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Abstract: Conventionally, the number of steel rebars at construction sites is manually counted by
workers. However, this practice gives rise to several problems: it is slow, human-resource-intensive,
time-consuming, error-prone, and not very accurate. Consequently, a new method of quickly and
accurately counting steel rebars with a minimal number of workers needs to be developed to enhance
work efficiency and reduce labor costs at construction sites. In this study, the authors developed an
automated system to estimate the size and count the number of steel rebars in bale packing using
computer vision techniques based on a convolutional neural network (CNN). A dataset containing
622 images of rebars with a total of 186,522 rebar cross sections and 409 poly tags was established for
segmentation rebars and poly tags in images. The images were collected in a full HD resolution of
1920 × 1080 pixels and then center-cropped to 512 × 512 pixels. Moreover, data augmentation was
carried out to create 4668 images for the training dataset. Based on the training dataset, YOLACT-
based steel bar size estimation and a counting model with a Box and Mask of over 30 mAP was
generated to satisfy the aim of this study. The proposed method, which is a CNN model combined
with homography, can estimate the size and count the number of steel rebars in an image quickly and
accurately, and the developed method can be applied to real construction sites to efficiently manage
the stock of steel rebars.

Keywords: steel rebar; size estimation; counting; convolutional neural network; homography; YOLACT

1. Introduction

Reinforced concrete is the dominantly used structural material in many countries
because of its relatively simple methods for construction; its superior fire resistance perfor-
mance; the availability of its constituents, including rebars, aggregates, water, and cement;
and its economic feasibility, compared to other forms of construction [1–3]. Concrete has
unique features; it is strong in compressive loads but weak in tensile strength. Due to
these characteristics, excessive tensile strength in concrete gives rise to the development of
cracks on the surface of concrete structures. In order to overcome this poor performance,
reinforcement for the concrete is provided by embedded steel bars or wires during the
casting of concrete. In particular, steel rebar is commonly used for the reinforcement of
concrete since the coefficient of thermal expansion of concrete and steel is almost equal,
and the deformation or strain of both concrete and steel rebar is almost the same to pre-
vent slip of steel rebars from the concrete. Concrete work accounts for about 23% of the
construction cost of a building. In addition, the material cost of steel rebars constitutes
approximately 28% of the total material costs of the concrete work [4–7]. Accordingly,
steel rebars are a significant construction material in reinforced concrete structures due
to their superb mechanical properties and their proportion of construction costs over the
complete structure.
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In general, steel bars are manufactured from steel mills and transported to construction
sites in bale packing. According to previous studies [8–12], the number of steel bars should
be counted in bale packing before they leave the factory and after they arrive at the
construction site. However, the practice of quantifying steel rebars in South Korea is
measured by weight in steel mills to enhance the speed and efficiency of shipping them.
The steel rebars transported by weight from the manufacturers of a distribution center
are stocked at the construction site. At the construction site, the steel rebars are taken to a
rebar processing workshop after workers count the required quantity. While manual rebar
counting is a common practice at the construction sites, it entails several drawbacks: it
is human-resource-intensive, time-consuming, and error-prone, and could cause injury.
In particular, it is one of the most dangerous construction materials at the site; they can
cause stab wounds and tetanus, given that the shape of these steel rebars is long and
sharp at the ends. Consequently, a new method by which steel rebars can be quickly and
accurately counted with a minimal number of workers needs to be developed to enhance
work efficiency and reduce labor costs at the construction site.

In this study, the authors developed an automated system to estimate the size of,
and count, steel rebars in bale packing using computer vision techniques based on a
convolutional neural network (CNN). The developed technique generates a CNN model
for segmenting steel rebars and poly tags from bale packing, and another for converting
images with different sizes and perspectives into images with the same front view by
applying homography. To generate the CNN model, the cross sections of the steel rebars
were taken from various angles and perspectives, and data augmentation was carried out
to create various surroundings. The CNN model, trained with 622 images with annotations,
is able to extract polygonal coordinates by segmenting cross-sectional images of the dataset
of the steel rebars. Additionally, the polygon area of the steel rebars was converted into
the actual scaled area by applications of the homography matrix calculated during the
homography operation to segment polygon coordinates of the poly tag on the steel bar
packing. We expect that the application of this system will make it possible not only to
enhance the efficiency of construction material management but also to reduce labor costs
in counting steel rebars. The remainder of this paper is composed as follows: Section 2
briefly reviews the relevant studies in terms of counting research on machine learning and
computer vision techniques. Section 3 deals with the overall research method to segment
and count the number of the steel rebars. The test results are depicted in Section 4. In the
final section, the conclusions and limitations of this study to be dealt in the further research
are presented.

2. Related Works

Conventionally, counting the number of various objects is based on hand-crafted
counting or manual calculation by humans. However, this practice accompanies several
problems: it is slow, human-resource-intensive, time-consuming, error-prone, and not very
accurate [13–17]. Recently, machine learning (ML), a type of artificial intelligence, has been
emerging as an alternative method to deal with these challenges [18–20]. In particular, the
success of the Convolutional Neural Network (CNN) in many research areas has been used
for its excellent capabilities to detect and segment objects from visual images [16,21–24].
Moreover, the CNN’s ability to learn non-linear functions from images has been crucial for
counting various objects from multiple objects in images. Consequently, CNN techniques
such as image classification, object detection, and instance segmentation, which deal with
objects in an image, with model developments and algorithms in combination with image
processing techniques, have been used for counting objects.

Crowd counting, as a research area, has been vital for adopting CNN models to esti-
mate and count gathered people from images or video clips. For example, Wang et al. [18]
applied a deep regression model for counting people in extremely dense conditions in
images. Existing methods to count the number of people by distinguishing human faces
or auxiliary humans have limited applications when the quality of an image is less than
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10 pixels. However, the suggested method, using the deep learning model with nega-
tive samples, can improve robustness and minimize false alarms. Likewise, Walach and
Wolf [25] used improved CNN models that combined layered boosting and selective sam-
pling to increase counting accuracy and reduce processing time. Crowd counting studies
have dealt with variables such as scale factors, different scenarios of backgrounds, and
density levels. Li et al. [22] proposed a congested scene recognition network (CSRN) able to
count the number of people in highly congested scenes. In this study, the backbone of the
network was a CNN model with front-end 2D feature extraction and a dilated CNN for the
back end. The dilated convolutional layers of this study help in counting people in highly
crowded scenes. Inappropriate scales are one of the challenges to settle in crowd counting
and density estimation studies. In order to overcome these difficulties, many new CNN
methods have been suggested, and the evaluation metric (Mean Absolute Error and Mean
Square Error) for these newly suggested methods has been improved [22]. Recently, the
research on crowd counting is expanding the scope of the counting target from gathered
people to vehicles on the roads, corn crops, and flowers.

Similarly, vehicle counting is a field that is vitally applying CNN-based counting meth-
ods to construct an intelligent traffic monitoring system for traffic control and optimization,
fastest-route suggestions, safety management, and so on [13,15,23,26]. Abdalwahab [26]
adopted Regions with a convolutional neural network (R-CNN) as an object detection
method for counting vehicles in road images and a KLT tracker for tracing the trajectories
of counted vehicles. Sun et al. [15] proposed a new network using a multi-channel and
multi-convolutional neural network to count the number of vehicles directly from CCTV
images. Even though there were limitations in detecting vehicles in poor visual conditions,
such as foggy weather and low-light conditions, it was shown that the overall results
outperformed the crowd CNN and the crowd ConvNet Model. Similarly, Gomaa et al. [23]
used a vehicle counting algorithm that combined both a CNN and the optical flow feature
tracking method to improve traffic control and management. This algorithm constituted
three stages: a CNN-based classifier for detecting vehicles, a feature motion analysis
step, and clustering for a non-repeated counting process. In this study, they showed an
average detection and counting accuracy of 96.3% and 96.8%, respectively. Moreover,
Chung et al. [27], for example, counted the number of vehicles in an image using a trained
CNN model to another site, without additional labeling work when constructing the train-
ing dataset to the one-stage detector. The suggested method of this study would make it
possible to minimize the level of labeling tasks each time the image data are changed.

As discussed above, the scope of CNN-based research on counting objects has ex-
panded its application to a variety of areas, and a growing number of studies have tried to
implement machine learning to count objects in the construction industry. The fields of
construction material management and inventory management are rapidly applying CNN-
based counting methods [8,17]. While the CNN has an excellent ability to detect objects
in an image, it also slows down computing time and decreases accuracy when the layers
deepen and when the number of objects to detect increases as steel rebars are counted. Ac-
cordingly, various algorithms have been developed to reduce the computational time and
enhance the accuracy in the CNN models. Fan et al. [28], for example, applied a CNN-DC
(Distance Clustering) method that combined the detection of the candidate center points of
steel rebars using a CNN, and a clustering algorithm to cluster and locate the true center
of the steel rebars from the candidate center points. This study showed that it achieved a
99.26% steel rebar counting accuracy and 4.1% of the center offset for center localization
on the steel rebar datasets. Similarly, Hernández-Ruiz et al. [12] counted steel rebars from
images using SA-CNN-DC (Scale Adaptive-Convolutional Neural Network-Distance Clus-
tering) to improve accuracy with low-computing resources, which is frequently pointed
out as one of the challenges in machine learning research. The used methods in this study
would make it possible to count steel rebars regardless of size and to indicate satisfactory
results with low-computing resources. Despite various suggestions to support steel rebar
counting, the size of steel rebars in an image is relatively small, and it would be difficult
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to make a learning dataset of them. Zhu et al. [10] suggested a small object augmentation
method called Sliding Window Data Augmentation (SWDA) to improve the performance
of small object localization in an image. Inference time would also be affected by the com-
puting resources and the overall architecture of the CNN models. For example, Li et al. [29]
adopted a YOLOv3 detector, which is a single-stage object detection algorithm for auto-
matic steel rebar detection and counting for high accuracy with a reduced inferencing time.
The applied model carried out the detection and counting of steel rebars in parallel with an
average precision of 99.7% and an Intersection over Union (IoU) of 0.5.

3. Estimation of the Size and Counting the Number of Steel Rebars
3.1. Research Method

While several studies have tried to count rebars by adopting various proposed CNN
architectures to enhance accuracy and reduce inference time, they have only focused on
counting the exact number of rebars rather than discerning their size as well, as discussed
in the previous section. In this study, we developed an automated rebar counting and
size estimation technique based on a convolutional neural network (CNN) and image
processing for the efficient management of materials at construction sites or rebar man-
ufacturing plants. Non-contact image sensing can cover multiple objects using a single
camera and has better accessibility than other sensors, such as mobile phones. Additionally,
CCTVs are already installed at construction sites for security and safety reasons. Hence,
it is possible to apply the developed image-based technology without the need to install
additional sensors.

Rebar counting and size estimation can each be achieved by the cross-sectional divi-
sion of individual rebars in the image and the pixel range occupied by the cross section.
Therefore, the acquisition of images that contain the cross section, and the detection and
segmentation of the cross section of individual rebars need to be performed sequentially.
Although the detection and segmentation of the cross section of individual rebars can be
conducted through a CNN model, two other issues need to be addressed to perform rebar
counting and size estimation: (1) A scale factor is required to apply the actual dimensions
to the detection and segmentation coordinates composed of pixel coordinates. (2) In the
case of an image captured from an oblique angle, the area of the near cross section and
that of the far cross section are different, even for the same rebar. Computer-vision-based
homography is effective in simultaneously solving these two issues.

Homography is an image processing that acquires an image from a virtual image-
capturing angle through the transformation relationship between the corresponding points
of two images [30–34]. Homography can transform a perspective of an image captured from
an oblique direction into a front view image captured from the front direction (where the
camera is facing the object directly). Generally, four corresponding points with known sizes
are required to perform this transformation. However, poly tags of uniform dimensions
are attached to piles of rebars, and they contain information such as the production time
and rebar specifications. This information is utilized in homography to obtain the scale for
the pixels and a virtual front view image.

The research process of rebar counting and size estimation consists of a five-step
sequential algorithm, as shown in Figure 1. Firstly, a CNN model is created using images
containing various rebar cross sections for object detection and instance segmentation. The
dataset consists of a training dataset for training, a validation dataset to prevent overfitting,
and a test dataset to verify the trained model. Secondly, the segmentation image is obtained
by putting the images for rebar counting and size estimation in the generated CNN model.
The segmentation image consists of rebars composed of (u, v), a perspective coordinate
system, and each object of the poly tag is composed of polygons. Here, homography
is applied to the entire image by entering the poly tag information in advance, and the
rebars composed of (u, v) and the individual objects of the poly tag are converted into
the (x, y) coordinate system of the actual scale through the homography matrix. Lastly,
information on the converted rebars, such as the number of types of rebars in the image
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and the number and sizes of the rebars for each type, is obtained through a histogram and
Gaussian distribution analysis.
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Figure 1. Flow chart for estimating the number and size of steel rebars.

3.2. Image Acquisition for Instance Segmentation

Various studies have been conducted on object detection techniques that express
the minimum range of the area containing the object using rectangular coordinates and
instance segmentation techniques that represent the boundary of the object with a polygon
to handle the objects in the image using a CNN model [19,25,35–37]. Generally, object
detection expresses the position of the object using four coordinates, whereas instance
segmentation uses tens to hundreds of coordinates to represent the boundary of the object,
depending on the size of the image and the size and shape of the object. Although instance
segmentation can accurately extract the boundary of the object, it consumes much time
and computing resources compared with object detection. Hence, it is important to use a
CNN model suitable for the purpose.

Pixels occupied by the rebar cross sections in the image are directly associated with
the size of the rebars after applying homography. Therefore, pixels occupied by the cross
sections of rebars must be segmented accurately. Instance segmentation of individual
rebars represents the coordinates of the pixels for the corresponding rebar as a polygon.
For CNN-based supervised learning instance segmentation, the coordinates of the edges
of the target object to be segmented need to be annotated by a person. In this study, the
annotation was performed on an image containing the rebar cross sections to be segmented
and a poly tag, and was used as a dataset for generating the CNN model.

A dataset containing processed 622 images of rebars including a total of 186,522 rebar
cross sections and 409 poly tags was established for segmentation rebars and poly tags in
images. The images were collected in full HD resolution of 1920 × 1080 pixels and then
center-cropped to 1080 × 1080 pixels. The cropped images were then down-sampled to
512 × 512 pixels to increase the computing speed. In the dataset, the number of rebar cross
sections captured in a single image varies from approximately 50 to 1000. The annotation
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tool LabelMe [38] was used to assign the polygon ground-truth bounding boxes to the
rebar cross sections, which is necessary for supervised learning procedures. Figure 2
shows representative raw images and a labeling of the ground truth. Of the 622 images,
409 images contained poly tags, but the remaining 213 images contained only rebar cross
sections without poly tags. Images were taken from various angles, as well as from the
front; up to four images were taken of the same pile of rebars. Of the 622 images, 498, 93,
and 31 images (or 80%, 15%, and 5% of the images) were randomly classified into the train,
validation, and test datasets, respectively. Additionally, some test dataset images were
annotated on the original image of 1920 × 1080 pixels to improve the precision for minute
objects, such as rebars of less than D10, adopting a machine learning model to enhance the
accuracy with lowering the speed of object recognition.
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3.3. Rebar Size Estimation Using Homography

Figure 3 shows the detailed rebar counting and size estimation process, which is
performed after the detection and segmentation of the rebars and poly tags are completed
using the CNN model. Corner detection is applied to the poly tag extracted from the
segmentation image; thus, four corresponding points to be used in homography are
extracted. The poly tags used in this study have fixed dimensions of 6.5 cm × 9 cm
in width and length and are input in the same size for all the homographic tasks. A
poly tag photographed from an oblique direction is converted to the frontal direction
through homography. At the same time, the horizontal and vertical pixels have an actual
scale of 6.5 cm × 9 cm. The homography matrix created here is equally applied to the
entire image and individual rebars, in addition to the poly tag, to obtain the polygon
coordinates composed of the arranged image of the front view and the (x, y) coordinates of
the actual scale.
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Figure 3. Rebar size estimation and the counting process using homography.

The converted polygon area is the area of the corresponding rebar cross-section; hence,
the Gaussian distribution analysis is performed on the histogram representing all polygon
areas. Here, the number of peaks in the Gaussian distribution represents the types of the
rebar size, and the x value µ, which is the location of the peak, is the average of the group
of rebar cross sections in the corresponding Gaussian distribution. The diameter of the
rebar can be calculated through Equation (1).

d =

√
µ × 4
π

(1)

where, d is the diameter of the steel rebars (in mm), and µ is the peak value from the his-
togram and the Gaussian distribution analysis. The number of rebars for the corresponding
size is the number of histogram samples within the proposed area range presented in
Table 1. Histogram samples in a range outside the rebar size types inferred in advance
are classified as errors that occur during image processing. This is described in detail in
Section 4 of this paper.

Because the sample image used in Figure 3 contains two types of rebars, two peaks
were generated in the Gaussian distribution analysis. The x values of the two peaks, µ1 and
µ2, are 73.5 mm2 and 383.2 mm2, respectively. The diameters of the two types of rebars are
9.7 mm and 22.1 mm, respectively. In other words, we can confirm that the two rebar types
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are the D10 and D22 rebars. Based on the proposed rebar area ranges in Table 1, 724 rebars
were counted for D10 rebars, and 372 rebars were counted for the D22 rebars.

Table 1. Rebar standard in KS D3504:2021 [39] and the proposed area range for size estimation.

Type Nominal Diameter
(mm)

Nominal Cross
Section Area (mm2)

Estimated Area
(mm2, Proposed)

D10 9.53 71.33
Min 60.4
Max 99.0

D13 12.7 126.7
Min 99.0
Max 162.6

D16 15.9 198.6
Min 162.6
Max 242.5

D19 19.1 286.5
Min 242.5
Max 336.8

D22 22.2 387.1
Min 336.8
Max 446.9

D25 25.4 506.7
Min 449.9
Max 576.2

The existing standards reflect a certain delay in the advances of technology in product
manufacturing with the growing requisites of the users. In the case of rebars, the ISO
standards have not been widely adopted yet, and national standards are still predominant.
In this paper, the Korea national standards, KS D3504:2021 [39], were applied for the
diameter and area values according to the size of the rebars for the accurate comparison of
the obtained data and the analysis results. Because KS D3504:2021 [39] refers to the interna-
tional standards ISO 3534-1:2006 [40], and the US national standards ASTM A615 [41], the
rebar notations and sizes are similar to the international standards. Rebars are classified
into 18 types, from D4 to D57. The standards quantitatively present the nominal diameter
and nominal cross-section area of the rebars, and some of them are listed in Table 1. Here,
the average value of the nominal cross-section area of two consecutive rebar types was
proposed as the estimated area to determine the size of the rebar obtained from the image.
For example, the estimated area of D13 ranges from 99.0 to 162.6. Here, the minimum value
of 99.0 is the average value of the area of D13 (126.7 mm2) and that of D10 (71.33 mm2),
and the maximum value of 162.6 mm2 is the average value of the area of D13 (126.7 mm2)
and that of D16 (198.6 mm2).

4. Results
4.1. Training and Evaluation

In this section, we present the research results. The hardware for the algorithm testing
used the NVIDIA GeForce RTX 2080 Ti Graphics Processing Unit (GPU). YOLACT [42]
was used to create a CNN-based model that can segment the rebar cross sections and
poly tags in the image. Transfer learning based on the pre-trained weights of the COCO
dataset [43] and image processing-based data augmentation were performed. Transfer
learning was first performed on a large dataset, and the pre-trained weights were then used
for initialization or as fixed feature extractors for a new target task to improve learning
accuracy. Transfer learning was performed in two steps: (1) The weights pre-trained on the
COCO dataset are used to initialize the backbone and post-processing modules. Only the
weight parameters of the post-processing module are then optimized based on the steel
frame dataset. (2) The weight parameters of the entire network are restored, and they are
fine-tuned using the same dataset.

Data augmentation aims to increase the variability of the same image to make the
trained model robust to images obtained in different environments. Brightness, zoom, flip,
and rotation techniques were randomly applied 10 times such that the same technique
could be applied redundantly up to two times for an image. Brightness was applied within
a ±40% range based on HSV (hue, saturation, and value), and zoom was applied within a
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20% range of the maximum pixels. Flip was applied within a 20% range of the horizontal
and vertical size, respectively, and rotation was applied within a 360◦ range around the
center. The area ratio of the poly tag before and after data augmentation is calculated for
these techniques, except for zoom. If the ratio becomes smaller than one, it indicates that a
part of the poly tag is damaged. Consequently, that image is excluded from the training
dataset. Figure 4 shows an example of each technique.
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Figure 4. Data augmentation applied to images.

The data augmentation technique was applied to 498 images of the pre-configured
training dataset, and a total of 4668 images were used for the final training. A total of
10,000 training iterations were performed on the dataset. Table 2 lists the mAP (mean
average precision) for every 500, 1000, 5000 and 10,000 iterations for the two classes of
steel rebars and poly tags over different IoU thresholds, from 0.5 to 0.95. In all the IoU
ranges, mAPs greater than or equal to 50 were obtained for the Box and Mask in the 1000th
iteration. Subsequently, a model with a Box of 52.21 and a Mask of 52.83 was obtained in
the final, 10,000th iteration.

Table 2. mAP by YOLACT-based training.

Iteration All 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

500
Box 19.86 38.10 60.51 26.30 23.30 18.95 15.67 11.60 11.42 6.24 2.48
Mask 20.36 40.59 25.77 22.20 18.13 15.57 13.40 8.62 8.32 1.79 0.61

1000
Box 32.53 53.61 46.80 40.17 32.86 26.69 20.35 16.57 16.09 8.10 5.29
Mask 31.98 58.38 42.17 35.12 27.25 21.63 18.87 12.86 11.56 2.33 0.83

5000
Box 33.24 55.74 48.06 40.40 33.88 28.10 20.98 17.26 16.58 8.53 5.56
Mask 32.73 59.30 42.47 35.63 28.38 22.53 19.45 13.40 12.17 2.43 0.87

10,000
Box 33.21 56.32 48.53 41.05 34.22 28.67 21.19 17.61 16.75 8.70 5.62
Mask 32.83 59.21 42.37 35.31 28.96 22.76 19.65 13.67 12.29 2.45 0.88

4.2. Rebar Size Estimation and Counting Results

Figure 5 presents the results of four sample images from the test dataset for rebar size
estimation and counting. For each image, the segmentation image, which is the output of
the segmentation model, the homography image by corner detection for poly tags, and the
histogram and Gaussian distribution plot are sequentially listed. Table 3 presents these
results. The actual number of rebars is the number of annotations labeled by a person.
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Figure 5. Sample results of rebars. (a) Sample image on a pile of single type rebars take from an
oblique angle. (b) Sample image on the sample pile of rebars shown in (a) taken from the from
direction. (c) Sample image on a pile rebars to which a small poly tag is attached. (d) Sample image
on a pile of two types of rebars.
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Table 3. Details on the results of the samples.

Sample
Image

Size (mm) Count (the Number) Error (%)

Actual Estimated Actual Estimated Size Count

Figure 5a 13 12.77 281 254 1.7 9.6
Figure 5b 13 12.59 219 207 3.1 4.5
Figure 5c 16 16.03 294 286 0.1 2.7

Figure 5d 10 9.85 27 29 1.5 7.4
22 22.09 67 69 0.4 2.9

Figure 5a,b are images captured from the same pile of D13 size rebars. Figure 5a is the
image taken from an oblique direction to the right, and Figure 5b is the image captured
from the front direction. The Gaussian parameters mean µ and standard deviation σ are
µ = 128.1 and σ = 10.7 in Figure 5a and are µ = 124.5 and σ = 7.8 in Figure 5b. The
diameters of the rebars calculated using µ are 12.77 and 12.59, respectively, and the error
rates are 1.7% and 3.1%, respectively. Thus, the standard deviation of Figure 5b is 2.9 lower
than that of Figure 5b. This result confirms that the image taken from the front direction
has a more stable area distribution.

Figure 5c shows a pile of D16 rebars, and the poly tag size is approximately 1/30 of
the image size. Thus, it is a sample image for a case when the homography target is very
small. Similarly, the corner of the poly tag was recognized in this sample, and homography
was performed smoothly. A result of µ = 201.7 with a size of 16.03 was obtained.

Figure 6b shows an image containing two types of rebars, D10 and D22. Two peaks
were generated in the histogram and Gaussian distribution analysis, and the values of
µ1 = 76.1 and µ2 = 383.2 were obtained. The size of each rebar type is 9.85 and 22.09,
respectively, indicating highly accurate estimation.

Among the four sample images, Figure 5a shows the highest counting error. Conse-
quently, an analysis was performed on the objects outside the rebar area range in Figure 5a,
which are rebars that have been classified as errors. The rebar area range of the D13 rebars
is 99.0 mm2−162.7 mm2. Hence, if the segmented polygon area is smaller than 99.0 mm2 or
larger than 162.7 mm2, the corresponding rebar is not recognized as a D13 rebar, as shown
Figure 6a. Figure 6b presents an image that only shows the rebars of the homography
image that fall in the error range. If the area is larger than 162.7 mm2, it indicates that
the projected rebar has occurred owing to uneven indentation. If the area is smaller than
99.0 mm2, it indicates that a part of the rebar has been cut off the edge of the image or the
poly tag. From this analysis, it was inferred that the rebar pile should be arranged neatly to
reduce the counting error occurrence rate, or that the picture should be taken in a way to
ensure all rebars are included in the image.
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Figure 7 shows the images for which the size estimation was not performed properly.
Figure 7a shows a case where the poly tag is detached from the rebars or is deformed. In
such cases, the poly tag could be recognized, but corner detection failed in most cases.
Even when the corner detection succeeded, homography could not be performed properly.
Figure 7b is an image where a part of the poly tag is cut off. Although corner detection
is possible, homography is applied with an incorrect size because the size of the poly tag
input has been set to 6.5 cm × 9 cm in advance. For Figure 7c, the orientations of the
rebar and the poly tag do not match because the poly tag was not attached to the rebars
correctly. In this case, while poly tag recognition, corner detection, and homography are
properly performed, the cross section of the rebar is not aligned to the front view. This
misalignment leads to a difference in the area due to perspective, although the rebars are
the same size. Consequently, the rebar size is estimated incorrectly. Therefore, to apply the
size estimation technique developed in this study, a poly tag that is not cut off or deformed
has to be attached in the direction matching the orientation of the rebars.
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5. Conclusions

Steel rebars are a significant construction material in the reinforced concrete structures
due to its superb mechanical properties as well as the proportion of the construction costs
over the complete structure. While the manual rebar counting is a common practice at
the construction sites, it entails several drawbacks: it is human-resource-intensive, time-
consuming, error-prone, and possibly injurious. In this study, the authors developed
an automated system to estimate the size and count the number of steel rebars in bale
packing based on CNN-based computer vision techniques. The results of this research
show the following:

1. The proposed method, a CNN model combined with homography, can estimate the
size and count the number of steel rebars in an image quickly and accurately, and
the method can be applied to real construction sites to manage the stock of steel
rebars efficiently.

2. The application of a homography image by corner detection for poly tags as well as a
histogram and Gaussian distribution plot can be used to effectively estimate the size
and count the number of steel rebars from images with different perspectives.

3. In this study, 622 images taken at various angles and that include a total of 182,522 steel
rebars were manually labeled to create the dataset. Data augmentation was carried
out to create 4668 images for the training dataset. Based on the training dataset,
YOLACT-based steel bar size estimation and a counting model with a Box and Mask
of over 30 mAP was generated to satisfy the aim of this study.

4. The test results show that the maximum error rate for estimating the size and counting
the number of steel rebars in an image was 3.1% and 9.6%, respectively. Most of the
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errors shown in this study were caused by images of steel rebars whose edges were
cut off or that suffered from uneven indentation.

While the proposed method in this study shows an acceptable level of performance,
the error rate in estimating the size and counting the number of steel rebars should be
improved for practical applications of complicated real construction sites. Moreover,
application of the proposed method must be expanded, e.g., to H-beam, channels, angles,
and pipes in order to efficiently manage construction materials at construction sites.
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