It is worth noting
that there is a connection between the EI and MSMKE criteria, and Li et al. (2007) demon-
strated that the El is an iterated version of the MSMKE for the case of a structure with an
equivalent identity mass matrix. This means that when the identity mass matrix is assumed
for the structure, identical optimal sensor positions can be obtained for the EI and MKE
criteria. However, for a nonidentity mass matrix, which is typical for real projects, obvious
differences exist between the optimal solutions from the above two criteria. In this paper,
the two most commonly used criteria (EI and MSMKE) are presented mainly to illustrate
the implementation process of the Pareto bi-objective optimization of OSP and to verify
the rationality.

(2) Objective function for SMI and MSMKE criteria

For structural modal tests, structural modes should be distinguishable from each other.
In addition, the strongest vibration should also be monitored. Therefore, sensors should be
deployed to obtain both structural modal independence and large structural modal kinetic
energy. Considering the criteria mentioned above, the bi-objective function based on Pareto
optimization is presented in Equation (10).

f = awe
f3 = max(MAC;) (10)

min{f3(x), f2(x)}

where f3 is the maximum of the off-diagonal elements in MAC matrix and min{fs, f»} is
the Pareto bi-objective function for f; and f3. When both the SMI and MSMKE are taken
as the target demands of OSP, the Pareto optimization can lead to a series of solutions,
which can ensure the favorable modal kinetic energy of the monitoring points and the
independence of different mode shapes.

(3) Objective function for EI and SMI

To minimize the estimate of the structural modal coordinates and structural modal
independence, the objective functions f; and f3 should be considered at the same time.
Based on the Pareto optimization, the bi-objective function for the two criteria mentioned
above can be illustrated as in Equation (11).

_ 1
1= Jaray
fz= rlljl;]x(MACij) (11)

min{fi (x), f3(x)}

where min{fi(x), f3(x)} is the Pareto bi-objective function for the criteria of f; and f3.
When both the Fisher information matrix and SMI are taken as the target demands of OSP,
the Pareto optimization can lead to a series of solutions, which can ensure the accurate
identification of the modal parameters and the independence of different mode shapes.

3.3. Solving of Pareto Based Bi-Objective OSP

The evolutionary algorithm is an ideal method for obtaining the Pareto optimal
solutions. Srinivas and Deb proposed a non-dominated sorting genetic algorithm and its
improved version [36]. Because the NSGA has the defect of high calculation complexity and
the obtained satisfactory solutions could be lost during the optimization process, NSGA-II
is adopted to solve the problem of Pareto-based bi-objective OSP. Due to the introduction
of a fast non-dominated sorting in NSGA-II, the calculation complexity is reduced from
O(mN3) to O(mN?). In addition, the concept of crowd distance is proposed to maintain the
population diversity. The elitist strategy and a crowded-comparison approach are adopted,
the population diversity can be maintained, and the loss of the satisfactory solutions can be
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avoided during the optimization process. The general concept of NSGA-II can be described
as follows: The population is firstly initiated, and a non-dominated sorting is carried out
of all the individuals in the population. Based on the initial population, the process of
selecting, mutation and crossover in genetic algorithms are performed to obtain the first
generation. Starting from the second generation, the parent population is merged with the
child population to maintain the population diversity. A fast non-dominated sorting is
applied, in which an index of the crowding distance is introduced to sort the population
and select the parent population combined with the non-dominated grade. The crowding
distance can be presented as Equation (12). Finally, a new general child population is
generated, and a new round non-dominated sorting and genetic process begins until the
prescribed generation number is reached.

- & figa(k) — fiia(k)
D(i) = 12
0= L g B foun(®) 12)

where f;1(k) and f;_1 (k) are the values of objective function k for (i + 1)th and (i — 1)th
individuals in Pareto front; fmax(k) and fmin (k) are the maximum and minimum values of
objective function k among all the individuals in a certain front. For the individual with
the minimum value of the objective function, the crowding distance is defined as infinity,
which indicates the priority over other individuals of the same non-dominated grade. The
crowding distance considerably increases the calculation efficiency and solution robustness
for multi-objective Pareto optimization. Therefore, the NSGA-II is applied in this research
to solve the Pareto bi-objective function to obtain the optimal sensor placement positions.
Compared with the traditional genetic algorithm, when NSGA-II is applied to multi-
objective OSP, non-dominated sorting, crowding distance estimation and crowding distance
comparison operator are used to evaluate individual fitness. Further, a genetic algorithm is
adopted to obtain the Pareto front iteratively which meets the requirements of the objective
function. The specific implementation steps of the above algorithm are as follows:

(1) Population initiation

An integer S is defined as the population size. The population (Pp) of the sensor place-
ment cases, which contains S individuals, is created. For the subject of sensor placement,
the binary encoding is applied to represent the sensor placement positions, of which ‘1
and ‘0’ represent the positions with and without sensors, respectively.

It is worth noting that when the binary coding method in the genetic algorithm is
used for the problems of OSP, the criteria of “Completeness”, “Soundness” and “Non-
redundancy” can be met for coding method selection: (i) encoding and decoding are simple
to operate. The number of the candidate measuring points is equal to the number of
the binary code, in which ‘1" and ‘0" represent the positions with and without sensors,
respectively, as shown by Table 1; (ii) crossover and mutation are easy to realize. For the
one-point-crossover, the crossover point is selected at random for one chromosome. The
two parent chromosomes exchange the gene segments of each other before or after this
crossover point, after which two new individuals are obtained (as shown in Figure 1).
Moreover, mutation is also applied to change the binary code of one or more genes for a
chromosome (as shown in Figure 2). Such a mutation operation represents that the sensors
at those positions are installed or removed, which can avoid the problem of low efficiency
and local optimum. (iii) The precision can be satisfied. For the optimization problem of the
continuous function, the binary code method has the drawbacks of weak ability of local
search and the Hamming Cliff problem. However, for the optimization problems of sensor
placement, the discrete solutions constitute the solution set. Consequently, the drawbacks
of the binary code method in GA can be avoided for OSP. Therefore, the binary coding
method is adopted for NSGA-II in this research.



Buildings 2021, 11, 549 8 of 16
Table 1. Example of binary coding of sensor placement positions.
Position Number Binary Code With/Without Sensor
1 1 With
2 0 Without
n—1 0 Without
n 1 With

110/1/0|0/1

-

Parents Crossover point

-

0j0y0|0j1|1]|1

-
:

Offspring

=]

r
o
[ERN
-
o
o
-
[
o

Figure 1. Example of single-point crossover.

Mutation point Mutation point
| ! !
Parents 0|1 /1/0/1/0|0 1 Parents| 0 | 1|1|/0/1/0|0|1

L L

Offspring g |110/0/110l0!1 Offspring | o |1/ 0|0/ 0|10 1

(a) (b)
Figure 2. Examples of mutation for binary code: (a) Single-point mutation; (b) multipoint mutation.

(2) Non-dominated sorting and crowding distance of individuals

The objective functions (f1, f2) are calculated for all the individuals in the initial
population, and the non-dominated grades (G) are obtained through the non-dominated
sorting approach as follows: for each i and j € Py, if f1(i) < fi(j) and fo(i) < fa(j),
individual i dominates individual j (i > j). If no individual dominates individual i in
the population, the non-dominated grade rank 1 and all the individuals with the non-
dominated grade 1 constitute the Pareto front 1. The same procedure is carried out for
residual individuals iteratively, and the non-dominated grade of all the individuals can be
obtained (as shown in Figure 3a). The smaller the number of non-dominated grade, the
higher the fitness of individuals in the corresponding front.

For individuals with the same non-dominated grade, the concept of crowding distance
is introduced to distinguish their fitness: firstly, individuals with the same dominated grade
are sorted according to objective function values in ascending order of magnitude, and the
crowding distance of individuals corresponding to the minimum and maximum function
values after sorting is defined as infinite. The crowding distance of other individuals
is calculated by Equation (12). As shown in Figure 3b, the crowded distance of the i-th
individual (D(7)) in its front is the average side length of the dashed box. When individuals
have the same level of dominance, a larger crowding distance represents better fitness.
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Figure 3. Non-dominated sorting and crowding distance: (a) non-dominated sorting; (b) crowding distance.

After obtaining the results of the non-dominated grade and crowding distances, all
the individuals can be sorted according to the fitness: if G(i) < G(j) or (G(i) = G(j) and
D(i) > D(j)), the i-th individual has a better fitness than the j-th one.

(3) Selection

After all the individuals are sorted according to the fitness, the binary tournament
selection method is used to select the parents (P,,) in the population to produce the offspring.
Two individuals were selected from the original population to compare the non-dominated
grade and crowding distance, and the individuals with better fitness were selected as the
parents for producing offspring. This procedure is repeated until the number of parents
reaches half of the original population size.

(4) Crossover and mutation

The offspring (C,;) are generated through crossover and mutation. To ensure that the
number of sensors remains constant during the genetic process, the mutation method is
used to randomly remove or supplement the sensors. Finally, the offspring individuals
are added to the initial population, and the first S individuals with best fitness were
preserved based on the non-dominated grade and crowd distance, which will produce the
new population for the next generation. The iteration process above stops once the target
number (N) of heredity generations is reached.

The flowchart of the NSGA-II applied in Pareto bi-objective optimization for OSP is
shown in Figure 4.

3.4. Comprehensive Evaluation Criteria for Pareto Solutions of OSP

The solution set of a series of OSP schemes can be obtained by the proposed method
above. When the engineer has no preference for any single target of senor placement, the
obtained solutions are equally optimal in a Pareto sense. However, when some of the
solutions in the optimal solution set reach optimum for a single objective function, the
solutions degrade to the ones achieved through the traditional single-target sensor place-
ment criteria, which is obviously contrary to the original intention of multi-objective sensor
placement. Therefore, a comprehensive evaluation criterion is proposed to determine the
final solution from the Pareto optimal solution set for sensor placement when there is no
preference for any single criterion.
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Population initiation, population size,
coding, evolution generations N, n=1

Non-dominated sorting, selecting,
crossover and mutation

First generation of child population C;
obtained

Child population added to the last
generation of parent population, and
n=n+1

v

Fitness evaluation: calculation of f{, f5, D
and G

v

Selection: parent tournament applied to
select P, from P, for multiplication

|

New parent population

V

Crossover and mutation: C,, generated
from P,

A 4

yes

n<N
No

Optimal sensor
deployment

Figure 4. NSGA-II based Pareto bi-objective optimization.

For the problem of bi-objective OSP, the Pareto OSP solution set F can be expressed as
Equations (13) and (14).
F= [Fl(X1>, Fz(Xz),...Fk(Xk)] (13)

Fie(xx) = [frr (%), fro (xi0)] (14)

where Fy(e) is the k-th solution of the Pareto optimal solution set; fy1, fx, are the two
objective function values; x; is the vector of sensor placement positions corresponding to
the k-th optimal solution. The ideal optimal solution of sensor placement is defined as
Equation (15).

F= i g -

ol— 1 ..
s.t. f] = 11;11121]((]‘,])

where f;; is the j-th objective function value of the i-th solution in the Pareto solution set.
Considering that the different objective functions of OSP are not easy to compare with each
other because of their different units and magnitudes, the membership degree y is defined
to measure the closeness between the values of Pareto solutions and the ideal solutions
for each objective function. When y approaches 1, the Pareto solution tends to be the ideal
solution for OSP. Because the solutions in the Pareto front for OSP can be considered to
be randomly distributed, the normal distribution function is selected as the membership
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function to evaluate the proximity between the Pareto solution and the ideal one. The
membership degree vector F; for each Pareto solution is shown as Equations (16) and (17).

F = [u(fu), u(f)] (16)
2
n(fij) =exp |- kfl];f] (17)
AT

On the basis of membership vector, a proximity index D is further defined to quan-
titatively assess the proximity between the Pareto solution and the ideal counterpart, as
Equation (18).

(18)

4. Bi-Objective OSP for Plane Truss
4.1. Properties of Plane Truss

To verify the effectiveness of the bi-objective Pareto optimization for sensor placement,
a plane truss is presented as an example to illustrate the application of the proposed
method. There are 25 degrees of freedom (Dof) for the truss beam, the elevation of which
is presented in Figure 5. The structural modal shapes were obtained through numerical
analysis in a previous study. For the modal test, there are eight sensors to be deployed at
eight positions selected from 25 candidates to obtain the structural experimental modal.
The first four orders of structural modes are considered for the truss beam. Considering
that the vertical modes are the main modes of the truss beam, the first four normalized
modes are plotted (as shown in Figure 6) using the displacement along the directions of
structural Dof number 4, 8, 12, 16 and 20, which are located at the lower side of the truss.

‘ Structural freedom ‘

2L1 GLS 101;9 14’[\%13 15bl? 2%[\%21 2&23
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LC& L? Lll 1\%15 ng

Figure 5. Structural freedom of the plane truss.
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Figure 6. First four orders of vertical mode shapes.
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4.2. OSP Proposals

For the sake of simplicity and convenience to illustrate the effectiveness of Pareto
based bi-objective optimization, this paper assumes that the main concern of the OSP for
the truss beam is to reduce the modal coordinate estimation error and increase the signal-
to-noise ratio. In fact, considering any combination of two objective functions does not
hinder the effectiveness of the Pareto-based bi-objective optimization method proposed in
this paper. Considering EI and MSMKE as criteria of sensor placement, the corresponding
bi-objective optimization function is established, and the Pareto optimization analysis is
carried out for the OSP position of the plane truss.

To minimize the estimation error of the modal coordination and increase the signal-
to-noise ratio of the recorded data, the EI and MSMKE should be considered during the
process of OSP. Therefore, Equation (9) should be taken as the objective function for the
Pareto bi-objective optimization. The NSGA-II is adopted to solve the bi-objective Pareto
optimization considering the functions f; and f,. During the iterative process, the initial
population size of the sensor placement is set to 50. In addition, the crossover and mutation
probability are set to 0.9 and 0.1, respectively. The target number of heredity generations is
set to 200, which is the threshold used to control the iterative process. The corresponding
convergence processes are shown in Figure 7. Compared with the global optimal solutions
obtained through the exhaustive method, it can be observed that the two functions f; and
f» converge to the optimal solution at the generations of 76 and 10, respectively. When
the target heredity generation is reached, the iterative process of the NSGA-II terminates,
and the Pareto front is output. In addition, the parents are selected through tournament
selections to produce the offspring samples. The optimization is implemented according
to the iterative process in Figure 4, and the results are plotted in Figure 8. To make
comparisons with the results of single-objective functions, the results obtained based on
the MSMKE and EI are also presented in Figure 8. Moreover, a traditional bi-objective
function considering the EI and MSMKE is illustrated in Equation (19), which transforms
the bi-objective optimization into a single-objective optimization. The optimal result of EI-
MSMEKE is also plotted in Figure 8.

-1
EI-MKE = diag(q>(<qu>) <1>T> . ding (M<p<pT) (19)
7
19X 10 49
4.8
— NSGA g — NSGA
----- Global optimum 477 - Global optimum|
i “r
4.61
4.5k
! 0 50 100 150 200 4 4() 50 100 150 200
Generation number Generation number
(a) (b)

Figure 7. Convergence process of bi-objective optimization: (a) f1; (b) f>.

As presented in Figure 8, the optimal results for the EI, MSMKE and EI- MSMKE
(points “A’, ‘B’ and ‘C’ in Figure 8) can all be found in the Pareto front, which means that
the bi-objective Pareto optimal results can cover all the results obtained based on the single-
objective and traditional bi-objective criteria. The Pareto optimization solved through
the NSGA-II can achieve a solution as good as that of the single-objective function of the
MSMKE, as shown by point ‘C” in Figure 8. It is worth noting that the determinant of the
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Fisher information matrix (point ‘D’ in Figure 8) obtained through the Pareto optimization
is even larger than that obtained from the EI, which further verifies the efficiency of
the NSGA-II to solve the bi-objective Pareto optimization problem for sensor placement.
Moreover, the Pareto front can provide a series of sensor placement schemes that are not
worse than the counterpart based on the traditional bi-objective criterion of EI- MSMKE
('B” in Figure 8). The sensor placement positions of ‘B’, ‘C" and ‘D’ in the Pareto front are
shown in Figure 9.

5.2 .
KD ¢ Pareto front
5 A x EI
8 A MKE
B * EI-MKE
“S4.8- o
b
v
4.6+ (V] o C\O
44 :
0 2 4 6 8 10
1 x107

Figure 8. Optimal solutions of sensor placement based on the criteria of EI and MSMKE.

‘ > f Accelerometer direction ‘

.- . .

L 1 -
(a)
S S S
3 S
(b)
N ST
Jb;» 3 S A
(©)

Figure 9. Sensor placement proposals from Pareto front of EI and MSMKE: (a) solution ‘D’;
(b) solution ‘B’; (c) solution ‘C’.

4.3. Comprehensive Evaluation of OSP Schemes

The bi-objective optimization results show that the optimal solution set achieved
through Pareto optimization method contains 16 equivalent OSP schemes. By adopting
the evaluation criteria based on the membership degree index u proposed above, the
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solution from the Pareto optimal solution set, which is closest to the ideal solution, can be
determined as the OSP scheme. As shown in Figure 10, solutions No. 14 and 15 have nearly
the same value of index D which is the maximum one among all the solutions in Pareto
front. It means that the two equivalent OSP solutions can provide alternative schemes when
some positions of the structure are inconvenient to install the sensors, and the point ‘B’ in
Figure 8 corresponds one of such optimal solutions. Consequently, considering reducing
the identification error of modal parameters and increasing vibration signal intensity, the
placement positions of the sensors corresponding to point ‘B’ in Figure 8 is optimal for the
plane truss.

0.76
Q 0.74
%072
=
8 07
20.68
o=
s 0.66
& 0.64

0.62

1 23 456 78 910111213141516
Soultion number in Pareto front

Figure 10. Proximity index D for each solution in Pareto front for OSP.

5. Conclusions

The traditional OSP method is based on single objective criterion, which is generally
oriented to meet a single target of sensor placement. When more than one objective is
considered to be satisfied, such as improving the identification accuracy of structural modal
parameters, the vibration signal strength and the effect of modal reconstruction, the current
OSP methods cannot achieve good results. This paper carried out a study on a Pareto-based
bi-objective OSP method, and the proposed evaluation criteria of optimal solution can
achieve satisfactory results for two objective functions at the same time. The bi-objective
OSP method was finally verified through a numerical model of a plane truss. According to
the analytical results and discussions, the following conclusions can be drawn:

Pareto optimization can comprehensively consider more than one objective function
for OSP, such as the MSMKE, EI and structural modal independence. Compared with
the traditional OSP method, the proposed method can make a compromise between the
multiple objective functions, and all equally optimal solutions in a Pareto sense can be
provided as alternatives for sensor placement, which also covers the sensor placement
schemes obtained through the traditional single objective optimization methods.

The NSGA-II is suitable for solving the Pareto optimization problem of OSP for SHM.
The bi-objective Pareto optimization of sensor placement can be effectively solved through
the NSGA-II and all the equally optimal solutions for the bi-objective OSP can be achieved
within a feasible number of generations. The proposed iterative process for the Pareto
optimization based on the NSGA-II can be effectively applied to the bi-objective OSP.
If more objective functions for OSP are considered, the proposed algorithm can still be
effective through multi-objective Pareto optimization.

A comprehensive evaluation method based on membership degree index was pro-
posed for multi-objective OSP, which can quantitatively analyze the proximity between the
multiple alternative solutions provided by Pareto optimization and the ideal solutions. By
selecting the Pareto optimal solution which has the largest value of proximity index D, the
corresponding sensor placement scheme can be finally determined among a series of Pareto
optimal solutions, and the OSP scheme can achieve good results in both the two objectives.

In this research, the Pareto-based bi-objective optimization functions are established
according to three commonly used evaluation criteria for optimal sensor placement, which
only involve the optimization of sensor placement positions. In the future, it would
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be meaningful to carry out research on the multi-objective optimization for both the
sensor number and location. In addition, if the evaluation criteria for different types of
sensors are introduced to establish objective functions for OSP, the Pareto-based multi-
objective optimization method proposed in this paper can be extended for the simultaneous
optimization of the different types of sensors on the structure at the same time.
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