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Abstract: The aim of this research is to evaluate the effectiveness of a seismic retrofit technique that 
involves the introduction of energy dissipation devices properly connected to an existing structure 
through a system of cables and levers, which are employed to amplify total or inter-story drift at 
device end. One of the main topics related to the introduction of energy dissipation devices, lies in 
the choice of their optimal setting within the structure to maximize the effectiveness without 
producing functionality limitations. The achievement of these objectives is, therefore, linked, 
regardless of the type adopted, to the amount of energy dissipated in each cycle, directly 
proportional to the displacement magnitude to which the device is subject. Many configurations 
proposed in the literature and currently adopted in professional practice provide additional 
dissipation systems variously connected to braces installed inside the structural frame and, 
therefore, able to exploit the inter-story drift produced by seismic input. The proposed system 
exploits top displacements of the structure with respect to the foundation level, transferred to the 
device through a system of cables properly configured and amplified with leverage. This paper 
represents the first step of the research, in which simple single degree of freedom (SDOF) or two 
degrees of freedom (2-DOF) models are taken into account to evaluate the effects of the introduction 
of the proposed system in terms of reducing the seismic demand on the structure, proceeding to a 
parametric analysis to obtain initial indications for the design of the system in relation to the 
geometric and inertial characteristics of the original structure. 
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1. Introduction 

The introduction of seismic energy dissipation devices within existing structures represents an 
important seismic protection system widely adopted for framed structures. The deformability of 
these structures generally allows them, in fact, to exploit inter-story drifts to activate the devices and 
achieve consistent levels of dissipation of input energy. Many configurations and geometrical 
arrangements [1–3] have been proposed in order to optimize the devices’ location, generally applied 
in series to a bracing placed inside the frame mesh and able to transfer to the device a fraction of the 
inter-story drift, depending on their geometric configuration. Therefore, it is clear that the 
deformability of the structure is an essential requirement for the effectiveness of dissipation systems. 
For situations where structures are not sufficiently flexible, interesting solutions have been developed 
by several authors, including a cable system solution (damped cable system, DCS), initially proposed 
by the research team of the University of Buffalo [4,5], and further developed [6–9] also as part of a 
research project funded by the European Commission, named SPIDER (strand prestressing for 
internal damping of earthquake response). The system consists of a pre-stressed high-grade steel 
cable, composed of greased and sheathed unbonded strands in standard production, whose lower 
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end is connected to a fluid-viscous damper fixed to the foundation of the building. The cable has 
sliding connections at the level of the decks, where it undergoes deviations until it connects with the 
roof. This cable arrangement allows the total displacement measured at the top of the structure to be 
transmitted to the dissipation the device, increasing the building’s dissipative capacity and reducing 
the number of devices required. At the same time, the deviation of the cable in correspondence of 
each deck allows a reaction that balances seismic lateral loads to be transferred to it. Likewise, 
dissipation systems designed to increase displacements at the dissipation system end have been 
proposed by various authors [10–12] and generally consist of levers or pulley systems able to amplify 
inter-story displacement. The system proposed in this paper uses a system of steel cables capable to 
transmit a portion of the total roof displacement of the building to the foundation where, by means 
of a system of displacement amplification, a resulting amplified displacement is transferred to the 
damper. Considering a simple shear frame, the proposed system is configured according to the 
following scheme in Figure 1. The cable used (6) is fixed with clamps (7) at the upper ends of the 
floor; the cable, therefore, is arranged in an X configuration along the diagonals of the frame and 
diverted at the base of the columns by pulleys (4). The cable then runs horizontally along the base of 
the frame; in this area it is connected to the end of a lever arm (1), to the opposite end of which the 
dissipation device is connected (2). The particular configuration of the cable, which runs along both 
diagonals of the building’s elevation, continuing without interruption at foundation level, also allows 
the same to be always active in both directions of seismic loads. The portion of the cable placed on 
the diagonal in tension (blue wire), in fact, exerts a recall action on the cable portion placed along the 
compressed diagonal (red wire), not allowing deflection. The configuration described above, is 
suitable for use on existing structures, without the need for demolition of the infills and expensive 
restoration of finishes or systems. 

  
Figure 1. Conceptual model of simple 1-floor frame structure equipped with proposed system: 1 lever 
arm; 2 viscous damper (VD); 3 contrast; 4 pulleys; 5 pin; 6 wire; 7 clamp; 8 foundation. 

The use of a displacement amplification system like that described, therefore, allows the usual 
limitations in the use of additional dissipation systems usually inserted inside the structural frames 
to be overcome, as it is effective even for limited displacements, thanks to the introduction of 
leverage, displacements are transmitted amplified to the device, increasing the amount of dissipated 
energy. 

2. Mechanical Model 

For the evaluation of the behavior of a structure equipped with the proposed cable dissipation 
system, a simple two degrees of freedom (DOF) system is considered, represented in the following 
Figure 2, which can be representative of a single-story frame in which whole mass is concentrated in 
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the beam. The bare structure has its own internal damping, assumed to be ξ = 0.05, and inertial 
characteristics, such as mass m2 and natural frequency ω2, from which the value of the dissipation 
coefficient c2 is then obtained. The model thus described is equipped with an additional damping 
system, with a linear viscous dissipation device, described by the following general equation: 

Fd = c u ̇ = α c u ̇  (1) 

with u ̇  velocity at the device end and Fd device damping force. 
The damping coefficient is then expressed as a function of the internal damping of the structure 

through the parameter α . With reference to the stiffness characteristics of the system, the structure 
stiffness k2 and the stiffness of the elements constituting the additional dissipation system, i.e., the 
cable and the leverages, k1, are defined; actually, as shown below, the main stiffness component is 
represented by the cable extensional stiffness. As said, from the examination of the Figure 1 results 
that, in both directions of displacement, the part of the cable connecting the clamp placed in the 
direction of displacement with the lever arm is in tension (blue wire), while the remaining ones are 
not stressed (red wire) if friction in pulleys is neglected. In the evaluation of the extensional stiffness, 
therefore, it is necessary to refer to a length of the cable equal to half of the whole length. At this 
research stage the component related to the real viscous device elastic stiffness has been neglected, 
considering it is rigid and neglecting friction in pulleys, pin etc. Added stiffness k1 has, therefore, 
been expressed as a function of the stiffness of the bare structure through the coefficient α : 

k = α k  (2) 

Finally, the amplification ratio produced by the leverage is defined through: 

α =
l
l

 (3) 

 
Figure 2. Mechanical model of a two degrees of freedom (2-DOF) structure equipped with the 
proposed system. 

The equations of motion have been obtained by following the Lagrangian approach. The total 
kinetic energy of the system is given by: 

T =
1
2

m(u̇ (t) + ẋ (t))  (4) 

where x (t) is the time law of the base input. The total potential energy of the system is given by: 

U =
1
2

k u (t) +
1
2

k (u (t)cos(t) − u (t))  (5) 

The Lagrangian is then: 
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L = T − U (6) 

The equation of motion are finally obtained as: 

d
dt

∂L
∂q̇

−
∂L
∂q

= Q ,  (i, 1,2) (7) 

where q  are the generalized coordinates (i.e., u  and u ) while Q ,  are the generalized non-
conservative forces. 

The equation of motion finally reads: 

mü (t) + k u (t) + cos θ k u (t) cos θ − u (t) + c u̇ (t) = −m ẍ (t) (8) 

In Equation (8) the term cosθ appears necessary to consider the real configuration of the cable, 
placed diagonally. The angle θ represents the inclination of the frame diagonal, depending on the 
length ratios between the columns and the beam. As it can easily guess, the smaller the angle with 
respect to the horizontal, formed by the diagonal, the greater will be the component of the total 
horizontal displacement of the structure transferred to the cable. The above is a simplification, which 
is acceptable in the case of small displacements with respect to the structural dimensions and 
involving infinitesimal variations of the angle θ during the motion of the system. 

In order to consider the effect of the deformability of the components of the system (cable, 
leverage, etc.), in addition to the displacement of the structure u2, a further degree of freedom, u1, 
was introduced, which represents the displacement of the viscous device, through which it can 
differentiate the displacement to which the leverage is subject, from such transferred by structure to 
the cable. In the case of cable and leverage, both with infinite stiffness, extensional for the first one 
and flexural for the second one, the two displacements would be identical. The introduction of the u2 
displacement, moreover, allows to evaluate the effect of the cable stiffness on the system 
performances. 

Therefore, Equation (8) contains the two unknown displacements, u1 and u2, for the 
determination of which it is necessary to introduce the following relation, that describes precisely the 
effect of the deformability of the cable placed in series to the dissipation device and that goes to 
constitute the second equation of the motion of the system: 

α c u̇ (t) − k (u (t) cos θ − u (t)) = 0 (9) 

Replacing Equations (1),(2),(8) and (9) we obtain the equations of the motion as a function of the 
parameters α , α , α : 

mü (t) + k u (t) + cos θ α k u (t) cos θ − u (t) + c u̇ (t) = −m ẍ (t)
α α c u̇ (t) − α k (u (t) cos θ − u (t)) = 0

 (10) 

Proceeding as follows: 

ω =
k
m

 (11) 

ξ =
c

2 m ω
 (12) 

The system Equation (10) turns into: 

ü (t) + ω u (t) + cos θ α ω u (t) cos θ − u (t) + 2ξω u̇ (t) = −ẍ (t)

2α α ⋅ ξ ⋅ ω ⋅ u̇ (t) − α ω u (t) cos θ − u (t) = 0
 (13) 

Through the system of differential Equation (13), the dynamics of the system are completely 
defined. In particular: 

ω =
k
m

  (14) 
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ω =
k (α cos θ + 1)

m
 (15) 

ζ =
c (1 + α α )

2m ω
 (16) 

ω = ω 1 − ζ  (17) 

The natural frequency of the bare structure is represented by Equation (14); Equation (15) 
represents the frequency of the structure equipped with the system without damping; Equation (16) 
is the value assumed by the damping ratio considering both the structure internal damping, c2 and 
the additional damping produced by the dissipation device, c1. Finally, Equation (17) provides the 
value of the frequency of the damped system. The ratio between the natural frequencies of the bare 
system and the damped system leads to the following relationship: 

ω
ω

= (α cos θ + 1)(1 − ζ ) (3) 

from which it can be deduced that the introduction of the system leads on the one hand to an increase 
in the natural frequency of the structure proportional to the coefficients 훼  and on the other hand to 
a reduction due to the effect of dissipation by means of Equation (9). The result of the two described 
effects will define the resulting dynamic response of the structure. Generally, for the range of possible 
values for the α , α  and α  coefficients the resulting effect produces a stiffening of the structure 
(for example for a structure with ω = 20 and values of α = 0.5, α = 2, α = 5, increases in the 
natural frequency of the system of 15% are obtained). 

Assuming an harmonic base input in the form: 

ẍ (t) = PsinΩt (19) 

where P is the amplitude or maximum value of the force and Ω its forcing frequency 
The DE (differential equation) system Equation (13) turn into: 

ü (t) + ω u (t) + cos θ α ω u (t) cos θ − u (t) + 2ξω u̇ (t) = −PsinΩt

2α α ξω u̇ (t) − α ω u (t) cos θ − u (t) = 0
 (20) 

and can be solved in closed form or numerically. In this case was performed a numerical integration, 
via Newmark-beta method [14], setting β = 2 and γ = 3/2 (backward finite differences method). For 
the purposes of the following analyses, a simple 2-DOF structure is taken in account, as reference, 
consisting of a 2D shear frame with 10,000 kg total mass and 8000 kN/m flexural stiffness of the 
columns. Columns have a 4 m height (H), while the beam is 5 m long (B), the configuration is such 
that the diagonal cable forms an angle with respect to the horizontal (in not deformed configuration) 
equal to: 

θ = cot = 0.675 = 38.69° (21) 

Considering the great importance on the motion of the system, of the frequency content of the 
forcer with respect to the natural frequency of the system, it seems appropriate to consider most 
severe conditions, i.e., the resonance ones: 

Ω = ω  (22) 

These conditions, in fact, maximize effects in terms of acceleration and displacement on the 
structure. The following Figure 3 shows the results of an analysis conducted on the bare structure 
(BS—bare structure) and on the same structure equipped with the dissipation system described (DS–
damped structure), adopting for the parameters αM, αk, αd, respectively, the values 10, 1, 2 (ω =
23.3rad). As it is clearly visible, considerable reductions are obtained both in the relative acceleration 
with respect to the base and in the relative displacement. The reduction of actions in terms of 
acceleration and displacement can be quantified by parameters γd and γa, defined gain factors, which 
quantify efficiency of the system and defined as follows: 
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γ =
u (t) − u (t)

u (t)  

(23) 

γ =
a (t) − a (t)

a (t)  

with u (t) , maximum value of bare structure displacement and u (t)  maximum value of 
damped system displacement and a (t) , a (t)  maximum value of damped system 
displacement, respectively, for the bare system and damped system. In the configuration shown, γd 

and γa assume values of 0.575 and 0.376, respectively. 

  
(a) (b) 

Figure 3. Relative acceleration (a) and displacement (b) respectively of bare single degree of freedom 
(SDOF) structure (BS—light blue line) and viscous damped SDOF Structure (DS—deep blue line) 
subjected to sinusoidal force. 

In the case of a Multiple degree of freedom (MDOF) system, the equations system, in matricial 
form, turn into: 

퐌ü + 퐂u̇ + 퐊u = −퐌ɩü    (24) 

with ü  ground acceleration and ɩ influence vector. 
Stiffness and damping matrix assume the following forms: 

K =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ k + k ∙ cosθ (α ∙ cosθ + 1) −k −(k ∙ α )

−k k + k ∙ cosθ (α ∙ cosθ + 1) −k
0 −k k + k ∙ cosθ (α ∙ cosθ + 1)

0 0 0
−(k ∙ α ) 0 0

−k −(k ∙ α ) 0

0 0 ⋯ ⋯ 0
0 0 ⋯ ⋯ 0
0 0 ⋯ ⋯ 0

⋯ ⋯ ⋯
0 0 0
⋯ ⋯ ⋯

⋯ ⋯ ⋯
−k k + k ∙ cosθ (α ∙ cosθ + 1) −k
⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ 0
−(k ∙ α ) 0 ⋯ ⋯ 0

⋯ ⋯ ⋯ ⋯ 0
0 0 0
0 0 0

0 ⋯ ⋯
0 ⋯ ⋯

⋯ ⋯ −k k ∙ cosθ (α ∙ cosθ + 1) 0
⋯ ⋯ ⋯ 0 α ∙k ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(25) 

 

C =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
c + c −c

−c c + c
0 0

0 ⋯ 0
−c ⋯ 0

c ∙ α ∙ α ⋯ 0

0 0 0
0 0 0
0 0 0

⋯ ⋯
0 0

⋯ ⋯ ⋯
0 ⋯ −c

⋯ ⋯ ⋯
c + c −c 0

⋯ ⋯
0 0

⋯ ⋯ ⋯
0 ⋯ 0

⋯ ⋯ ⋯
0 0 c ∙ α ∙ α ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

(26) 

with symbols meaning reported in the following Figure 4. 
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Figure 4. Mechanical model of a MDOF structure equipped with the proposed system. 

The mechanical model reported in Figure 4 is related to a real n-story shear-type structure, with 
cables linking each story with foundation level (see Figure 5 for the case of a 2-story structure). 

 
Figure 5. Conceptual model of a 2-story frame structure equipped with proposed system. 

3. Results 

3.1. Parametric Analysis 

The previous introduction of parameters α  and α  allows a parametric analysis to be carried 
out in order to investigate the behaviour of the system when the damper properties (in terms of 
damping coefficient) and the stiffness of the cable (in relation to the stiffness of the bare structure) 
vary. In the case of infinite stiffness of the cable (k ≃ ∞ ⟶ α ≃ ∞), the displacement of the damper 
terminal would be exclusively a function of the amplification ratio produced by the leverage (α ) 
and of the angle formed by the cable placed diagonally to the frame, with the horizontal. From (20) 
we can see that with angles close to 0° (cos θ  ≃ 1), the horizontal displacement of the frame is 
transferred completely to the cable and then amplified to the damper. This configuration is difficult 
to achieve, with the cable close to the structure and without connections to external rigid elements, 
because it would require a very large structure if compared to their height. In the same way, the 
configurations that provide for angles close to 90° (cos θ ≃ 0) significantly reduce the rate of 
displacement transferred to the cable, which instead tends to rotate around the base pulley. The most 
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recurrent configurations are those that see comparable dimensions of the columns height and of the 
beam length and, therefore, angles θ ≃ 45° and efficiency in the transfer of the horizontal 
displacement close to 70%. On the other hand, considering the opposite condition, namely infinitely 
flexible cable (k ≃ 0 ⟶ α ≃ 0) from (20) we see that most of the displacement of the structure does 
not reach the viscous damper because of high cable deformations, so high to completely absorb the 
displacement of the structure. This situation is similar to the one of the bare structure, without the 
dissipation system. 

Intermediate values of cable stiffness (0.1 < α < 1 ), involve the development of the cable 
elongation that can be considered as a “loss” influencing the efficiency of the system and moreover 
the dynamics of the structure equipped with it, through Equation (15). 

The variation of the damping coefficient of the viscous damper, expressed as a function of the 
internal damping of the structure, produces even more consistent effects as its value increases, 
because of the fact that maintaining the hypothesis of the linear viscous damper, the force opposed 
by the device is a linear function, exclusively, of the difference in speed between its two terminals. 

As noted in Equation (17), the value assumed by the damping coefficient of the viscous damper 
also has effects on the dynamic behavior of the structure, since it tends to make it more flexible as the 
value of the damping coefficient increases. The adoption of viscous devices with very low damping 
coefficient, while allowing high displacements, produces modest values of the energy dissipated for 
each cycle, although the adoption of leverage is able to amplify by α  the value of the component of 
input energy dissipated by the system. 

Finally, the value of α  directly affects the dissipation properties of the system; as already 
noted, in fact, as the amplification ratio of the leverage increases, the displacements of the viscous 
damper are amplified (net of losses due to the cable deformability and the geometric configuration 
of the system, through the angle θ) as well as the velocity of the device terminal connected to the 
cable. It is important to underline that, in this phase, for the sake of simplicity, the contributions 
related to leverage and the dissipation device deformability and friction present between leverage 
connection and the pulleys have been neglected. Another phenomenon to be considered is the 
contribution to the cable deformability of thermal expansion or constant stress deformation. The 
presence, indeed, of an inflected cable is able to produce the loss of a large part of the displacement 
of the structure, which will be used to stretch the same before being transferred to the viscous device 
terminal. This deficiency, however, is largely controllable, providing the cable with a given pre-
tension and combining the viscous damper device with a fuse element able to block movements up 
to a threshold tension in the cable and to not produce displacements in the damper. Alternatively, an 
active tensioning system could be adopted, capable of verifying, at fixed intervals of time, the 
tensioning state in the cable and provide for any tensioning, when necessary. For this reason, the 
present study maintains the simplifying hypothesis of a cable not subject to deflection. 

In the light of the above considerations, the results of a parametric analysis are illustrated, in 
which, with reference to the benchmark structure described above, the dissipation system under 
study is introduced, by varying the parameters α , α  and α  within a range of plausible values in 
relation to the dimensional limits of the cable and dissipation devices currently available on the 
market, with the structure subject to a sinusoidal force, with frequency Ω equal to the resonance 
frequency of the structure ω  and monitoring the variation of accelerations and maximum 
displacements in terms of gain factors, γd and γa, defined in Equation(23). 

From the examination of the gain maps reported in Figure 6, it can be seen that as the stiffness 
of the cable increases, the efficiency of the damping system increases (due to the reduction of the 
extensional deformation partly absorbing structure displacements) for system with high 훼  values. 
For a low α  values system, the gain factors are not sensitive to the increase in cable stiffness, except 
for very low α  values. The increase in the damping coefficient of the dissipation device produces, 
for low α values, a general increase in the efficiency of the system (with a reduction in 
displacements). Increasing the α  values (>10), the gain factor γd is progressively less sensitive to α  
increase.  
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α = 5;  

  

α = 10;  

  

α = 15; 
Figure 6. Gain maps in terms of γd (left) and γa (right) for various α  values. 

This circumstance derives from the composition of two opposite tendencies to which the 
structure is subject: as the damping constant of the dissipation system increases, the force exerted by 
the device increases, according to the provisions of the constitutive law exemplified in Equation (1), 
but at the same time the displacements u1 at device end are reduced; on the contrary, as the force 
exerted by the device decreases by α  reduction, the displacements u1 increases (Figure 7). The 
optimal point is determined by the combination of Fd and displacement able to maximize the energy 
dissipated in each cycle. 
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Figure 7. Viscous dissipative loops for sinusoidal force in viscous damper with α = 0.5 and α = 5 

The same principle is followed by the value assumed by the gain factors when varying α ; the 
increase of the amplification coefficient (α ), in fact, produces as an effect a proportional increase of 
the speed at the terminal of the damper and therefore, substantially, produces an increase of the forces 
produced by the same; the effect of the increase of the displacements produced by the leverage is, 
therefore, beyond a given value, compensated and exceeded by the increase of the forces inside the 
device connected because the increase of velocity, which tend to make the structure stiffer. 

The α  increase effect is clearly visible from Equation (15), from which it is evident that the 
structure undergoes an increase of the natural frequency and, therefore, of the stiffness. 

From the examination of the graph of Figure 8, moreover, it can be deduced that the gain factor 
depends in a determining way on the dynamic characteristics of the structure and of the input force. 
The efficiency of the system is higher on stiffer structures, with an increasing efficiency as the natural 
frequency of the structure increases. The graph shows the mappings of the gain factor γd with the 
variation of the parameters α  and α , for a α = 5, for two different resonance frequencies of the 
structure, respectively 8 and 20, from which the described tendency is clearly visible. The gain factor 
γa presents similar behaviour. In any case, it should be noted that despite the system’s improved 
efficiency, as the natural frequency of the system increases, the gain factors remain fairly stable 
(although increasing as ω increases) and this is a positive condition, which makes the system 
applicable to a wide range of structures. It should be noted, however, that as the natural frequency 
of the system increases, i.e., the stiffness of the structure, the cable system becomes increasingly 
expensive and difficult to implement, because of the need to increase the cable diameters and, 
therefore, the size of the diversion systems (pulleys) to maintain cable axial stiffness comparable to 
the bending stiffness of the bare structure. 

 
Figure 8. Gain maps in terms of γd for various ω values. 

-0.1 -0.05 0 0.05 0.1

Fo
rc

e 
[k

N
]

displacement [m]

αd = 5 αd = 0.5αd = 5 αd = 0.5



Buildings 2020, 10, 19 11 of 18 

3.2. Numerical Examples 

So far, only sinusoidal excitation with frequencies coinciding with the resonance frequency of 
the structure equipped with the damping system have been taken into account. In order to complete 
the theoretical analysis on the behavior of the system, the results of the time histories analysis 
conducted on the benchmark structure equipped with the damping system described in the previous 
paragraphs are illustrated below, with the following values of the coefficients α = 2; α = 2; α =
10 , with a input force consisting of a series of natural NTC (New Italian Technical Standards for 
constructions) spectum-compatible accelerograms [13], taken from a set of accelerograms extracted 
from the European Strong Motion Database (ESM), [15] through the REXEL software [16], for the 
L’Aquila site, adopting a type B soil category, in the range of periods between 0.15–2 s. 

The first record is related to the seismic event named in ESM “Northwestern Balkan Peninsula” 
that occurred 15 April 1979 at 6:19:41 (UTC) in Montenegro with a thrust fault mechanism and a 6.9 
Mw. The recording station was 16 kilometres from epicenter and recorded an event with duration of 
23.91 s and peak ground acceleration of 3.68 m/s2. The main frequencies content ranged from 1.5–6 
Hz. The second was recorded from a station 7 km far from epicenter of the event that occurred 17 
June 2000 in South Iceland, with 6.5 Mw and a strike slip fault mechanism. The record was 36.23 s 
long with a peak ground acceleration of 6.13 m/s2. The main frequencies content ranged from 2–10 
Hz. 

From the examination of the results obtained, shown in Figure 9, with the application of natural 
forcing derived from the accelerograms recorded during the two seismic events indicated above, it 
emerges that the system allows consistent levels of dissipation to be reached, reducing the relative 
acceleration of the structure with respect to the base and the displacements of the same, in relation to 
the accelerations and displacements obtained for the bare structure. Of course, the extent of the 
reduction is closely related to the dynamic characteristics of the structure in relation to the dominant 
frequencies’ content of the seismic input. 

 

 

Montenegro earthquake (1979) 
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South Iceland earthquake (2000) 
Figure 9. Roof displacement, acceleration and energy functions (input energy and dissipated energy 
in viscous damper device) obtained from time history analysis for bare SDOF structure (BS) and 
damped SDOF structure (DS), for various Italian NTC 2018 compatible spectra unscaled records. 

4. Discussion 

The results obtained both in the case of harmonic forces and in the case of natural excitation 
recorded in real seismic events confirm the good performance of the system in reducing the inter-
story drifts and accelerations, fundamental features that determine stresses on the structural 
members, decrease or avoid damage also to the non-structural elements and improve comfort 
conditions inside the building during the seismic event. The main objective in the development of 
the described system is to be able to carry out a seismic retrofit of a building, implementing 
interventions exclusively from the outside, without proceeding to demolition of non-structural 
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Although variations to the cable path are possible, it is certainly easier to apply it on structures 
generally without such protrusions, but only windowed walls, such as schools or industrial 
buildings. In view of the importance that seismic vulnerability of existing school buildings assumes 
in many areas of the world and in particular in Italy, where most of the existing school heritage is 
characterized by seismic performance below the standards required by current regulations, we 
proceed in the following to the evaluation of the specific characteristics of some of the most common 
structural types in the school heritage in order to assess in advance and in simplified form the 
applicability and effectiveness of the proposed system. 

The knowledge that authors have of the school building heritage of one of the Italian regions 
facing the greatest seismic hazard, Abruzzo, resulting from a collaboration with the regional civil 
protection officer, allows us to focus attention on some types considered most vulnerable, namely, 
buildings designed for gravity loads only in areas later identified with non-negligible seismic hazard. 
These buildings generally do not have the structural design and seismic details to allow a satisfactory 
performance during seismic events. These structures are generally made up of one-direction strong 

-1000

0

1000

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

ag
 [c

m
/s

2 ]

time [s]

BS DS

0

2

4

6

8

10

12

14

16

18

0 2.5 5 7.5 10 12.5 15 17.5 20

En
er

gy
 x

10
-3

 [k
N

m
]

time [s]

Input Energy

Dissipated Energy
in VD

-200

-100

0

100

200

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

9.
0

9.
5

10
.0di

sp
l. 

[m
m

]

time [s]



Buildings 2020, 10, 19 13 of 18 

beams-weak columns frames, connected only by slabs in the transversal direction, with frequent 
pilotis floor, strip windows on the upper floors (Figure 10) and strong in plan and elevation structural 
irregularities. In the Abruzzo region, a large portion of coastal provinces of Teramo and Pescara were 
classified as “seismic areas” only in the last 20 years and therefore the majority of reinforced concrete 
school, built mainly in sixties and seventies, fall within this typology [17]. The situation described for 
Abruzzo can be extended to the whole country. 

  

(a)Pilotis at ground floor and strip windows (b)Very Strong beams–weak columns frame 

 

 

(c)Squat column (d)Mono-directional frame 

Figure 10. General views of some existing school buildings in the Abruzzo region designed for gravity 
loads only. 

In the following we take into account a early standard designed RC school building in Italy, 
which was also assumed as a benchmark structure for a research project financed by the Italian 
Department of Civil Protection [18,19], to check the applicability of the proposed system on it. The 
three-story structure was designed according to the 1980 edition of Italian Seismic Standards and 
completed in 1983. The interstory heights range from about 3.2 m to about 3.4 m, with intermediate 
story floors made of partly RC-prefabricated joists. The beams in the main frames, parallel to the 
longitudinal direction, have a section of (400 × 600) mm × mm; the column have a constant section of 
(500 × 400) mm × mm (Figure 11). 
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Figure 11. General views of the benchmark building and architectural plan of the floor type [19]. 

The objective of the system is to carry out a seismic retrofit mainly intervening from outside, 
without the need of non-structural elements, demolition or interruption to or limitation of the 
building’s activity. Figure 12 shows a possible configuration of the cable system on the benchmark 
building main prospect. Each cable is connected to a different structure floor and transfers the 
displacement of each floor to the lever (pinned at the foundation beam), to which the viscous damper 
is connected. To do so, may be required a foundation enlargement also with micropiles in order to 
absorb the forces related to the diversion of the cable, when it does not occur at a beam-column joint, 
and do not increase shear forces in the foundation beam. As can be seen, despite the non-uniform 
spans of the frame beams, the system configuration can be effectively adapted without restricting 
accessibility in the building. The passage of cables at the windowed walls, although they produce a 
visual obstacle, does not reduce the functionality of the windows (opening from the inside) nor the 
light entry in the building. Other building prospects and, if needed, internal frames, will be equipped 
with similar cables layout. 
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(a) 

 

 
(b) (c) 

Figure 12. (a) System layout on the main RC frame of the benchmark building: in green, red and cyan 
are represented, respectively, steel cables linking the 3th, 2th, and 1th floor to the foundation of the 
building; (b) Cable system layout depicted on the building prospect: steel cables (red lines), RC frame 
(dashed green lines); (c) transferring system of cable displacement to the viscous damper. 

The system for transferring the cable displacements to the dissipation device is made by means 
of levers consisting of a specially shaped metal plate of suitable stiffness in order to limit its 
deformation, connected with the upper end to the cable and with the lower end to the viscous device. 
The length of the lever arms is such as to produce amplification of the displacements transferred by 
the cable to the device. 

Further enhancement is expected from the use of non-linear viscous dampers, suitably 
calibrating their constitutive parameters [20] to reduce force peaks and increase dissipated energy. 

Figure 13 shows the mean acceleration spectra obtained by a set of 7 NTC2018-spectrum 
compatible accelerograms extracted from the European Strong Motion Database, ESM [15] through 
the REXEL software in the case of a bare structure’s SDOF-equivalent system with a 225,000 kg 
lumped mass (black line) and same structure equipped with the proposed system with the following 
values of the coefficients α = 2; α = 2; α = 10 (red line). The figure shows the period range 0.3–
0.6 s (blue dotted line), which represent the variation range of the fundamental period of most 
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existing reinforced concrete school buildings designed for gravity-loads only, in Teramo province 
(Abruzzo, Italy), and the proposed system significantly reduces inertial force on the structure. 

Previous numerical analysis show that the presence of the amplification system is able to 
produce a significant increase in the displacements of the viscous device and allows the dissipation 
of a significant amount of energy, reducing the total displacements of the structure and the inter-
story drift. The variations in the dynamic response of the structure, although present, are limited and 
in any case the natural frequency of the system does not undergo variations greater than 15%. This is 
particularly important, given the fact that mitigating structure stiffening makes it possible to avoid 
significant increases of inertia forces and the need for major reinforcement interventions on seismic 
resistant frame elements and foundations, condition, conversely, often required in case of dissipative 
braces arranged in the traditional way. 

 

(a) 
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Figure 13. (a) Mean acceleration spectra obtained by a 7 NTC-spectrum compatible accelerograms in 
the case of a bare structure’s SDOF-equivalent system (black line) and same structure equipped with 
the proposed system with the following values of the coefficients α = 2 ;  α = 2 ; α = 10  (red 
dashed line); (b) Identification of the 7 NTC-spectrum compatible accelerograms. 

5. Conclusions 

The present paper illustrates a seismic retrofit system for existing reinforced concrete structures 
by using additional viscous dampers connected to the structure by means of a system of cables and 
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lever able to transmit the roof displacements to the base, where displacement amplification is carried 
out through a lever system and then transmitted to the dissipation device. The paper firstly deals 
with the simple case of a SDOF system in order to investigate the influence of the geometric 
characteristics of the structure and of the system, as well as of the characteristic parameters of the 
damper and of the stiffness ratios between the structure and the cables. The results show a high 
efficiency of the system already with axial stiffness of the cables of the order of 50% of the whole 
structure stiffness and for additional damping coefficients of the order of 20% of the internal structure 
damping coefficient. The amplification produced by the lever system appears to have a significant 
influence both on the dynamic characteristics of the structure equipped with the system, and on the 
amount of energy dissipated. The paper, furthermore, presents displacement and acceleration gain 
maps that can provide the first indications about the optimal system design. It is the aim of the 
authors to continue the research in order to investigate the effects on the system performances of the 
use of different dissipative devices (non-linear viscous and friction dampers, etc.) and their 
application to more complex structures and different typologies (prefabricated structures, masonry, 
bridges etc.) or different configurations of the cable system, and meanwhile carry on an experimental 
campaign to validate the results obtained in numerical analysis. 
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