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Abstract: This paper presents an approach for the automatic abstraction of built environments needed
for pedestrian dynamics from any building configuration. The approach assesses the usability of
navigation mesh to perform realistically pedestrian simulation considering the physical structure
and pedestrian abilities for it. Several steps are examined including the creation of a navigation mesh,
space subdivision, border extraction, height map identification, stairs classification and parametrisa-
tion, as well as pedestrian simulation. A social-force model is utilised to simulate the interactions
between pedestrians and an environment. To perform quickly different 2D/3D geometrical queries
various spatial indexing techniques are used, allowing fast identification of navigable spaces and
proximity checks related to avoidance of people and obstacles in built environments. For example, for
a moderate size building having eight floors and a net area of 13,000 m2, it takes only 104 s to extract
the required building information to run a simulation. This approach can be used for any building
configuration extracting automatically needed features to run pedestrian simulations. In this way,
architects, urban planners, fire safety engineers, transport modellers and many other users without
the need to manually interact with a building model can perform immediately crowd simulations.

Keywords: built environment; space subdivision; navigation mesh; crowd simulation; BIM

1. Introduction

Crowd simulation has become a research field for many scientists in areas of computer
graphics, emergency management, transport and urban planning, etc. Researchers studied
exit preferences [1], choice modelling [2], kinematic architecture and collective evacuee
behaviour [3] to improve buildings in their safety and use. A realistic simulation of crowds
requires the integration of many aspects such as people behaviour, population modelling,
structure refinement and model validation [4]. In this paper, we concentrate on the structure
representation, where the primary focus is on a quick automatic extraction and subdivision
of navigable spaces for simulation of people dynamics in 3D indoor environments. The
structure refinement shows the level of detail that is captured for agents to interact with
it. There are three commonly used models including coarse, fine (i.e., grid-based) and
continuous ones [5]. Recently, voxel-based [6,7] and hybrid models [8] are also suggested.
Although continuous models are computationally the most demanding, the recent advance-
ment in the processing power of computers allows their use without much difficulty. The
main challenge that persists is the inability to use any building model coming from dif-
ferent sources, but rather simple models with well-defined geometrical and property-rich
structures [9,10]. Regarding crowd simulation models, seven methodological approaches
including cellular automata, social force, lattice gas, fluid dynamics, agent-based, game
theories and approaches based on experiments with animals are identified [11]. Although
some of these models such as cellular automata and lattice gas require discrete space,
others are continuous such as social force and fluid dynamics suiting more the proposed
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method. Thus, we concentrate on the automatic abstraction of any 3D environment to
support continuous models and pedestrian dynamics allowing people to move and interact
freely with any environment.

Recent advances in technology enable a quick acquisition of 3D data and the genera-
tion of indoor navigable spaces [12]. These come in addition to detailed BIM models, which
are becoming increasingly available, enabling efficient indoor path planning considering
the environment and obstacles [13,14]. Thus, a more accurate finding of free navigable
spaces is possible for different agents, which allows the investigation of crowd dynamics
in more realistic indoor environments. However, the main issue with current approaches is
the complexity of indoor spaces having too many objects which can be considered as obsta-
cles. Thus, one of the main problems with current pedestrian and evacuation simulators is
how to carry out the transition from highly complex 3D models into computer-readable
models to perform crowd simulations. The use of navigation mesh is suggested as a possi-
ble solution [15], where an agent’s size is considered to determine the accessible space [16].
To showcase how to utilise any 3D environment for agents’ navigation and simulation
the Unity game engine and different simulators are relying on the creation of a navigable
mesh [17,18]. However, navigation meshes are used primary for games and their suitability
is not accessed for pedestrian simulations. For example, aspects including border edge
extraction, stairs parametrisation and space representation can be improved to support the
requirements of modern pedestrian simulations.

In this paper, we propose an approach of space subdivision and abstraction of 3D
indoor environments based on a navigation mesh. The paper is organised as follows.
Section 2 covers the related research on this topic. In Section 3, several aspects are explored
starting from the usability assessment of the navigation mesh, the space subdivision and
border extraction, the height map identification process as well as stairs classification and
parametrisation, and the crowd simulation process. Section 4 showcases some results
relevant to the presented approach based on different 3D building environments. Section 5
highlights the main conclusions and future work suggestions.

2. Related Research

In this section, we briefly review the current relevant approaches supporting crowd
simulation in 2D and 3D indoor environments. As suggested before the current pedestrian
and evacuation simulators struggle to extract the geometrical information needed to
perform crowd simulations, forcing users to redraw their 3D models as well as supply
additional needed information (e.g., stairs riser and tread dimensions), making the whole
process not so trivial [4]. 3D indoor information can come from different sources, and in
different file formats such as CAD, IFC, CityGML, Sketch-Up, etc. This usually results in a
spatial data harmonisation problem, where the data integration in one 3D environment
becomes an impossible issue to address [19].

All this is in line with various conducted research, in which case researchers considered
modelling built environment within their software environment, so as to calculate the
repulsive forces from walls and other obstacles [20–22]. On the other hand, a navigation
mesh identifies walkable regions to support crowd navigation. The creation of navigation
mesh is usually associated with Constrained Delaunay Triangulation (CDT) suiting the
needs of path planning and obstacle avoidance [23]. To address the issue of agents passing
through narrow passages Local Clearance Triangulation (LCT) was proposed [24]. To
consider more precisely abilities and size of an agent in the creation of navigation mesh
the use of a voxel-based approach was proposed in the Unity game engine [17]. In this
way, a walkable area for a specific pedestrian is identified, but it is not fully utilised
to support modern pedestrian simulations considering precisely walking on stairs and
multiple obstacle avoidance.

In terms of people simulations considering more realistic built environments, an
approach using collision-free convex cells based on the Voronoi diagram is proposed
creating a navigation graph for crowd simulations [25]. The main issue indicated is related
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to the simulation scalability to perform different navigation queries. A grid-based approach
is presented simulating crowds in complex environments [26], where it is pointing out that
the number of grid cells impacts computations, and it cannot consider large scenes due
to the number of cells that should be kept in the memory. Using a social force model for
3D evacuation of buildings was investigated, testing relatively simple building layouts
coming from CityGML LOD4 models [10]. A method performing crowd simulations in
large public spaces is suggested modelling interactions between thousands of agents [9].
However, the inability to consider small objects and multi-floor environments are suggested
limitations of the study. The combination of navigation mesh generated by Unity software
and a social force model is tested for 2D navigation [27], but its mutual integration with
crowd dynamics for 3D purposes is not fully explored. Therefore, we try to assess the
usability of a navigation mesh and identify which additional space features are needed
for the automatic abstraction of 3D built environments and pedestrian simulations. At the
same time, we reduce the number of abstracted features through space subdivision and
border edge simplification to create a more scalable solution, allowing users to simulate
pedestrian dynamics in large building environments without keeping a lot of information
in the memory. For example, triangles representing the navigation mesh which are usually
used for vertical placement are not needed in our case as result of the subdivision between
horizontal and vertical spaces.

3. Conceptual Model

Performing a crowd simulation in a 3D space is not a trivial task. Many components
should be known to perform simultaneous navigation in indoor and outdoor space, calcu-
late impacts from other pedestrians and obstacles. The conceptual model is presented in
Figure 1 showing the main needed components. As a base of the model, navigation mesh is
considered, which is used for space abstraction and subdivision. Using a navigation mesh,
subdivision between horizontal and vertical spaces is performed, followed by heightmap
identification and border extraction for accurate vertical placement and calculation of
repulsive forces from obstacles, respectively. Using the information of vertical spaces, stairs
classification and parametrisation are performed enabling us to calculate their effects on
pedestrian’s speed. The next step involves the use of spatial indexes allowing a quick
execution of different spatial queries. In the end, a crowd simulation approach is presented
to highlight the way of using the extracted building information. In the following sub-
sections, we will cover each of these components to understand the role they play in the
whole process.
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3.1. Navigation Mesh

In this subsection, we describe the way of generating a navigation mesh and its
properties in the Unity game engine. The software considers by default several parameters
in the construction of a navigation mesh such as agent radius, height, jumping step and
maximum climbing slope. At the same time, parameters such as voxel and tile size can
be adjusted (https://docs.unity3d.com/Manual/class-NavMeshSurface.html, accessed
on 29 July 2021). Although the default ones are self-explanatory the latter ones need an
explanation. The voxel size plays an important role in the precision of navigation mesh,
and it is used to represent the agent’s body size, which is afterwards considered to identify
walkable voxels and regions. We will evaluate later on in the text the number of border
edges that are being generated as a result of using different voxel sizes in Section 4. To
compute the navigation mesh quickly for large areas, space is tessellated into smaller areas,
called tiles or chunks, allowing the execution of many calculations in parallel.

In terms of the classification of objects (e.g., stairs, doors, furniture) they should be
separated into static and dynamic. The static ones are considered for the navigation mesh
generation. Doors are recommended to be regarded as dynamic features to identify one
continuous navigable space (Figure 2). However, once the navigation mesh is generated
not just one navigable region can be identified. Having many navigable areas is suitable
for game developments, as agents can be programmed to jump long distances or teleport
somewhere else. However, for pedestrian simulations and built environments, this is not
the case, and only the largest navigable area should be considered which is usually much
bigger than the rest. In our case, smaller navigable areas are taken as non-walkable as
pedestrians cannot reach them from the main navigation area by walking.
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Figure 2. An example of a navigation mesh considering all physical objects in its calculation showed
in blue. The grid is showing imaginary lines in white that represent the tessellated chunks.

When a navigable mesh is constructed in the Unity there is an offset from walls which
roughly represents the pedestrian’s radius. In this way, a pedestrian will not collide with
any wall during a simulation. The radius size should be set up based on the maximum
width that a crowd simulation model allows in order not to get stuck in some positions
due to repulsive forces coming from the model.

To start working with the navigation mesh Unity provides triangles used for pathfind-
ing which match to a good extent the actual navigation mesh except on locations with
curved surfaces (https://docs.unity3d.com/540/Documentation/ScriptReference/Nav
Mesh.CalculateTriangulation.html, accessed on 29 July 2021). This particularly is not repre-
senting any problem, as the triangles can be used to find border edges and perform the
subdivision. Additionally, a navigation mesh is not capturing anyway accurately such
areas for pedestrian dynamics (Figure 5). For example, slope of stairs cannot be reliably
identified from it, and it should be replaced with a more reliable solution.

3.2. Space Subdivision

Space subdivision is an important aspect of any navigation process. They are artificial
representations supporting different agents’ activities. The subdivision can be performed
on 2D and 3D levels depending on the application [28,29]. There are a few pros and cons

https://docs.unity3d.com/Manual/class-NavMeshSurface.html
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of performing 2D and 3D subdivisions. The main advantages of the 2D subdivision are
the execution of all or most calculations in 2D, the user can keep in memory only spaces
that are occupied by pedestrians, and triangles are not needed for vertical placement of
pedestrians. On the other hand, if everything is considered as one 3D space or chunks
of 3D spaces simulated pedestrians can freely travel in an environment without the need
to check if they travelled to another space for pedestrian dynamics purposes. However,
it would be required to keep more information in memory of the whole space including
heightmap or triangles, the slope of stairs and other properties. Therefore, a 2D space
subdivision will be performed splitting a navigable area into horizontal and vertical areas.

Using the previously mentioned triangles we can identify border edges to calculate
obstacles’ impact during a simulation and connecting edges to perform the transition be-
tween two subdivided spaces. The main issue with the provided triangles is the connection
between them, as they do not represent exactly CDT due to the tessellation process. As a
result, on locations where tiles share borders, additional edges and nodes can emerge.

Algorithm 1 shows all the functions needed to subdivide spaces and classify border
edges. As a first step, we replace vertices that are in the proximity of 1 mm of each other.
Based on the vertices and their edges all triangles are initialised. A slope of 0 is used to
classify them into flat and tilted triangles. To find out the connection between the same
triangles we use Depth First Search (DFS) algorithm. To identify the main navigation
surface out of the identified ones we simply selected the one with the largest number of
vertices. For each edge, a corresponding surface is identified. Flat surfaces with an area
smaller than 0.5 m2 are merged with the closest sloped surface. If a sloped surface has
some overlapping parts, it should be separated into two or more parts. For example, this
can happen in the case of having circular stairs and some other similar scenarios.

Algorithm 1 Space Subdivision of a Navigation Mesh

Input: Edges and vertices representing triangles of a navigation mesh
Output: Subdivided spaces and border edges
ReplaceDuplicates(vertices)
triangles = InitialiseTriangles(vertices, edges)
edges = TinToEdges(triangles)
sur f aces = IdentifySurfaces(edges)
mainSur f ace = IdentifyMainSurface(sur f aces)[0]
tin = SplitTriangles(mainSur f ace)
slopedSur f aces = IdentifySurface(TinToEdges(tin[0]))
f latSur f aces = IdentifySurface(TinToEdges(tin[1]))
MergeSurfaces(slopedSur f aces, f latSur f aces)
SplitSurfaces(slopedSur f aces)
for each sur f ace in [slopedSur f aces; f latSur f aces] do
IdentifyBorders(sur f ace)
MergeEdges(sur f ace)

The functions used in the algorithm are the following:
ReplaceDuplicates(vertices): replacing vertices that are close to other ones.
InitialiseTriangles(vertices, edges): initialising triangles based on vertices and edges.
TinToEdges(triangles): identifying all edges.
IdentifySurfaces(edges): identifying all connected triangles forming one connected

surface.
IdentifyMainSurface(edges): finding the surface based on the largest number of

vertices.
SplitTriangles(edges): splitting triangles of the main navigation surface based on the

slope classification.
MergeSurfaces(slopedSur f aces, f latSur f aces): merging small flat surfaces with neigh-

bouring sloped ones.
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SplitSurfaces(slopedSur f aces): splitting a surface into several smaller surfaces until
the edges do not intersect in 2D space.

IdentifyBorders(sur f ace): identifying border edges of a surface and connecting edges
between them.

MergeEdges(sur f ace): merging connected and inlined border edges.

3.3. Border Edges Extraction

To detect border edges, we first identify all the edges that are appearing once, which
usually leaves the edges that are at the border. As an exact CDT is not constructed in the
first place some edges are also appearing in the middle of walking areas. Thus, we have
vertices that are connected to more than two edges. For each of those edges, we test if
their vertices and a point representing the middle part of the edge (e.g., there are situations
when both vertices are on the border, but the edge still goes through the navigable area) are
on the border of the navigation mesh using Unity function that identifies the closest edge
(https://docs.unity3d.com/ScriptReference/AI.NavMesh.FindClosestEdge.html, accessed
on 29 July 2021) (Figure 3). We should justify that we do not want to use this Unity function
to check how far away is a pedestrian from the closest border edge in simulations, as it is
performed in 3D, while in our case it will be 2D. However, the main reason is related to
obstacle avoidance where Unity can only identify the closest edge, whereas for the social
force model that we selected in the further text it is required to calculate the impact from
all obstacles in a pedestrian’s proximity.
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Once border edges are detected, connected and inlined edges can be merged (Figure 4).
Such edges are partitioned because of triangles that we use as input. The main reason
for connecting those edges is to have fewer edges, which will allow quicker calculation
of obstacles impact during simulations. This is done in two steps. The first step requires
associating each edge to its closest object surface. To achieve this, we cast rays from five
points equally distributed on the edges in the direction normal to the edge. Considering
normals of the points that hit a surface and the object that is hit, we detect to which object’s
surface each edge belongs. As a result, all edges that correspond to one surface of a wall
are merged into one line. The second step involves connecting boundary edges that belong

https://docs.unity3d.com/ScriptReference/AI.NavMesh.FindClosestEdge.html
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to two connected and approximately inlined surfaces. For this, we consider an azimuthal
angle difference between such edges of 3◦. In the end, we obtain border edges which more
rationally represent obstacles. In the experiments section, we further assess the accuracy of
identified border edges compared to actual walls and other obstacles.
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Figure 4. Merging inlined border edges. The upper image shows edges coming from triangles that
represent spaces’ borders, while the lower image highlights borders after merging the inlined edges.

3.4. Height Map Identification and Stairs Classification

Heightmap identification plays an important role during a crowd simulation for the
vertical placement of agents. Unity provides a function to place an agent on a navigation
mesh and determine the current vertical position of agents (https://docs.unity3d.com/S
criptReference/AI.NavMesh.SamplePosition.html, accessed on 29 July 2021). However,
the function casts rays which can be very expensive if you have hundreds or thousands
of agents for which vertical position should be determined each time. Moreover, the
navigation mesh and triangles representing it do not reflect correctly the actual stairs,
which can result in the wrong calculation of agents’ speed (Figure 5). Therefore, we identify
a heightmap for each surface with tilted edge boundaries.
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The height of flat spaces is calculated as an average value considering all vertices
belonging to that mesh. Regarding sloped surfaces, we use its Minimum Bounding Box
(MBB) to create a horizontal grid, where we identify corresponding heights on the ground
for each cell. This is done to substitute casting always rays to a ground surface during
simulations for vertical placement. Ray casting can be costly; thus, we store the information
as a matrix of values covering the whole sloped area. In this way, based on one pivot point
of a space (e.g., one point of MBB) and a pedestrian’s horizontal position we can easily
determine the pedestrian’s vertical position. To determine a heightmap for sloped surfaces
we cast rays from the top using the vertical extension of MBB. If the rays are hitting more
than one object in its path, we check if the distance between the intersecting point and the
triangles belonging to the sloped space is smaller than 0.5 m.

Apart from the identification of heights for accurate placement of pedestrians, param-
eters representing stairs should be identified to calculate the speed of pedestrians correctly.
Stairs are usually represented via slope or riser height and tread depth, width, and steps
count [30]. The main problem related to stairs are configurations that they can take, making
the identification of these parameters more difficult. Using BIM models these parameters
can be found, but even then, they can be wrong and affect the simulation. For example,
in Figure 6 treads overlap by looking from the top, which can result in using a wrong
value as a tread depth. This and many other stair configuration examples (e.g., spiral stairs,
stairs without risers or stairs which are inconsistent on some parts) make the process of
calculating correct agents’ speed more challenging.
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In the further text, we will concentrate only on more regular stair configurations such
as in Figure 6, where both treads and risers are present. The goal is to determine their
dimensions and use them afterwards in agents’ speed determination. To do so, we classify
the hitting points that we detected for the heightmap. The grid resolution to perform
the ray casting is 24 cm (i.e., minimum tread depth size), which is also in line with other
researchers using 25 cm [26]. We use the centroid of cells to shoot the rays (Figure 7).

If 3D objects representing stairs do not have this information, we need to first classify
points belonging to stairs. When casting the rays, we can group points based on objects that
are hit. Thus, for each step, we can know all hit points. From each point (i.e., cell’s centroid)
a horizontal filter with a size of 5 × 5 is considered to check the surrounding heights and
cover an area that can identify even stairs with larger tread depths (e.g., maximum recorded
tread depth in buildings is 33 cm). Considering all points obtained through the filter and
the central point, we can identify height differences between them. If there are two or more
height differences from the central point that are between 10 and 20 cm (i.e., minimum
and maximum riser size) and ±2 cm from each other, we can say that the central point is
belonging to stairs and height differences are riser heights from that point (Figure 7). The
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presented thresholds for treads and risers are based on many stair configurations available
in practice and standards [30,31]. In the case of having the metadata for stairs (e.g., data
coming from BIM models), we can immediately know all points belonging to stairs.
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Based on the classification, we can accurately determine the riser height for each point,
but the tread depth is still unknown. To identify it, we send horizontally two rays one
from a point on a step below to the considered point, and one from the considered point
to a point on a step above (Figure 8). As a result, we get two points hitting the risers P1,
P2 as well as their normals N1, N2 based on the surface that is hit. By using the opposite
direction of these normals the process is repeated and new points P3, P4 are determined.
Considering P1-P3 and P2-P4 pairs we can create L1 and L2 lines, respectively. Now, we
can calculate the minimal distance to the stair risers. To determine the rest of the distances
we identify the closest points P5 and P6 to line segments L1 and L2 formed by the two
points that hit each riser. This allows us to calculate tread depth for each classified point.
For example, we can use the same approach if we have circular or some irregular stairs,
but the tread depth will depend on a pedestrian’s walking direction. The width of stairs
can be calculated based on the intersection of L1 and L2 with border edges.
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Figure 8. Tread depth identification using a filter shown in black. In white the central point is
presented. Two randomly selected points are shown in red. Ray sent to these points are highlighted
in yellow identifying P1 and P2 points and their normals N1 and N2. Additional rays sent to risers
based on the normals are identifying P3 and P4 points. In pink L1 and L2 lines are presented, which
are identified based on 2 points detected for each riser. The shortest distances to P3 and P4, and P5

and P6 points are shown in dark and light green, respectively.
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3.5. Spatial Indexing

A spatial index is a data structure that enables the quick execution of spatial queries.
This technique is commonly used in spatial databases, but it is required too for crowd
simulations [32]. The main goal of using spatial indexing is to bypass a sequential scan of
all objects (e.g., border edges and agents) and only check objects in pedestrian’s proximity
to calculate the impact. There are many types of indexing, which support using partitioned
search trees such as quad-trees, k-d trees, radix trees, R-trees, and so on. For pedestrian
dynamics, searching radiuses are consistent which can indicate that uniform size parti-
tioning should be more performant. As a result, we utilise grid-based spatial indexing
(https://github.com/bartofzo/SuperGrid2D, accessed on 29 July 2021) allowing us to
optimise spatial queries such as finding the closest point on a line segment and identifying
agents within a searching radius. The optimal grid size should be two times the size of a
searching radius to inspect objects only from a maximum of four cells (Figure 9). At the
same time, we can perform queries such as the visibility of the next route point, check if an
agent is within a space (i.e., using point in polygon techniques) and check intersections
between lines. Objects can also be divided into static (e.g., boundary edges) and dynamic
(e.g., pedestrians’ position), enabling quicker execution of queries related to static objects
due to using arrays instead of lists. If objects are organised in 3D space, octrees can be used
(https://github.com/Nition/UnityOctree, accessed on 29 July 2021). For example, the user
can decide to use an octree to keep the positions of pedestrians, while spaces are still stored
in 2D.
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The most known pedestrian models are based on social forces [33,34] which can recre-
ate certain phenomena such as queue formation and arching, shock waves and bottleneck
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Based on this social force model we need to identify several parameters that we
will use during simulations. Thus, parameters that correspond to the largest searching
radius for other pedestrians in pedestrian’s proximity, maximum distance to obstacles
that have a meaningful impact on pedestrians, and minimal width between obstacles that
pedestrians can go through. For the first two parameters, we consider Equation (2) which
checks whether the position would change significantly (i.e., we use the significance of
95%) within one frame if all pedestrians and obstacles or a limited number of them are
considered based on specific searching radiuses. For a delta time of 0.05 s, we identified
that we should use 1.25 and 1.05 m to search for pedestrians and obstacles, respectively.
To identify the minimal width that pedestrians can pass through, we used two objects
and change the gap between them identifying a distance of 1.1 m that is possible. This
value is used to create the second navigation mesh that is considered as a network to find
a path between points and make sure that an agent will not get stuck somewhere. For
evacuation purposes, this aspect was investigated and a social force model for narrow exits
was proposed [37].

Abs(posDev.all − posDev.limited) > c.dTime× 0 : 025 (2)

Regarding stairs, an equation capturing the relationship between the walking speed
on stairs and the stairs’ characteristics was suggested [38]. Equation (3) takes into account
tread-depth T and riser-height R, in centimetres, to calculate the vertical speed of pedestri-
ans

→
v v in meters per minute. The horizontal speed can be simply determined by dividing

the vertical speed by the tangent between riser and tread. In this way, the impact of walking
on stairs is determined and applied to pedestrians’ horizontal speed.

→
v v = 0.253R− 0.305T + 23.57 (3)

To perform a pedestrian simulation all discussed aspects should be integrated. Algo-
rithm 2 shows all the steps performed in a fixed time frame for all pedestrians in the Unity
game engine. We present the algorithm as having 8 components for easier explanation. The
first part is to calculate the forces that impact the speed of pedestrians, where pedestrians
and border edges from other connected surfaces are considered if a pedestrian is nearby
those surfaces. After that, the impact of waking on stairs is calculated. The identification
of a new pedestrian position is determined. Based on the previous and next position, we
check if a connecting edge is intersected to change the pedestrian’s surface. If walking on a
sloped surface, the vertical position is updated. The identification of a visible goal ahead
on the path is determined, and direction towards it is calculated. For the path following
we use the approach suggested by Reynolds [39]. Last but not least, the next direction of a
pedestrian is determined and all parameters are updated for the next iteration.

SelfDrivenForce(ped): calculating the self-driven force of a pedestrian.
PedImpact(ped, pedestrians): calculating the impact of other pedestrians on the

pedestrian under consideration.
ObsImpact(ped, edges): calculating the impact of an obstacle on a pedestrian.
LimitSpeed(velDev, maxSpeed): limiting pedestrian’s velocity to its maximum speed.
StairImpact(cell): calculating stair’s impact.
IntersectConnectingEdge(sur f Id, pedNewPos): check if a connecting edge is inter-

sected to change a surface.
GetSurface(sur f Id, edge): changing surface of a pedestrian.
GetCell(sur f , ped.pos) : identifying a cell where a pedestrian is positioned, and its

properties such as elevation and slope.
GetNextGoal(pos, goal): identifying the next visible goal to move towards.
GetDirection(goal, pos): get normalised direction for a pedestrian.
UpdateParameters(pedestrians) : updating pedestrian positions in the grid for a

new iteration.



Buildings 2021, 11, 445 12 of 17

Algorithm 2 Pedestrian Simulation

Input: Pedestrians, surfaces, gridPed, gridBorders, constants (c)
Output: Update pedestrian parameters
for each ped in pedestrians loop
Calculate impact force
→
f sd = SelfDrivenForce(ped)
→
f ij = PedImpact(ped, PedestriansNearby(ped.pos, gridPed, c.pedRadius))
→
f io = ObsImpact(ped, EdgesNearby(ped.pos, gridBorders, c.obsRadius))
→
f i =

→
f sd +

→
f ij +

→
f o

velDev = ped.velDev +
→
f i ∗ c.dTime

→
v h = LimitingSpeed(velDev, ped.maxSpeed)
Stairs surface impact
if ped.sur f .type == sloped then
if ped.cell.type == stair then
→
v h∗ = StairImpact(ped.cell)
Identify new pedestrian horizontal position
posDev =

→
v h ∗ c.dTime

pedNewPos.x = ped.pos.x + posDev.x
pedNewPos.y = ped.pos.y + posDev.y
Update pedestrian surface
connectingEdge = IntersectConnectingEdge(ped, pedNewPos)
if connectingEdge ! = null then
ped.sur f = GetSurface(ped.sur f Id, connectingEdge)
ped.pos = pedNewPos
sur f = sur f aces[ped.sur f Id]
Update pedestrian vertical position
if ped.sur f .type == sloped then
ped.cell = GetCell(sur f , ped.pos)
ped.pos.z = cell.z
Follow path
ped.goal = GetNextGoal(ped.pos, ped.goal)
ped.dir = GetDirection(ped.goal, ped.pos)
end loop
Update pedestrians’ positions
UpdateParameters(gridPed, pedestrians)

4. Experiments

As we mentioned earlier, we would like to perform some further analysis over the
extracted border edges assessing their accuracy. Additionally, we will use the surface
subdivision algorithm to identify flat and sloped surfaces as well as other features that we
have explored so far.

To test the accuracy of the extracted border edges the closest distance to walls is
determined. This process is not straightforward, as their no way to identify the closest
distance to an object without casting many rays. Instead of doing this a simplified way is
proposed. Thus, the closest point P1 from a pedestrian to the identified border edges is
determined. A ray is after that cast from the pedestrian towards the closest point hitting a
wall. The ray casting result is a point P2 and a normal of the surface that is hit. Considering
the perpendicular direction to that normal, which should match with the wall’s surface in
case of being flat, a new point P3 with 1cm offset is created and used as a direction for a
new ray casting. The idea is to find a new point on the wall’s surface with the same normal
in order to create a line. Considering the distance to the line the closest actual point P4 is
determined, which is also confirmed by casting an additional ray towards it (Figure 10). In
case of a mismatch, the solution is not taken into account.
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Figure 10. Finding the actual distance to a wall.

After setting up the method for the identification of the actual distance to a wall.
A simulation with 1000 agents is performed in an environment of 100 × 100 m. The
setup is presented in Figure 11, where all pedestrians are walking towards one goal and
simultaneously distances to walls are being calculated.
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Figure 11. Assessing the accuracy of the identified border edges.

To assess the accuracy of border edges we also change the voxel size that is required
to create a navigable mesh, which we explained in Section 3.1. The tested range is between
1 and 5 cm for the voxel size, in which case 1 cm is the minimum possible value that the
system allows us to set up. For the pedestrian’s radius, we use 20 cm. Figure 12 shows an
average difference between the actual distance to walls and one that we can calculate from
the identified border edges enlarged by the pedestrian’s radius. As expected with the use
of smaller voxel sizes, we have more accurate border edges. However, the difference takes
always a positive value, which means that the navigation mesh and border edges that we
identified are shifted outbound for around 1/2 voxel size. Moreover, the average distance
difference increases by using larger voxels. Therefore, this should be considered in the
calculation of the distance to obstacles. Another parameter investigated is the number of
border edges that we obtain, as expected, it increases with smaller voxel sizes. Therefore,
the voxel size used for the generation of navigation mesh is 2 cm, as it gives a reasonable
balance between accuracy and the number of edges.
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As a case study area, we use two 3D models representing complex built environments
located at the UNSW campus (Figure 13). To start a simulation the first step is to extract
space boundaries and subdivide the built environment into spaces. Table 1 shows some
of the characteristics identified for each building. Thus, we measured the time needed to
generate navigation mesh and extract the boundaries for each space. We can conclude
that both times are very small to run a simulation. In terms of spaces, flat spaces were
fewer compared to spaces with sloped surfaces. Boundaries were reduced significantly
after merging the ones that belong to the same wall surface and being inline. Regarding
stairs, we identified all stairs correctly. The slope varied for each stair within the buildings.
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After extracting all necessary spatial information, we can run a simulation (Figure 14).
We can successfully run a simulation of 500 agents considering 30 frames per second, which
is enough to perceive the simulation as continuous. The simulation is run on a single thread
using a computer with Intel Core i7-6600 CPU @ 2.6 GHz. Simulations in 2D and 3D can be
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seen as a short video on the internet (https://www.youtube.com/watch?v=_exBdySKwYI,
accessed on 29 July 2021).

Table 1. Characteristics determined for each building.

Building Generation of
Navigation Mesh (s)

Extraction of
Surfaces (s)

Flat/Sloped
Surfaces (No)

Border Edges
(No)

Merged Border
Edges (No) Stairs Slope (◦)

1 42 62 43/78 10,912 6491 31.5 ± 0.53
2 21 19 17/60 5736 4715 34.1 ± 1.47
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Figure 14. Pedestrians randomly assigned to different surfaces.

5. Conclusions and Future Work

In this paper, we examine the use of navigation mesh provided by the Unity game en-
gine for crowd dynamics. The investigated approach goes through several steps including
the creation of a navigation mesh, space subdivision, border edges extraction, heightmap
identification, stairs classification and parametrisation, spatial indexing and pedestrian
simulation. The approach allows to instantly use 3D models to run pedestrian simulations
without the need for any manual work related to geometries and semantics. Additional
advantages of the proposed approach are the accurate capturing of people walkable areas
as well as the time needed for its environmental abstraction to run a simulation. A social
force model is utilised to test the approach and simulate the interactions between pedes-
trians and an environment. As the solution is able to extract all the required geometry
information, it can be used in any crowd simulator.

Our experiments clearly reveal that the abstraction of needed spatial information
from 3D models is very quick. This indicates that the process to bring a 3D model into
a simulator can be fully automated and reduce the pre-processing time significantly. As
the initially extracted border edges are segmented, we merge those that are inline and
belonging to the same object’s surface. In this way, the solution is adjusted to the need of
the social force model and obstacles avoidance. By reducing the number of edges we can
guarantee that the time needed to calculate repulsive forces should be smaller than using
the initial navigation mesh. Additionally, our approach does not require keeping triangles
representing the navigation mesh due to the subdivision that we perform.

Few aspects should be further investigated to fully utilise the proposed solution such
as parametrisation of more complex types of stairs as well as different space subdivisions
to respond to a wide range of navigation requirements.
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